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Application of a single-particle-theory calculation of g —2 to spin one
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It is illustrated how, in principle, one may apply the Heisenberg-equation-of-motion technique in a single-

particle theory, recently discussed in connection with the calculation of the electron's anomalous magnetic

moment, to a charged spin-one Yang-Mills particle.

There is considerable current interest in at-
tempting to understand the anomalous magnetic
moment of an electron as a resonance precession
effect, ' calculating the anomalous moment from
the radiative frequency shift of the resonant spin-
flip transition. In spite of its difficulties' in
practice, the basic idea is very attractive, and
since virtual transitions to negative-energy spin
states are important, one begins with the Dirac
Hamiltonian, later taking the low-energy limit.
In order to simplify the equations of motion so
obtained, a Foldy-Wouthuysen transformation'
of the complete Dirac Hamiltonian is first carried
out to eliminate Zittexbeuegnng effects. Such a
transformation diagonalizes the unperturbed
Hamiltonian and transforms the interaction Hamil-
tonian in closed form.

The purpose of this note is to show how the
same idea can, in principle, be applied to a spin-
one charged particle governed by the Sakata-
Taketani equation. 4 The unperturbed Hamiltonian
1s

U = e»»~~' = cosp+ p,p, sing,

one obtains

(4)

o. . . u (3 w,)'UB,U '= cosy m+ -s'sing —
' '

IC,2m 2m m

o. is important because it commutes with 5 ~ %„
5 ~ B„and m,

' and so can be chosen to be diagonal
when one looks for the eigenvalues of Il, . Equa-
tion (2) also shows the simplification that occurs
if a=1. This value corresponds to ag factor of
2, and it is the "normal" value appropriate to a
charged Yang-Mills-type vector particle' interact-
ing with the magnetic field. The result is

n n (5 mo)'
m+ p3+ — sp2,2m 2m

which describes a spin-one particle with a normal
g factor of 2 (and expected not to have strong inter-
actions) interacting with a constant, homogeneous
magnetic field.

%'ith the similarity transformation operator

Q+ icos/
2m

+ sing(m+ )I C,

2m

With the choice

-i[o/2m —('5 ~ m, )'/m]t

the coefficient of the p, term is zero, and the
resulting Hamiltonian is

If the momentum is small (nonrelativistic approxi-
mation), the 5 %, term is unimportant and the
resulting Hamiltonian is

The matrices p. ..have the algebra of the Pauli
spin matrices and 5 are a representation of spin-
one matrices. The particle has spin one, mass
m, charge q, and "anomalous" g factor g. A con-
stant magnetic field B, is applied along the z axis
so mo—- P —qX, with P = iV, X, = (- 2B,y, 2B,x, 0), — —

and Bo p && Ap It is much more convenient to
introduce the operator + =— n, ' —2qB,S„and to
rewrite the Hamiltonian as

n (5.~ )'
m+ p3+ — ' sp,2m 2m m

+ ' ' (I —z)(p, +ip, ) .
2m

(2)

Ho= m+ p.
Thus the nonrelativistic approximation to this
spin-one theory has exactly the same operator

(8)
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form as the g= 2 Dirac-theory nonrelativistic
approximation.

Of course when the quantized radiation field X~

is introduced as in Ref. l, the transformed inter-
action Hamiltonian is rather involved, having the
form UH;. , U ', where

[q'Aa ~ A„—2qAa n, —2' ( V&& ~a)1(P3+iP2)2m

—[(Q ~ A„) —2' ~ A S ~ m, -i' ~ (Aax mo)+iq(B VS Aa)]ip, .

Nevertheless, one may, in principle, apply the
same methods to a calculation of the spin-one
Yang-Mills particle's anomalous g factor, as may
be used for the spin--,' calculation.

It is worth noting that one may readily obtain
the exact energy eigenvalues of Eq. (7) in the
following way. One first squares Ho so that the
eigenvalue equation is

(E' —m' —n)y= — -, ' S.w, q,
qBW,

(10)

with Z the eigenvalues of H,'. Operating on g twice
more with the right-hand side of Eq. (10) yields
the cubic equation

2

(E ), ~(E -m -o.)qBP',

+, ' qB,J, q=o. (11)

Equation (11) may be solved by taking g to be a
simultaneous eigenfunction of n and P„and
applying the usual methods for obtaining solutions
of a cubic equation. ' Reality of all the resulting
eigenvalues depends on the expression —~e'
+(qB,P, /2)2 being negative or zero The. eigen-
values of n are qB,(2n+ 1 —2m~)+ P,' with n
=0, 1, 2, . . . and ms=0, +1. It turns out that for
n & 0 and any P3 and ngs, all the solutions for E
are real, but for n = 0 and ms = ~1, E' can be nega-
tive for some values of P, and Bp.
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