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Mass problem for tensor mesons*
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A model Lagrangian combining Yang-Mills fields with tensor fields is suggested for the dynamical generation
of masses of all particles involved, without giving rise to the spin-zero ghost of Deser and Boulware.

It is well known that there exists no generally
covariant Lagrangian model for a massive spin-2
particle. Less well known is the fact that, even
if the demand of general covariance is given up,
there exists no model Lagrangian for a massive
spin-2 particle which does not contain a spin-zero
ghost. The classical treatment given by Pauli and
Fierz, while perfectly satisfactory for free fields,
meets with difficulties when interactions are turned
on. This was proved by Boulware and Deser, ' who
showed that the addition of any mass term —includ-
ing in particular the Pauli-Fierz expression —to
the Lagrangian of general relativity leads to incon-

sistencies even at the classical level: An extra
ghostlike degree of freedom appears and causes
the energy to be unbounded below.

When quantum effects are taken into account this
effect persists. We can summarize the position by
remarking that the Pauli-Fierz Lagrangian works
for free fields owing to a peculiarly delicate bal-
ance in the mass term, a balance which in general
would be disturbed by interactions. The point is
easily illustrated by evaluating the propagator for
the Lagrangian for a symmetric tensor p„, inter-
acting with a source J„,,
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which reduces to the Pauli-Fierz form when the parameter b is set equal to unity. The equations of motion
al e

and they are most easily solved by taking a Fourier transform and for, say, timelike 4-momentum refer-
ring to the rest frame:
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One finds in a general frame
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which reveals the presence of a massive particle
of spin 2 and a ghost of spin 0. For simplicity,
suppose that the current J„, is conserved, i.e.
J0, =0 in the rest frame. Then the effect of one ex-
change is proportional to

0
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If the overall sign is adjusted so that the spin-2
particle is normal then the spin-0 particle must
be a ghost. The only escape is to choose b =1.

It is precisely this Pauli-Fierz requirement,
b = 1, that seems to be unstable against interac-
tions. Some sort of symmetry principle is needed
to enforce its stability and here we propose a ten-
tative solution. Our main contention is that the
tensor mass should arise from a dynamical pro-
cess, i.e. that it should result from a nonpertur-
bative self-consistent calculation. ' This is of
course a somewhat diffuse remark, and we shall
attempt to make it more precise although in view
of the unrenormalizability of the theory we shall
not be able to make numerical estimates.

A second reason for preferring dynamical mass
generation is that it should lead to a softening of
the short-distance behavior —hopefully to the same
extent as for zero-mass Einstein theory, though
presumably not enough to make the theory conven-
tionally r enor malizable.

The generally noncovariant model we propose is
given by the following Lagrangian:
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With this approximation the tensor equation re-
duces to the linear Pauli-Fierz form (i.e. , 5 = I)
with mass given by

Notice that the fact that (F E), is nonzero is a con-
sequence of the non-Abelian gauge nature of the
Yang-Mills Lagrangian, while the special value of
the parameter b =1 is a direct consequence of the
antisymmetry F„,=-F,„and should therefore be
stable.

Our discussion of the tensor equation is con-
cluded. Now consider what happens to the vector
equation (3) when it is linearized according to pre-
scriptions (4) and (5);
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p.
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where F„, denotes a Yang-Mills field [for SU(2),
say]

, [ s(e—qA,—B,A„)+6g nA, ].
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At the classical level neither of these equations is
very satisfactory. Neither equation has a mass
term and the vector has no kinetic term in the
usual linear sense. However, we shall suppose
that, as a result of quantum effects, the operator
products here develop c-number parts'
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where cy and P are positive real numbers with the
dimensions of (mass)'. They represent tadpole
graphs and are, of course, cutoff dependent.

The c-number part of F„„~F,z reduces to

Fp, = BpA„- a„Ap +gAp xA, .

The equations of motion are
2 2
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Thus, the Yang-Mills field acquires both a kinetic
energy and a mass,

~YM

From the positivity of norms of physical states,
one expects n and P to be positive. If the theory
were renormalizable, n and P could be computed
by the self-consistent Hartree-Fock method. A
program for such computations in a renormalizable
model has been presented by Cornwall, Jackiw,
and Tomboulis. ' This program is perfectly feasi-
ble for a nonrenormalizable theory as well, except
that n and P, like all other parameters in the the-
ory, wQl depend on a cutoff. '

These ideas could be applied to strong-gravity
theory with

1 ykk fKk gKX

where g' is the metric tensor of space-time andf'" is a similar tensor associated with a strong-
gravity short-range force. A possible Lagrangian'
might be
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(10)

where A is the Einstein scalar. Through the me-
chanism described above, this system will de-
scribe one massless graviton, one massive 2+

particle plus a triplet of massive Yang-Mills par-
ticles.
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