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The large-q' behavior of the elastic form factor of a hadron or nucleus is related by dimensional counting to
the number of its elementary constituents. Using the framework of a scale-invariant quark model, dimensional-
scaling predictions are derived for the 3(q')/A(q') ratio in the Rosenbluth formula, multiple-photon-
exchange corrections, and the mass parameters which control the onset of the asymptotic power law in the
meson, nucleon, and deuteron form factors. A simple "democratic chain" model predicts that for large q',
F(q') ~ (1 —q'/m„')' ", where m„' is proportional to the number of constituents n. In the case of nuclear
targets (or systems with several scales of compositeness), we also define the "reduced" form factor f„(q')
F„(q )/II;",F;(q; ') in order to remove the minimal falloff of F„due to the nucleon form factors at

q;
' = (m; '/M„')q'. Dimensional counting predicts (q')" 'f„(q )~const. A systematic comparison of the data

for n, p, n, and deuteron form factors with the dimensional-scaling quark-model predictions isgiven.
Predictions are made for the large-spacelike-q' 'He and a-particle form factors. We also relate the deuteron
form factor to (off-shell} fixed-angle n-p scattering, and show that the experimental results for t'F„(t) are
consistent with the magnitude of the s-wave wave function u'(0) obtained from soft-core potentials, The
relation of the dynamics of an underlying six-quark state of the deuteron to the nucleon-potential and meson-
exchange-current contributions is discussed. The scaling of q'f„(q') implies that the nuclear potential (after
removing the effects of nucleon structure) displays the scale-invariant behavior of a theory without a
fundamental length scale. Predictions are also given for the structure functions, fragmentation, and large-angle
scattering of a nucleus.

I. INTRODUCTION

Measurements of the elastic form factors of the
hadrons and nuclei have historicallg~iayed an es-
sential role in determining the static properties
and spatial structure of hadronic matter. In the
relativistic domain where ~q'~ 2 O(M'), the clas-
sical relationship of the form factor to the Fou-
rier transform of a charge distribution and intui-
tive concepts such as the use of "body" form fac-
tors in the impulse approximation begin to break
down, and strictly covariant treatments are re-
quired. However, even in the relativistic domain,
we can identify the form factor E(q') as the prob-
ability amplitude for the target to remain intact
af ter absorbing momentum q" from a local cur-
rent. Thus, physically, it is clear that the rate
of falloff of E(q') will depend on the degree of
compositeness of the target as well as the dynam-
ics of the restoring forces. This paper is devoted
to an analysis of these relationships, and the im-
plication of present data —particularly the new
measurements of the deuteron form factor at large
q' (see Ref. 1)—to the underlying structure of the
hadrons and the nuclear force.

The connection between the asymptotic behavior
of the form factor of a bound system and the num-

ber n of its constituents is already familiar in
many-body Schrodinger theory. ' In order to trans-
fer momentum to each constituent, the potential
must act n —1 times. It is straightforward to show
that this leads to the large-q' result

where q- (I/n)q is the average momentum transfer
to each constituent and

f d k; (k)).

The derivation assumes that the wave function at
relative separation x, =0 is finite. Equation (1) is
valid for m'» q'»n'(k'), where (k') is the mean
square momentum of a constituent in the bound
sta, te. Taking V(q')-e'/q' then gives

(3)

for nonrelativistic Coulomb or Yukawa interac-
tions.

The extension of this result to the relativistic
domain of the Bethe-Salpeter equation is surpris-
ingly straightforward (see Ref. 3 and Sec. II).
The essential change is in the high-energy behav-
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ior of t/". In the case of quantum electrodynamics,
and in fact any renormalizable theory, we have
effectively (modulo powers of log q' from finite
orders in perturbation theory)

V(q')- —,1+0(,)
i.e. , V(q') becomes constant in the relativistic
domain and

(4)

(5)
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FIG. 1. Elastic electromagnetic form factors of had-
rons for large spacelike q2 in terms of the dimensional-
scaling quark model. The curves simply connect the
data points. (The neutron data have been multiplied by
0.1.)

where n is the number of elementary fields (e, p. ,
y, q, etc.) which compose the (I =0) bound state.
This is the prediction of "dimensional counting"
which is based on the case of an underlying scale-
invariant theory. "

The predictions based on quark constituents of
the hadrons (Ijtf& = Iqq» lB& = Iqqq&)

q 'E„(q ') - const,

(q')'E~(q')- const,

appear to be consist--nt for spacelike q' larger
than the square of the mass of the respective had-
rons (see Figs. 1 and 13). The measurements of

E,(q')for timelike t= q'from— e'e - m'v alsoagree
with the predicted behavior as in Ref. 3 and Fig. 6.
Further, and perhaps most remarkably, the de-

pendence of the elastic deuteron form factor mea-
sured in Ref. 1 is consistent with the approach of
t'F~(t)- const predicted for a six-quark state (see
Figs. 1 and 9). This was the impetus for the pres-
ent inve stigation.

If the target has spin, then the scaling law, Eq.
(5), is the prediction for the leading form factor
A') '(q') in the Rosenbluth formula.

F,'(t) /E, '(t) - 0. (8)

We also show (see Sec. IIA) that multiple photon
exchange can give a correction of order Zcy to the
asymptotic large-t cross section.

At first sight, it may seem surprising that the
dynamics of any system as complex as the deu-
teron can be related to the dynamics of a six-
quark state. However, to the accuracy of present
knowledge, the electromagnetic interactions of
hadrons (e.g. , Bjorken scaling of deep-inelastic
lepton scattering, current algebra, e'e annihila-
tion) are described by quark currents, and the
spectroscopy of hadrons and the quantum flow of
the strong interactions can be identified with the
underlying skeletal substructure of the quark dia-
grams. Models of the hadronic interactions, in-
cluding quark-gluon gauge theories, thus imply a
microscopic description of the nuclear force and
lead to constraints on its short-distance behavior.
Of course, since asymptotic quark states have not
been found, there must be an equivalent or "dual"
description in terms of normal hadronic states.
In fact, it is this complementarity or mathematical
equivalence which, as we shall see, leads to im-
portant constraints on the meson-exchange con-
tributions to the nuclear force at short distances
and exchange-current contributions to the deuteron
form factor.

The physical picture which underlies the d;men-
sional-counting prediction, Eq. (5), is that, at
large q', binding corrections are negligible and
can be set equal to zero. The scaling of the form
factor then has the same short-distance scaling
behavior as that of the amplitude for an electron
scattering on n on-shell constituents, each with a
finite share of the initial and the final momentum
(see Sec. IIA). In the case of renormalizable
theories with dimensionless coupling constants
and no intrinsic length scale at short distances,
Eq.. (5) is then obtained —modulo logarithmic cor-
rections of the same order expected to Bjorken

l(x 4 0'
~tA(q') +B(q') tan'-,'e,],4+ Mott

and further, B( f) /A(t)- -t/2M' if the elementary
charged constituents have spin —,'. For the nucleon,
this implies dominance of the Dirac form factor
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scaling of deep-inelastic scattering. ' Empirically,
these corrections seem to be small and will
be neglected for the range of q' discussed here.

The deuteron form factor will be discussed from
several points of view within an equipartition pic-
ture in this paper. In Sec. IID we use the simplest
quark diagrams Ithe cascade model, as in Fig
2(a)] as an illustration of how the mass parameters
which control the onset of asymptotic scaling in
the meson, nucleon, and deuteron form factors
can be related. A phenomenological discussion of
the new large-q' data on the deuteron, considered
together with comparable data for the pions and
nucleons, is then presented.

In the case of quark models such as quantum
chromodynamics, the simple cascade diagram is
first-order forbidden, and an interchange of
quarks between the nucleons is required. It is an
interesting question whether this effect can be
distinguished phenomenologically in the large-q'
form factor. The relationship of quark- interchange
diagrams to the exchange-current contributions is
discussed in Sec. IID.

The structure of the deuteron form factor in a
relativistic theory can also be understood in some
detail from Fig. 2(b). If we neglect the nuclear
binding, then the calculation of the form factor re-
quires each nucleon to absorb momentum transfer
-&q". Thus it is natural to define the "reduced"
form factor of the deuteron,

e' (0)

p+q

e' (b)

f

A

p+g

FIG. 2. Two possible quark-constituent views of e-D
elastic scattering are (a) the democratic chain (cascade)
model and (b) the quark-interchange model.

transfers beyond -0.7 GeV displays the scale-in-
variant behavior of a renormalizable interaction,
i.e. , V= const as in Eq. (4). The constraints on
the exchange-current contribution and the general-
izations to other nuclei, in particular with pre-

Eg (q')
fu(q ) —F 2( 2/4) ~ (9)

0.05

where the two powers of the nucleon form factor
remove in a minimal way the effects of nucleon
structure. f~(q') is displayed from existing data
in Fig. 3. In a sense, the reduced form factor
contains the essential dynamics of the nuclear
interaction, and it can be directly related to the
exchange-current contribution of standard ana-
lyses. Using dimensional counting, Eq. (5), we
predict for large q' (Ref. 5)

—0.03

OJ 0-

0.02

A comparison of the prediction (1 —q'/m, ')FD(q')/
E„'(q'/4)- const with the data of Ref. 1 is shown
in Fig. 9. (The value nz, '=0.28 GeV' is predicted
from the parametrization of the pion form factor. )
The (roughly) constant behavior of (q' —m, ')fD(q')
in Fig. 9 for ~q'~ 2 0.7 GeV' appears to be a strik-
ing success for the quark-counting approach. This
premature onset of scaling appears to be a general
feature of electromagnetic interactions of hadrons.
As we discuss in Sec. II C, the scaling of q'fD(q')
implies that the nuclear potential (after removing
the effects of nucleon structure) at momentum

0.0 I

I i l

2
q2 (G&V2)

FIG. 3. "Reduced deuteron form factor, "fz versus —q'.
The data are from Ref. 26 (x) and Ref. 1 ().



3006 STANLEY J. BRODSKY AND BENSON T. CHERTOK

dictions for 'He and 'He, are also discussed in
Secs. II and IV.

The deuteron form factor can also be predicted
from the behavior of off-shell nucleon-nucleon
scattering near 8, = v/2. The deuteron wave
function at the origin, $D(0), is then evaluated
using both sets of experimental data. This is dis-
cussed in Sec. II C. We also discuss other nuclear
tests sensitive to short-distance interactions in
Sec. VI.

This paper is organized as follows. The scaling
laws are developed in Sec. II, relating (a,) fixed-
angle scaling to elastic form factors, (b) reduced
form factors for general composite systems to
dimensional scaling laws, (c) the deuteron form
factor to n-P elastic scattering at fixed angle, and

(d) binding corrections in a dimensional-scaling
quark picture to elastic form factors. The data
set of elastic form factors for m, P, n, and d is
presented in Sec. III. The systematic comparison
of these data with the dimensional-scaling quark-
model predictions developed in Sec. II is made in

Sec. IV. The results of this investigation are sum-
marized in Sec. V, followed by the conclusions in

Sec. VI which generalize on the continuity between
nuclear and particle physics. The partition meth-
od for bound-state calculations is reviewed in Ap-
pendix A. Appendix B contains a discussion of the
proton elastic-form-factor data and phenomeno-
logy, and Appendix C contains predictions for the
neutron form factors.

II. SCALING LAWS

A. Fixed-angle scattering laws and form factors

If the binding interactions of a composite system
are sufficiently well behaved, then at large mo-
mentum transfers binding corrections can be
ignored and effectively the bound-state scattering
amplitude is proportional to the on-shell multi-
particle amplitude DR„obtained by partitioning the
momentum of each hadron among its constituents.
As discussed in Appendix A and Ref. 3, the re-
quired condition for this to be valid is that the
wave function be finite at relative distance x& =0.
In the case of constituent spin, the spinor factors,
u, v, etc. , are included in'~. We note that the
amplitude has dimensions IL]" '.

In the scale-invariant theory where, asymp-
totically, only the invariants t and s =E, ' set the
mass scale, we have X»- t&' ' ' "g(t/s) and thus

do' 1
dt

(A+B-C+D)- „,f(t/s),tN-2

where N is the total number of elementary fields
inA, B, C, D The application. s of Eq. (11) to fixed-
c.m. -angle hadron-hadron scattering are discussed

in Ref. 3. Electron-hadron scattering is a special
ca,se of Eq. (11):

—(ea- ea') =, Z„'(t)j(t/s),
do' 4~a

(12)

where E»(t)- const/t. "» '. In fact the fixed-angle
scaling law holds to any finite order in n. Thus
the two- (or higher-) photon-exchange contribu-
tions also scale a.nd simply give a correction of
order o. to f (t/s), in agreement with the explicit
calculations of Qunion and Stodolsky. ' Comparing
Eq. (12) with the Rosenbluth formula we have, in

order ~, the predictions

[A (t)]"-,„„=,

()-, () ~ (15)

Alternately, we can use the exclusive-inclusive
connection which ensures continuity between the
elastic and inelastic electron scattering cross
sections. The condition (15) is equivalent to the
Calla n-Gross relation R = g~/ar- 0 at x = -q'/
2P ~ q - 1. More generally, continuity at x = 1 re-
quires that

t(1—4M'/t)-
2m' 1+8

where M is the target mass. The measured value
of R for the proton at large x is -0.10+ 0.05 for ~t~

«2 QeV27

B. The reduced form factor

The partition model also leads to simple pre-
dictions for nuclear targets or general systems
with a series of scales of compositeness. Thus,
consider a composite of A. constituents each with
an on-shell form factor E;(t). In the limit where
binding can be neglected, each constituent absorbs
momentum (m;/M„)q. Thus, it is natural to de-
fine the "reduced" form factor

(t) A( )

ps, ((m, '/M„') t)

B (t)
(
)- const (or zero) .

(B=Ofor a spinless target. ) More specifically, we
assume the angular dependence of do/dt will reflect
the angular distribution of the elementary scattering
of the electron on the charged constituents. For
spin--,'- constituents, we thus have the further pre-
diction
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Thus the reduced form factor is predicted to have the
same falloff as a corresponding bound state of elem-
entary constituents. (Note that only I= 0 states
are considered here) In. particular, fn(t) and

f2„,(i) are predicted to have the same monopole
and dipole falloff as the mesons and baryons, re-
spectively. These and other predictions are sum-
marized in Table I. Note that in each case E re-
fers to the &24 form factor in the Rosenbluth for-
mula. We emphasize that the usual definition of a,

"body" form factorf&082(t) =F„(t)/F~(t) has no
natural significance in a relativistic theory.

C. The deuteron form factor and fixed-angle n-p scattering

If the deuteron nuclea, r wave function gD(x) is
finite at x„=0, then the calculation of the large-q'
limit of the deuteron form factor is equivalent to
the calculation of the amplitude for the process

yv (q') +p +n -P' +n',

where the initial nucleons each have 4-momentum
P/2 and the final nucleons have 4-momentum

(P +q)/2, i.e. , binding energy-0. Thus, as seen
in Fig. 4, Fd (q') has the structure

Fd (q') - 21'(q')~ (q'/2) T(q')4 D'(o), (19)

where the coupling of the nucleon to an off-shell
state with mass squared JR2 = q'/2 is given by the
vertex function I'(q '), the off-shell nucleon propa-
gator is 6(%2), and

T(q') =T(t =q2/4, u =q2/4, N2=q2/2)

is the connected n-P scattering amplitude for 90
scattering with one-nucleon leg off-shell.

In fact, we can argue —from the observations of
Bjorken scaling in deep-inelastic scattering or

which removes the minimal falloff of the form fac-
tor due to constituent structure. It is clear phys-
ically that f„(i) should be a decrea. sing function of
t since one still has to pay a penalty for keeping A
intact. Using dimensional counting, i.e., an un-
derlying scale-invariant theory, we have from Eqs.
(5) and (17)

const

e'e -K+X—that I'(q') &&a(q'/2) is scale-invari-
ant i.e. at large q'

I'(q"')~ (q'/2)- q' 2 (20)

the same scaling as in free-field theory. ' Thisre-
sult is of course also evident in the quark model.
Thus

F(q')-2 . 2
T(q')4D'(0),

1

q 2
(21)

C
Fd (q )

( 2)4.85&0.25 (23)

We can, in fact, go one step further. For gen-
eral sets of field-theory graphs" it is straight-
forward to show that the scaling behavior T(q')
cc (q') " for i =24 = q 2/4 is unchanged by the extra-
polation from on-shell to spacelike 3R2 = q'/2.
Thus we can predict directly from the Bjorken
scaling behavior of deep-inelastic scattering and
the observed fixed-angle scaling behavior of fixed-
angle nucleon-nucleon scattering the large-q' re-
sult

C
Fd (q )

( 2)4.8540.25 (24)

in agreement with the interpretation of the mea-

and the asymptotic behavior of F(q') is controlled
directly by the large t =u behavior of the off-shell
n-P scattering amplitude.

In the case of on-shelf proton-proton and neu-
tron-proton scattering, the fixed-9, cross sec-
tion fits the form'

d&T I
l

l2
f(8 )

dg 1671's' s"

with n =9.7+0.5 for PP-PP Itl lul +2 Gee (The
dimensional-counting prediction is n = 10.') Thus,
at 90' T~ s '""". Further, it is easy to see
from field-theory calculations in perturbation
theory that the extrapolation of T from on-shell to
the off-shell sgacelike mass 810 = q'/2 & 0 can only
decxease the amplitude. Thus we obtain an upper
bound to the asymptotic behavior of I'"D:

TABLE I. Compositeness of matter.

Bound state
.( ') Number of

constituents f&(t)

P/2

P/2

(P+ q)/2
(P+ q)/2

e& P~ Y2q
7t', K
p 512

D
He

4He

1
1

Ep(t/4)
Ep(t/9)
y" (t/16)

to
t1
t2
t~ f

t2
t3

P/2

P/2 (
r = (P+ q)/2

—(P+ q)/2

FIG. 4. Feynman graphs for pz(q )+p+n p'+g ' .



3008 STANLEY J. BRODSKY AND BENSON T. CHERTOK 14

surements of Ref. 1 as, e.g. , in Fig. 9.
It is of interest to see whether we can under-

stand the order of magnitude of the constants en-
tering the form-factor calculation. The large-t
on-shell 96 n-P scattering amplitude fits the ap-
proximate form T 5x-10' GeV'/t'. For the off-
shell continuation we shall assume the form

10' GeV'
t'(t+5II') '

1.5x10' GeV'
(q')' (2 5)

which is suggested by extrapolations of off-shell
form factors. " Using Eq. (21), we then have

M~q'FD q'
p„,'(0) = 2M~JD'(0) = — ~

(q')'F (q')
3~10' GeV'

Taking (q')'Fa(q')- 1 GeV" from Fig. 9 gives

u'(0) = v'4w g„,(0)- O. Im, 't',

(28)

which is of the order of magnitude of the s-wave
wave function Inormalized to J,"u'(r)dr = 1] ob-
tained for the soft-c ore potentials. "

Notice also that consistency between the asymp-
totic scaling laws for T(q') and F(q') requires
u'(r) to be nonzero at r- 0. Thus there is no
hard core" in the effective nucleon nucleon po--

tential —at least for the range r & I/Q ~ 0.0&/
m, (0.08E) Probed thus faxin the deuteron form
factor measurements

It should also be noted that V«(q') =-2M~T(q') ts
the effective nucleon-nucleon potential in the two-
body Schrodinger theory. As we have seen, the
asymptotic falloff of T(q') is consistent with the
(q') ' behavior of E„'(q'/4). Thus the entire fall-
off of the effective potential can be understood to
be due to just the dynamical structure of the nu-
cleons themselves, with no additional falloff from
the exchange for ce The scaling b.ehavior for the
"reduced" amplitude

T(q')
t(q ) =

2( 2/ )
const. (28)

D. Quark description of form factors

Within the accuracy of our present knowledge,
the electromagnetic interactions of hadrons can be
described by quark currents. The empirical evi-

is in fact (modulo logarithmic terms) exactly what
is expected in underlying theories which are scale-
invariant at short distances, including quantum
electrodynamics (in perturbation theory) and gauge
theories with asymptotic freedom.

f, t~(q') = F„(q')

E, q,. ')
(29)

(q; =x;q, Z";=,x; =1) obtained after removing the
quark-form-factor dependence.

It is an important and interesting question
whether the mass parameters in the various ha-
dronic form factors can be related. The mass
scales which determine the preasymptotic form of
E(t) clearly will depend in detail on the binding
parameters and internal masses of the constitu-
ents. In the case of nonstrange hadrons, the quark
masses are usually assumed to be small compared
to their average transverse momentum in the
bound-state wave function. In the models de-
scribed below we shall assume that the essential
mass scale which enters the scattering amplitude
and propagators is the mean transverse momen-
tum (k, ')' ', which we take as a hadron-indepen-
dent constant. We recall that this mean trans-
verse momentum, which is a general observable
in high-energy collisions where (k~) - 300 to 400
MeV, determines the large q', q P kinematic
boundary where Bjorken scaling sets in. The con-
vergence of the integrals at large transverse mo-
mentum is guaranteed by the condition on the

dence has been mentioned in the Introduction. The
recent observation of jets with the angular distri-
bution appropriate to e'e annihilation to pointlike
fermions is particularly striking. These results,
taken together with hadron spectroscopy, imply
that hadrons have a finite composite structure with
the degrees of freedom of the quark model. The
form-factor calculations thus require the rear-
rangement of a finite number of elementary con-
stituents and yield power-law falloff, t"F(t)- const' 0. In constrast, bootstrap or continuum
models with a uniform current distribution imply
an infinite-composite hadronic structure and ex-
ponentially damped form factors. '"

More specifically, if the hadronic wave function
is finite at zero relative separation, binding cor-
rections can be neglected at large momentum
transfer (see Appendix A and Sec. IIA), and the
calculation of the asymptotic form factor is equiv-
alent to the calculation of the amplitude N„ for re-
arranging the n-constituent quarks parallel to P"
to the final P"+q" direction. This result holds for
nuclei at large q' as well as for the usual hadrons.
If the quarks are structureless and the interactions
are scale-free then this leads to the dimensional-
counting prediction t" ' F(t) - cons. t. We note that
if deviations from Bjorken scaling are found at
large q' —as might be due to quark substruc-
ture" —then the dimensional-counting prediction
applies to the reduced form factor
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Bethe-Salpeter wave function ((0) &~.
Even if we assume a specific quark-gluon field

theory, the complete calculation of the hadronic
form factors is a formidable task. All diagrams
contribute to the quark-scattering amplitude %
in the resonance regions (t-mq', etc.) and to the
leading asymptotic power behavior —modulo log-
arithms. However, in asymptotic-freedom gauge
theories such as quantum chromodynamics, the
coupling constant a, is not very large (o,- 0.3)
for q22 (k '), and decreases slowly with q'. Thus
we can hope to calculate at least the rough struc-
ture of the nonresonant contributions from the low-
est perturbation theory contributions. We can then
assume that the diagrams in lowest-order pertur-
bation theory for Bg„give the leading asymptotic
behavior. Since we are interested only in identify-
ing the leading power dependence here, we can
ignore the slow logarithmic corrections from high-
er-order loop diagrams and the dependence of
o,, (q'). As discussed in Ref. 3, the logarithms in
an asymptotic -freedom theory arising from the
ultraviolet region do not accumulate to change the
effective power behavior. Further, the infrared
singularities cancel for neutral (color-singlet)
composite systems.

The computation of the complete gauge-invariant
set of Born diagrams for R„can be readily carried
out in any renormalizable theory. It is easy to
show that for large q' the gluon propagator is al-
ways compensated by its couplings to the quark
currents, leaving only a net falloff (q') ' for each
quark propagator. The asymptotic falloff of DK„

then gives the dimensional counting result
(q')" 'E(q2)- const. However, it is of interest to
study the structure of the Born-approximation
diagrams further in order to see how the sharing
of the momentum transfer controls the mass scale
for the onset of the asymptotic predictions.

We shall assume that, on the average, the mo-
mentum of the hadrons is partitioned equally
among its constituents, P& =x;p +~;, where x;
= m&/M = 1/n and ~K& ~

= p is the mean square of the
quark momentum in the rest frame of the hadron.
As an illustration of the way in which the mass
parameters enter the form-factor calculations, we
compute the amplitude for any of the simple "dem-
ocratic" chain diagrams in which no quark inter-
acts more than twice. For such graphs [see Fig.
2(a)], after spin traces and rationalizing denomin-
ators, the quark propagators give

Fg(q )~ II + q +K~ —ply +zE2 p g + 1

] FE

j(j +1
] 8

(30)

(Note that the q. K, term, averaged over the angle,
has the same effect as the K,.

' term). We incor-
porate all finite-mass corrections to the quark
propagator in the constant P'.

In the case of spin- —,
' quarks, the effective gluon

intera, ction is (q; = [(j+1)/n] q)
1

V, (q')-' -, , [q, '+ 0(m, ') + 0(K, ')], (3l)

which leaves the asymptotic form of F„(q') un-
changed.

Although Eq (30). is approximate, it is repre-
sentative of the structure of the contributions to
the form factors at Large q', and gives a clue to
how the mass parameters of the various form
factors are interrelated. For the mesons and nu-
cleons, the off-shell quark propagators give (for
la, rge q')

(32)

P (q'3-K( ) (1
2

q 2/p2) (1 2
q 2/P2) (33)

where we have assumed that the average momen-
tum of the quarks within hadrons (and the average
transverse momentum (k~') -—', P') is universal.
Equations (32) and (33) should be indicative of the
leading mass corrections to the asymptotic be-
havior. We also note that for the leading correc-
tion (to order P2/q2) Eq. (30) is equivalent to

(34)

(1 —q'/0. 71 Gev')'

Thus we can obtain a rather simple understanding
of the relationship of the meson form factor to the
"canonical" empirical dipole fit to the nucleon
form factor and the origin of the constant 3P'
=0.71 GeV'. We will not attempt to calculate the
value of C„and C~, which depend on a much more
detailed parametrization of the binding and inter-
action strength. A phenomenological examination

where
2 fl l. 1

(35)

which shows how the mass scale increases as q'
is distributed among an increasing number of con-
stituents.

Numerically, the best fit to E„(q') for spacelike
q' is

F„(q') = [1 —q'/0. 471(~0.010) GeV']

(see Ref. 15), implying that P2 =0.235 GeV' and that
(i'2~')'~'- 400 MeV. Using Eq. (34), this gives for
the Large-q' nucleon form factor
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of the proton is given in Appendix B. Predictions
for the neutron form factor, which depend sensi-
tively on the symmetry of the nucleon wave func-
tion, are presented in Appendix C.

We can also apply these ideas to the many-quark
bound system, n =-3A. , A =2, 3, . . . , which are the
atomic nuclei. Two simple models for calculating
the form factor of the six-quark deuteron are com-
pared in Fig. 2. The simple democratic-chain
model is shown in Fig. 2(a), again giving the form-
factor results, Eqs. (30) and (34) with n =6. Note
that in the case of color SU(3), where the gluon is
a color octet, single-gluon exchange between the
color-singlet nucleons is forbidden. However, if
there is also an interchange of quarks between the
nucleons then the color selection rules are satis-
fied. Thus the effective nucleon-nucleon potential
is maintained as a color singlet. "

A somewhat more natural approach to the deu-
teron form factor is'to recognize the two-nucleon
nature of the deuteron, as in Fig. 2(b). In the lim-
it of zero nucleon binding, each nucleon must move
from p/2 to (P+q)/2 but stay intact; thus E~(q')
should be proportional to E„'(q'/4). A representa-
tive diagram which explicitly displays thi. s scaling
is shown in Fig. 2(b). The momentum transfer
q/2 to the second nucleon occurs immediately on
the struck-quark line; a subsequent quark inter-
change satisfies the color rules. The struck
quark recoils with momentum p/6 +q, and its
propagator gives the contribution of (1 ——,

' q'/p')
to the form factor. The deuteron form factor cal-
culated in this way is

E~'(q '/4)
E, (q')-

(1
'-,/. p,)

(37)

The most critical prediction is that the reduced
form factor f~(q') —= E„(q')/E~'(q'/4) falls as 1/q '.'
It is also interesting to note that the mass param-
eter ~5P' =0.28 GeV' can be predicted from the
pion-form-factor parametrization. A comparison
of theory and experiment using both approaches is
given in Sec. IV.

From a more general point of view the structure
of the deuteron form factor at the quark level con-
sists of three dynamical factors:

1. the generalized Compton amplitude on one
nucleon

&""l~(q) +&(P/2) -g(q/2) +&'(P/2+ q/2)1

2. a gluon propagator b, (q /2), and
3. the form factor to absorb the gluon on the

second nucleon. If the photon and gluon interact
on the same gluon line then it is obvious that Al"'
contains the factor E~(q'/4) and Eq. (37) follows.
In fact, one does expect that the graphs with the
gluon and photon on the same quark line will play

y -y& q 1
3n& P 9 (1 q2/ 9 p2) (I q 2/ 27p2)

and for the n particles as

(38)

1

(1 —q'/llP')(I —q'/2P')(I —q'/ '; 0') '—
(39)

At very large q', Eqs. (38) and (39) reduce to E„- (q')' " in agreement with the dimensional count-
ing rules. Further, the results are consistent with
the counting rule f„-(q')' " for the reduced form
factor of the composite nuclear system as dis-
cussed in Sec. IIB and summarized in Table I.
We do not attempt to predict the normalization
here.

a dominant role in JR"' since this contribution
gives interactions using immediately the leading
Regge behavior (j =0 fixed pole) at large t. How-

ever, it should be emphasized that all of the Born
terms contribute to the (q') ' asymptotic behavior.

It should be noted that the diagram in Fig. 2(b)
can be regarded as the prototype for meson-ex-
change currents. At lower q', where coherent ex-
changes of gluon interactions can bind the quark
lines to form virtual meson states, the quark ap-
proach merges with conventional calculations of
the meson-exchange currents. " However, previ-
ous calculations using the meson degrees of free-
dom have predicted a deuteron form factor at large
q' far in excess of experiment. ' Other approaches,
using vector dominance and subsequent multiple
scattering, also fail in the comparison. " In com-
mon with Fig. 2(b), these calculations explore
mechanisms which share the transferred momen-
tum q equally to the deuteron's two nucleons. How-

ever, the meson-current calculations have not in-
cluded the required off-shell vertex form factors
at the meson-nucleon vertices. These must fall at
least as fast as E„(q'/4), as is immediately evi-
dent in the quark calculations. " Thus the short-
distance behavior of nucleon interactions dictateD
by the quark model supplies the missing con-
straints of the previous hadronic level calculations.
An explicit synthesis of these approaches is clearly
needed.

The second approach contained in Fig. 2(b) and
Eq. (37) can be generalized for heavier nuclei by
counting nuclei connected by the gluon interaction
and one or more quark interchanges. For ex-
ample, the model applied to helium is displayed
in Fig. 5. The diffractive behavior observed in the
charge form factors of the He nuclei for q' =0.8
GeV' should yield and eventually fall at large q'
as
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P/9

e'
~He

(o) The pion data set has 16 values. In the timelike
region E, has been measured by the reaction e+e- 7t'7t for q

' ( 9 Qe V'."
B. Proton

Q/
'I

I

Q/S

e'
4He

p+q

(b)

The proton form factors have been extensively
studied since 1957 and span the interval 0 ~ -q'
~ 33 QeV'. The spin-~ proton has two electro-
magnetic form factors, G» and G». The form
factor G» dominates only near q'- 0 and is negli-
gible for -q') 3 QeV'. This form factor has not
been separated beyond this point. We will use the
proton structure function A~(q2) from the mea-
sured cross sections

Ap q' +Bp q' tan' p8,
Mott

(41)

where B~(q2) =2~GM~'(q'), 7. = q2/4M~'-, and 0, is
the laboratory angle. For -q') 3 QeV', the em-
pirical relation G» =G»/I1» is used to determine
A~(q'), where I1~ is the proton's magnetic moment.
In terms of G» and G», the structure function is

P+Q 2 2

( 2) — GEO + ~GMP (42)

Q/4

and in the large- q
' limit

A~= G»' . (43)

The normalization is A~(0) =1. The proton's form
factor is

FIG. 5. Equipartition of q~ for e-3He and e-4He elastic
scattering at large momentum transfers. Fp(q') = vA~ (44)

III, DATA SET

For the m, P, n, and d particles of spin, 0, 2,
&, and 1, respectively, consistent form factors
will be extracted from the scattering cross sec-
tions in order to compare the functions (q2)"M 'FM

for n =2, 3, and 6. In accord with Eq. (13), we
use I"~ =AH' ', where A.„ is the elastic electro-
magnetic structure function of the hadron's bound
state.

1
1 —q'/0. 47 (40)

A. Pion

The pion form factor is taken from the electro-
production work of the Harvard and Cornell col-
laboration for the reaction e +P-e +m'+n in the
interval 0 & -q'(4 QeV'. " This group measured
the 71 /7l ratio from deuteron electroproduction in
order to remove the small isoscalar component of
the primary isovector pion form factor. Their
resulting fit to the data is

MP (1 2/0 7])2 1 (45)

describes the data to within-5/p accuracy in the
interval 0-7 GeV' and to within 20/p accuracy Gilt

to -q =33 QeV . Timelike data for the proton
form factors from e'e —PP exist only for q'
=4.4 QeV with Limits set at 5.]. and 6.8 QeV .

C. Neutron

The neutron's charge form factor has been mea-
sured in the interval 0( -q'(2. V QeV' using two
techniques, elastic and quasielastic eD scattering.
The former reaction determines (GM~+GM„)2 and
the latter G~„' and G~„'. We note that at large q',
where relativistic and model effects become im-
portant, the validity of using the elastic form fac-

Five overlapping sets of data are chosen from the
literature with 43 measured values of the ep elas-
tic scattering cross sections in order to determine
E~(q') in the 0-33 GeV' interval. " Further data
on GE~ measurements or limits have been added to
study theA-B connection of Eqs. (14), (15), and
(16)." The empirical dipole fit,
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tor of the deuteron to obtain the neutron form fac-
tor becomes suspect. The form factor G„„domin-
ates the neutron structure function, A„(q')."
Since the relation

G~n —= ~n

is observed to describe the existing neutron data,
the q' dependency of F„(q') will be the same as
F~(q') of Eq. (44) out to -q'=2. 7 GeV'.

D. Deuteron

2.0—
l.6—
l.2—

N

0.8—
0.4—

0
0

I ~ I

I ( I I, I

2 4 6
q~ (Gev~)

lo

The deuteron data are from the recent measure-
ment of ed elastic scattering in the range 0.8
~ -q'~ 6 GeV'. ' This work extended information
on the deuteron from the previous boundary at q'
= 1.3 GeV'. Thirteen data from lower-q' mea-
surements are added to complete this data set."
The invariant structure functionA~(q') as in Eg.
(41) for the proton determines the deuteron form
factor, F„(q') = v'A„, where A~(0) =1. The deu-
teron structure function for this spin-1 particle
is the sum of the squares of three invariant form
factors which in the low-q' limit represent the
distributions of charge, quadrupole moment, and
magnetic moment, respectively. However, as
shown in Sec. IIA, it is FD(q') which contains the
full dynamics of the deuteron for a large-q' col-
lision.

Having described the data sets for the m, P, n,
and D and the choice of consistent electromagnetic
form factors for these spin-0, -~, and -1 particles,
we now examine the scaling behavior of this set.

FIG. 6. Pion data for q &0 frozn e'e 7r'7r

where n is the number of quarks.
The principal observations in Fig. 1 are the

known scaling (q' independence) for the pion, the
approximate q' independence for the proton, and
the approach to scaling observed for the neutron
and the deuteron. Thus the quantity in Eq. (47) is
an asymptote. The proton data have previously
been displayed out to -q'=25 GeV' (see Appendix
B) and the pion data for timelike q' out to 9 GeV'. '
The more recent pion data for q'&0 are displayed
in Fig. 6 and observed to scale. Timelike data for
the proton are too scant to examine.

In Fig. 7 these same data of Fig. 1 are super-
imposed on a linear scale. Scaling of the pion and
proton form factors is observed beyond -q' =2 and
6 GeV', respectively. The observation of a uni-
versal behavior for hadrons is suggested here

IV. SYSTEMATICS OF FORM FACTORS

In order to compare experiment and theory, we
first examine the elastic form-factor data in the
dimensional-scaling quark model (DSQM) whose
domain of validity is the large-q' limit, i.e.,
»M'. Next the data are compared with the refine-
ments to this model developed in Sec. IID to in-
clude binding corrections and therefore connect
the DSQM to lower q'. Then the quark-interchange
refinements are applied to the nuclei, 'H, 'He,
and ~He. Finally the connection between the elastic
electromagnetic structure functions A(q') and
B(q') is compared with our predictions of Sec. IIA.

2.5

2.0—

1.5

I

CU
U

I.O

0.5

I '
I ~ I

~ l

Pion, n=2, x5

Proton, n=5
x2

(q 2) Il —1F (47)

A. DSQM

The dimensional-scaling quark-model predic-
tions for elastic form factors are applied to the
pion, proton, neutron, and deuteron data and are
presented in Fig. 1. We use Eq. (5) to test scaling
by plotting the data as the quantity

0
0

I i I

6 8
-q (Gev )

FIG. 7. Pion, proton, and deuteron data of Fig. 1
(multip1ied by 5, 2, and 5, respectively) displayed on a
linear scale.
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since the deuteron form factor displays the same
shape in the approach to scaling as do the pion and
proton. It had been predicted that the deuteron
would scale at higher q' («8 GeV') than the limits
of the data. ' The deuteron curve in Fig. 7 for n
=6 will fit approximately on top of the proton
curve for q' (deuteron) «2 GeV' if it is displaced
toward lower q' by 1.5 GeV'. This displacement
would extrapolate to deuteron scaling at -q'= 6
+1.5 =7.5 GeV'. The value of n in Eq. (47) can be
varied to see whether the resulting deuteron curve
fits the proton shape. The value n = 5 is unlikely
since the deuteron curve would flatten (scale) al-
ready at 3 GeV', which is much earlier than the
observed proton scaling. The deuteron data ap-
proximately fit the proton shape for n-= 6+ 0.6.
We shall await the final analysis of the large-q'
deuteron data in order to make a more quantitative
statement.

These observations in Figs. 1 and 9 using the
DSQM prediction in Eq. (5) suggest that the neu-
tron and deuteron are approaching scaling. The
neutron data will not be analyzed further because
of their restricted q' range. Neutron scaling pre-
dictions for large q' are presented in Appendix C.

1—, E„, m„' =nP' (48)

B. Binding corrections to DSQM

We next examine the present refinements to the
DSQM in Sec. IID to see whether scaling occurs
at lower q' as in deep-inelastic scattering. The
asymptotes using Eq (30) a. re computed for the
data set and are presented in Fig. 8. Scaling is
observed to aPPeax fox the m and Proton form fac
toss at loaves q than in Figs. 2' and 7. This is
similar to the behavior of the inelastic structure
functions, vR', and 8'„when studied versus the
variable co' or ~, rather than e.' Scale indepen-
dence sets in immediately (versus 2 GeV' in Fig.
9) for the pion as is obvious comparing Eqs. (32)
and (40) and at -q' =4 Ge V' (versus 6 GeV' in Fig.
7) for the proton. Moreover, the proton appears
to be asymptotic out to the experimental boundary,
-q' =33 GeV' (see Appendix B and Figs. 12 and 13)
and thus represents a benchmark for the scaling
behavior of elastic form factors. The upper
dashed curve for the deuteron data in Fig. 8(c) is
consistent with Eq. (37) while the lower dashed
curve goes through the error bars at -q'=3 and 4
GeV'. Larger-q' data are needed to confirm what
is only a suggested flattening out of this deuteron
curve in Fig. 8.

We remark that the approximate asymptote from
Eq. (34), i.e. ,

I I

I 4 —(a)

iP

I I0.6
(b)

I I I I I I

Pion, n=2

7 II

I I I I I I

2.0—
I I

N
l.0 I

.+- ~ 5.0 —(c)

Proton, n=3

I I I I I

Deuteron, n=6

40

3.0—

2.0—

I.O—

0
0 I

I I I I
I'

I I

2 3 4 5 6 7 8 9
q2 (Ge&2)

FIG. 8. The elastic form factors with the DSQM refined
to include possible binding corrections given by Eq. (30).
The curves connect the data points and the dashed curves
in (c) are explained in the text.

reproduces the main features of Fig. 8. The mass
parameter for n =6 is m„'=1.41 GeV'. For the
deuteron data set a change in slope occurs at -q'
= 0.7 GeV' after falling with q' up to this area of
inflection which probably indicates that the as-
ymptotic region begins here.

C. Quark-interchange DSQM

Next the deuteron data are examined by the con-
stituent-interchange model of Fig. 2(b). The deu-
teron's asymptote for the quark-interchange pre-
diction contained in Eq. (37) is presented in Fig. 9.
In Eq. (37) the effective mass is taken from the
pion form factor so that '—, P' =0.282 GeV'; the nu-
cleon form factors are evaluated at q'j4 using the
dipole in Eq. (36) Iand (45)]. Evaluating E~ using
Eq. (33) does not change the features in Fig. 9 and
using a larger effective mass, t55-P'=M~', has only
a minor effect on the resulting asymptote. '

The flattening of the curve in Fig. 9 at -q'-0. 7
GeV' is striking and is evidence for the validity of
the underlying (q') ' behavior of the deuteron form
factor as predicted by the DSQM in Eq. (5). Four
powers of q' come from the two nucleons and the
fifth power from the extra quark propagator, as-
suming a scale-invariant interaction. This obser-
vation lends support to viewing the deuteron at
short distances by means of Fig. 2(b). Comparison
of Figs. 3 and 9 supports our view of the deterrnin-
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FIG. 9. Deuteron form factor divided by the quark-
interchange prediction of Eq. (37). The data are from
Ref. 26 (x) and Ref. 1 ().

'He,

1O
—4 Classical

Charge

ation of compositeness, since the reduced deuteron
form factor from Eq. (18) with A = 2 is fD- 1/q'

Further, the magnitude of the asymptote in Fig.
9 can be estimated or used to determine gD(0) to-
gether with large-transverse-momentum nP elas-
tic scattering data, as in Eq. (26).

10
0 2

—
q (GeV )

FIG. 10. 3He and 4He data and an estimate for large
q~ using Eqs. (38) and (39). A smooth normalization at
(q ) - 1 GeV is assumed. The data are from Ref. 27.

D. Helium form factors

We can apply these ideas to the elastic form fac-
tors of 'He and 'He, using the predictions of Eqs.
(38) and (39) from constituent interchange, as in

Figs. 2(b) and 5. However, the presently mea-
sured elastic electron scattering data on both
nuclei extend only to —q' =0.8 GeV' with diffrac-
tion minima observed at-0.4 QeV', followed by
large secondary maxima. " If these diffractive
features of the nucleon-nucleon repulsion yield to
the quarklike short-distance behavior by -q'
- 2 GeV', then we should be able to predict the
asymptotic cross sections from the systematics
developed in this paper.

The upper curves in Fig. 10 for -q & 1 GeV'
are our predictions for 'He and 'He. We can pre-
dict the q' dependence of these form factors but
the magnitudes can only be estimated. That is,
the curves in Fig. 10 assume that scale-invariant
behavior begins at -q' —1 GeV'. Should this mo-
mentum dependence begin, for example, at -q'
= 1.2 QeV', then our curves would be a factor
-2.5 too high. The crucial predictions are the
underlying (q') ' and (q') "behavior as embodied
in Eqs. (38) and (39) or, equivalently, that the re-
duced helium form factors from Eq. (18) for A =3
and 4 diminish as 1/(q')' and 1/(q')', respectively.
Large-momentum-transfer data on 'He and 'He
would be welcome to test these ideas.

E. Al-8 connection

In relating fixed-angle scaling laws to electro-
magnetic form factors in Sec. II A, a connection
between the structure functions A. (q') and B(q')
was derived and summarized by Eqs. (14), (15),
and (16). The quantity ( q'/2M')-A/B is predicted
to approach unity for spin--,' constituents or (1+R)/
(1 —4M'/p') using Eq. (16). The available data"
for the proton, where G» and G» have been sep-
arated, is presented in Fig. 11. A phenomeno-
logical fit to the proton, which is discussed in
Appendix 8, is used to extrapolate to large q' jn
Fig. 11(b). The proton data are suggestive, but of
too small q' to test these predictions. According-
ly, measurements or limits at large q' of B/A
would be useful. B/A data exist for the deuteron
and 'He, but only for —p' & 1 GeV' (see Ref. 28).

V. SUMMARY OF RESULTS

Elastic form factors of hadrons have been sys-
tematically examined from the viewpoint of the
dimensional-scaling quark model. This theory
ascribes the power-law behavior in q' observed
for the pion and the proton to the number of in-
ternal degrees of freedom. The large-q' behavior
of the quantity (q')" 'E„appears to be asymptotic
or approaching this condition for the m, P, n, and
D data sets as summarized in Fig. 1.
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Three new results for elastic form factors are
derived in Sec. II for the large-q' limit. Compar-
ing fixed-angle scaling laws with the Rosenbluth
equation for elastic electron scattering, we find
for the measured structure functions of 3,
+I3 tan' —'0~ that

and

B(t)-,A(t)

reflects the dynamics of spin- ~ constituents. An
equipartition model for general systems with a series
of scales of compositeness of4 constituents leads us
to define a reduced form factor f„(f) by removing the
structure of the constituents as in Eq. (17); then
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FIG. 11. A-B connection for proton form factors.

f„(f) -const/f" '.
As shown in Secs. III and IV and in Fig. 13, the

definition of the large-q' hadronic form factor
E„(t) is consistent with the full dynamics of a
bound state recoiling at large q'. The A. -B con-
nection above would appear to be consistent with
the proton form factors, as in Fig. 11. 6» and

G» separations at -q'&3 GeV' are very difficult
but possible by high-precision angular distribu-
tions at fixed q' and polarized-beam-polarized-
target methods. Even limits on B/A at large q'
would be useful. Preliminary results for B/A for
the deuteron are interesting. "

The general working principle for composite
systems is summarized by predictions for the re-
duced form factor f„(t) in Table I. It has been
verified for elementary bound states up to the

lightest atomic nucleus, the deuteron in Figs. 3

and 9. The reduced form factors of 'He and 'He
are predicted to diminish as t ' and t ', respec-
tively. Dimensional-scaling predictions are made
in Eq. (29) for the quark, if it too is eventually de-
termined to have substructure.

Simple models have been explored which extend
the dimensional-scaling quark model to lower q'
by retaining binding-energy corrections to the
leading fermion propagator. The mass scale of
these corrections is set by the constant in the mea-
sured pion form factor with 2P' = 0.47 as in Eqs.
(32) and (40). It is encouraging that this mass
scale gives the well-known empirical value for the
nucleon form factors, i.e. , 3P'=0.705 GeV'. Thus
the empirical dipole fit to the proton and neutron
form factors, which has been a long-standing
curiosity, is observed to arise from two off-shell
fermion lines using a mass scale set by the pion
form factor. The mass, (P')'~'=0. 485 GeV, may
be related to a universal mean transverse momen-
tum. This value is in accord with other high-ener-

gy phenomenology.
Furthermore, with these refinements to the

DSQM, scaling for the pion and proton is observed
to occur at lower q', as in Fig. 8, compared for
example with Fig. V. This effect of early scaling
is reminiscent of the situation in deep-inelastic
scattering and is therefore suggestive of a further
link between exclusive and inclusive scattering.

The approach of the deuteron form factor to the
scaling limit (q') ' was the impetus for the present
work. The intimate connection to n-P elastic scat-
tering at fixed angle led to three especially inter-
esting results in Sec. IIC.

The large-q' falloff of the deuteron form fac-
tor predicted from nP scattering is determined to
be (q') "'"". This is consistent with dimension-
al scaling and a six-quark deuteron.

2. The deuteron form factor, together with the
measured nP cross section, fixes the deuteron
wave function at the origin, leading to u'(0)
- 0.1~„-"~'.

3. The effective nucleon-nucleon potential di-
minishes as (q') ' so that its entire behavior is
due to the dynamical structure of the nucleons with
no additional q' structure from the exchange force.

The large-q' deuteron form factor has been ex-
amined from two simple models displayed in Fig.
2, the democratic chain model [Fig. 2(b)], and the
quark-interchange model [Fig. 2(b)j. Figure 8

displays the rapid approach of I'~ to scaling given
the validity of this chain or cascade model. In

support of the interchange model, it is observed
in Fig. 3 that the reduced deuteron form factor f„
indeed approaches (q') '. We believe that the
simplicity of this result is remarkable. Binding
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corrections are calculated which modify the result
tof~ (l —q'j~p') ', and the ratio of experiment
to theory in Fig. 9 appears to be independent of q'
beyond G. '7 QeV'. Further consistency with the nP
data (item 2 above) gives an estimate of the mag-
nitude of the observed asymptote. It is empha-
sized that the quark-interchange model provides
a viable mechanism to transfer momentum q/N to
each of N nucleons which has been the goal of
meson-exchange-current calculations for the last
decade. As such, the prediction in Eq. (37), which

may be written as

E.- E, '(q'I4)E. (5q'I3),
may be a useful guide. Stating this point more
strongly, it is our belief that the interactions dis-
played in Figs. 2(b) and 5 are prototypes for equi-
partition of momentum among nucleons at large q'.

The possibility of distinguishing between the two
models of Fig. 2 is displayed by dashed-Line extra-
polations beyond -q'=4 QeV' in Pig. 8. That is,
will larger-q' data one~(q') for -q'~ 4 GeV'
favor the upper dashed curve, which is from Fig.
2(b), i.e., constituent interchange, or is the deu-
teron already scaling at -q'~ 4 QeV"'P Plausible
differences could give a. factor of -3 in cross sec-
tion at -q'=6 QeV' and a factor of -6 at 8 QeV'.
The principal issues would appear to be

a whether lt ls possible to dlstlngulsh which
model in Fig. 2, democratic chain or constituent-
interchange, better describes the turn-on of scal-
ing,

b whether the internal rearrangements required
by the color-singlet nature of two hadrons as in
Fig. 2(b) are a viable description of the deuteron
at short distances, and

c what is the magnitude of the deuteron wave
function P„(0)'? For the evaluation in Eq. (27), the
value used for (q')'E~ came from the upper dashed
curve in Pig. 8. The calculations need to be re-
fined to include spin effects, etc.

It is pointed out in Sec. IV that diffractive fea-
tures dominate the 'He and 4He form factors out
to the experimental boundaries at -q'=0. 8 GeV'.
If e =9 and n = 12 quarks are the origin of the
short-distance behavior of these nuclei, then the
diffractive behavior should yield to the asymptotic
decreRses ln E„at Lax'gex' q ~ Rs pl edicted ln
Table I and by Eqs. (38) and (39) with an estimate
given in Fig. 10. Otherwise our conjectures mill
have to be revised in order to account for the pos-
sible dominance of diffractive behavior at large q'.
Future experiments will provide the guidance.

Clearly work remains to be done in several
Rx'eRs. The success and slmpllclty of the weak-
binding approximation employed in Ref. 3 has to
be fully understood. A more careful treatment of

the Bethe-Salpeter bound state, which permits the
mass scale to enter at a more fundamental level,
and the universality of a mean transverse momen-
tum on the propagator should be investigated. The
normalizations of the form factors are of funda-
mental significance in representing the wave func-
tion at x& = 0 and should come naturally out of R

successful theory of hadronic structure. The
present explorations using consistency with nP
scattering cross sections should be elaborated. It
is very important to understand more about the
spin structure of the gluon interaction. Although
the scaling behavior is not changed, different re-
normalizable field theories will affect nonasymp-
totic terms.

Experiments at larger momentum transfer and
those with improved statistical accuracy will pro-
vide decisive answers to whether scale invariance
is exact in the case of the proton. Are logarithmic
corrections visible with precise data'P %e discuss
the large-q' proton data in Appendix B, in partic-
ular examining which form factor scales: E~, I"~,
or G». The issue of scale breaking has been dis-
cussed from several other points of view. " More
data on the hadron form factors in the timelike
region from e'e -m'm, K'E. , pP, nn, dd, etc. ,
will test the crossing symmetry of the dimension-
al-scaling quark model. Deuteron data at larger
q' will determine whether the scaling observed in
Fig. 8 is illusory. Extensions of the neutron form
factors to larger q' would determine the isotopic
differences in the nucleon at x&=0 and complement
the vW,

'

differences in deep-inelastic scattering.
Predictions for the neutron and n/P are given in
Appendix C. Finally, the extension of the 'He and
He form factors to larger q' would have direct

bearing on the ideas we have advanced and in par-
ticular test whether nuclei are simply many-quark
systems at short distances.

VI. CONCLUSION

The deuteron form factor E„(q') provides an
ideal illustration of the continuity between nuclear
and particle physics at the microscopic level. At
low momentum transfers, where the nucLeons can
be treated as pointlike objects and are the essen-
tial degrees of freedom, the usual effective-poten-
tial Schr5dinger theory is appropriate Rnd meson-
exchange effects provide the framework for the
nuclear interaction. However, at larger momen-
tum transfers, where the nucleon form factor dif-
fers significantly from its q'=0 value, hadronic
substructure comes into play, and the electro-
rnagnetic interaction begins to resolve an elemen-
tary fermion current; the quark degrees of free-
dom then become appropriate. The elastic form
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factor of the nucleus is equivalent to the probabil-
ity amplitude to rearrange n elementary con-
stituents; the dimensional-counting prediction
(q')" 'F(q')- const then follows assuming a scale-
invariant theory.

Further, the nuclear potential (the irreducible
kernel of the two-nucleon Green's function) can be
reexpressed in terms of quark diagrams. In par-
ticular, at large momentum transfers, meson-
exchange diagrams of the potential theory merge
at the microscopic level with the quark-exchange
diagrams (dual graphs). In Sec. IIC we saw that
the scaling of the deuteron form factor is in fact
consistent with the observed power-law scaling
behavior of the two-nucleon amplitude at 0, =90'
(which can also be predicted using quark counting).
As shown in Ref. 3 the angular distribution of the
nucleon-nucleon scattering amplitude at large t and
u agrees with that predicted by quark-interchange
diagrams. We also emphasize that the empirical
fixed-angle scaling behavior of the nucleon-nucleon
scattering amplitude N~~'i/F„'(t) =f (8,,~) implies
that, after nucleon structure is removed, the nu-
cleon-nucleon interaction is scale-invariant, as
expected in theories without a fundamental length
scale.

In this paper we have also noted the utility of
defining reduced form factors which remove the
structure of the constituents [see Eqs. (1V) and

(18)]. More generally, for any elastic nuclear re-
action a,t large t (aA-aA) (a =e, v, P, etc.) it is
useful to define the reduced scattering amplitude

$0' Qv p(I~'),
ClaStlc

(54)

that the inelastic and elastic cross sections fall
uniformly in t at fixed W'=(q +P„)'.¹teadded in proof. The recent measurement
of the reaction e+ d- e'+X at threshold by the
collaboration of Ref. 1 appears to support this
pl ed1ctlon.
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where x = t/—2p„~ q is the Bjorken variable (0 &x
& 1), dv/dt is the elastic electron-nucleon ampli-
tude evaluated at the effective s' =xs, and G„.t„(x)~k
is the probability for the nucleon to have fraction-
al momentum x in the I'-~ frame of the nucleus

In a more general frame, x = (p'„+p~)/(P„'+P„'),
where P„ is moving along the z direction. In the
limit of zero binding energy G-5(x -1/A), and

Eq. (52) reduces to the usual quasielastic scatter-
ing formula. When nucleon interactions a,re al-
lowed, a quasielastic peak still exists, but there
is a finite tail (Fermi motion) which extends to x
& 1. Using the quark-counting rules, one obtains
for x 1

G „,„(x) (1-x)'t"-'&-', (58)

where 3(A —1) is the number of quark spectators
in the reaction. This prediction could be tested by
measurements in the forward fragmentation re-
gion of inelastic deuteron scattering, g+g -p +X.
This result also provides continuity between the
exclusive and inclusive limits and the prediction,

( A)
T(aA —aA)

E„(m, '/m „'t)
(50)

Vfe are grateful to R. Arnold, H. Blankenbecler,
G. Fa.rrar, J. Gunion, I. Schmidt, and %. SchGtz
for helpful discussions and suggestions.

which removes the effect of the probability ampli-
tude for keeping the nucleons intact. The reduced
amplitude m(aA - aA) then reflects the nuclear as-
pects of the scattering. Further, the ratio

8 (aA - aA) =
7'(eA - eA )

effectively removes the falloff of the amplitude due
to keeping the nucleus intact, and is the most sen-
sitive test of the specific interaction of the pro-
jectile a, and is convenient for analysis of the
validity of the impulse approximation at large mo-
mentum transfer. "

The Inethods discussed in this paper can also be
applied to inelastic electron scattering on nuclei,
below the energy for meson production. Following
the parton-model analysis one derives (see Ref. 5)6g, d(x

-(eA —e'X) = —(e~,.-e~,)G„.t&(x),
4=1

(52)

APPENMX A: THE PARTITION METHOD FOR
BOUND-STATE CALCULATIONS

There are ma, ny methods available for calculat-
ing the covariant amplitude for processes involv-
ing the scattering of composite states. These in-
clude Bethe-Salpeter analyses and Fock-space
calculations in the infinite-momentum frame.
Perhaps the simplest method is the "partition"
method discussed in Ref. 3, which is particularly
convenient for analyzing the scaling behavior of
amplitudes, and also for proving cancellations in
the infrared region for neutral systems. In the
Bethe-Salpeter formalism one can replace each
hadron with 4-momentum P by a cluster of n con-
stituents each with momenta P; = n;P +I~:,.

(i =1, . . . , n), where the rt; are fixed fractions sat-
isfying

n

Qa;=1, Q~;=O.
4=1 t= 1
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The elastic scattering amplitude for A. +B-C +D
then takes the form

d K 4@ Its)~n I't~ I'to~

where M„ is the corresponding connected multi-
particle scattering amplitude and g(K„K„.. . , K„,)
is the Bethe-Salpeter wave function.

Note that in the zero-binding limit we must have

o; —m;/Mr

0

since in the rest frame p., - (m; jMr)p = (nz, , 0). In
fact„ if the binding interactions of a composite
system are sufficiently well behaved, then at large
momentum transfers binding corrections can be
ignored and, effectively, the bound-state scatter-
ing amplitude is proportional to the on-shell multi-
particle amplitude JK„obtained by partitioning the
momentum oi each hadron among its constituents.
The required condition for this to be valid is that
the Bethe-Salpeter wave function be finite for all
relative x„-0, i.e., so that the integrations over
the relatj. ve momentum are finite

n-

((X =0) = d K;$(K;) &™~

$=1

This method is equivalent to iterating the Bethe-
Salpeter equation and exposing the interaction
kernel whenever large momentum transfer is re-
quired. In the case of spin, 5E„ includes the on-
shell Dirac spinor. In general, g(x =0) &~ is re-
quired for the bound state to lie on a Begge tra-
jectory. This condition can also be derived in a
renormalizable field theory with asymptotic free-
dom, modulo calculable logarithmic corrections.
Further discussions may be found in Hefs. 3 and
jo.

APPENDIX 8 PROTON FORM FACTOR. S

Several additional remarks are in order about
the proton form factors at large q

' because this is
the most thoroughly studied hadron. G» is known
to dominate the cross section for —q'&1 QeV' and
the quantity q'G„ is believed to be asymptotic (i.e. ,
scales) out to the experimental boundary at —q'
=33.4 QeV'. The empirical dipole fit in Eq. (45)
is known to be an approximate fit which underes-
timates the data by a few percent for —q'& 5 GeV'
and then overestimates the data by -10-20% for
-q'& 10 GeV'. The detailed structure of G» can
be tracked if one puts enough parameters into the
fit. Recent efforts in this direction which have
theoretical content appear to be interesting, and
we compare the scaling of the proton in this con-
text. In addition it is important, when more ac-
curate large-q ' proton data become available, to
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FIG. 12. Dimensional con.ting of proton form factors
compared with a five-parameter semiphenomenological
fit.
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Semiphenomenological fits of Iachello, Lande,
and Jackson (IJL)" a.re displayed in Figs. 12 and
13. The electromagnetic structure of the nucleon
is represented in the IJL model by both direct and
vector-meson couplings to the external photon.
The resultant five-parameter dipole fit has a good
X'=0.924 for 112 data, as illustrated with repre-
sentative da, ta in Fig. 12 (see Ref. 31). However,
the same phenomenology gives a poor fit to the
neutron's, G„„. G~„ is well described by the em-
pirical dipole fit or Eq. (46).

The phenomenology in terms of the Dirac and
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I"IG. 13. The proton form factor E&—- A. ' compared
with the IJL fit within the DSQM.
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Pauli nucleon form factors is

q'
G~p =F,p+, F,p (B1)

q '. However, note that the existing data are sen-
sitive to only the first observation, q'F»
—constant at large q'.

~Mp Fl p + Fp p

where F»(0) = 1, and E»(0) =1.79 is the proton's
anomalous magnetic moment.

Three points are presented about the IJL fit to
the data in Figs. 12 and 13:

It predicts that q'F» scales exactly for -q'
&20 Geg', wherea. s q'G» will diminish by -7%
between -q'=10 and 25 Qeg'. In other words, this
implies that scaling for G» should not be exact.
Clearly only more accurate data would determine
this question.

2. The IJL fit to q'G» is acceptable over the-

small region of existing data. There is little hope
to separate 6» at much larger q'; accordingly,
q'F» displayed in Fig. 12, which the IJL fit indi-
cates will scale approximately for -q'~ 25 QeV',
cannot be tested experimentally.

3. The quantity q'MA~ scales as illustrated in
Fig. 3, where the data and the IJL fit are dis-
played. Use of the proton form factor, vA», in
this work is discussed in Secs. II and III and de-
fined in Eqs. (41)-(44). These observations are in
accord with the specific three-quark model calcu-
lation of Ref. 3 for the proton, namely, F» - (q') ',
E,~ F»/q', -and G»/G„~- constant, all at large

APPENDIX C: THE NEUTRON FORM FACTOR

E',.(q')/F„(q') - --.', (C3)

where the sign is a crucial part of the prediction
of this model.

The asymptotic form factor of the neutron,
which can be measured in deuteron electrodis-
integration and possibly determined from eD elas-
tic scattering, can be a sensitive test of the sym-
metry of the nucleon wave function. Asymptotical-
ly, we expect from dimensional counting

(q')'E, .(q')-&... (q')'F..(q')-G.. (Cl)
However, if the up and down quarks have the same
wave-function dependence in the nucleon then C,„
is proportional to the sum of quark charges and
vanishes. E,„(q') is then presumably negligible at
all q', and we have

2

2 2 (c2)

Alternatively, the observed behavior of the ratio
vW",/vW~2 at x-1 suggests that the down (up) quarks
in the neutron (proton) dominate the wave function
at large momentum transfer and C,„10. In this
case we expect that
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