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Meson theory with internal coordinates
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This paper is a continuation of the preceding paper in which a generalized Bethe-Salpeter equation in the
ladder approximation for a quark-antiquark pair is presented. The generalized equation includes functions of a
set of three complex coordinates, called internal coordinates, spanning an abstract three-dimensional complex
space. These functions are essential in describing mesons. This generalized equation is treated in this paper.
Upon consistent restrictions, it is reduced, in the case of pseudoscalar mesons, to one nine-component tensor
equation involving internal coordinates only. Keeping the zero&rder SU3-symmetry-preserving interaction

only, the tensor equation is further reduced to two coupled radial equations and finally to two algebraic
recurrence relations for the q' meson. In the q-meson case, four such relations are obtained. Prehminary
treatment of the q' case indicates that the internal interaction isstrong. By including the interaction term
transforming like the eighth component of an SU, octet vector as a first-order perturbation, the Gell-Mann-Okubo
formula is reproduced with the coefficients determined by given relations, Necessary removal of possible

degeneracy in the zero-order states leads to mixing of these states.

I. INTRODUCTION

The present paper is a continuation of the pre-
ceding paper, ' hereafter referred to as I. In
I, the free-particle Dirac wave function X(x) was
generalized to y(x)$'(z), where z denotes a set of
three complex coordinates, called internal co-
ordinates, in an abstract complex three-dimen-
sional space or internal space; $'(z) was assumed
to contain a description of the state of a quark
triplet and g runs from 1 to 3. The mass in the
free-pa, rticle Dirac equation was replaced by a
second-order tensor operator -B~ operating on
$'(z). The so-generalized Dirac equation was as-
sumed to include a description of a free-quark
triplet. Then, interactions, in both space-time and
in the internal space, between two quark triplets
were introduced. These interactions preserve
both Lorentz invariance and U, invariance in the
internal space. Subsequently, two SU, -symmetry-
breaking interaction terms, one transforming like
the eighth component of an SU, octet vector and the
other like the SU, charge operator, were similarly
introduced.

In describing the interactions between the two
quark triplets so far, the total wave function of
one of the quark triplets was assumed to be known

which, however, is not the case. In quantum the-
ory with given and constant masses, the Bethe-
Salpeter equation' describes an interacting two-
particle system. Thus, the Bethe-Salpeter equa-
tion in the so-called ladder approximation was
similarly generalized to include functions in the
internal space. The so-generalized Bethe-Sal-
peter equation was further modified to describe
a quark triplet interacting with an antiquark triplet.

The purpose of this investigation is to apply the

so-modified Bethe-Salpeter equation to mesons, in

pa. rticular to two pseudoscalar mesons q' and q.
In Sec. II, the generalized Bethe-Salpeter equation
in the ladder approximation for a pair of quark-
antiquark triplets, given in I, is presented toget-
her with the equations describing the interaction
functions. Center-of-mass coordinates are intro-
duced. In Sec. III, the space-time part of the
meson equations is treated. Upon consistent re-
strictions, the meson equations for pseudoscalar
mesons were reduced to one nine-component ten-
sor equation involving internal coordinates only.
Some mathematics to be used in treating this ten-
sor equation is developed in Secs. IV and V. A
set of eight-vector spherical harmonics in the
internal space, corresponding to the usual vector
spherical harmonics in space, is introduced.
Some derivatives involving such harmonics are
gi.ven.

The SU3 symmetry-breaking interaction terms
in the nine-component tensor equation are con-
si.dered to be perturbations. Neglecting these
terms, the nine-component tensor equation is re-
ga.rded as a zero-order equation and it is shown
in Sec. VI that the angular parts of this equation
cancel out, leaving two coupled radial equations
in the q' meson case and four such in the q me-
son case. In Sec. VII, the radial equations for the
q' meson were reduced to two coupled algebraic
recurrence relations. A preliminary calculation
indicates that the internal SU, -symmetry-pre-
serving interaction is strong. A similar set of
such recurrence relations for the q meson is men-
tioned in Sec. VIII.

In Sec. IX, the interaction term transforming
like the eighth component of an SU, octet vector
is included as a first-order perturbation, and the
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Gell-Mann-Okubo formula' is reproduced with the
coefficients determined by given relations involv-
ing eigenvalues and eigenfunctions of the zero-
order equation. In Sec. X, necessary removal of
possible degeneracy in the zero-order state is
treated and leads to mixing of these states. Also,
a second-order equation including the electromag-
netic interaction term in the internal space is
given but not solved. Finally, possible charmed
mesons are briefly discussed in the present con-
text.

Apart from the singlet mesons which have com-

ylex masses, the recurrence relations for the q
meson have been worked out but neither repro-
duced nor solved numerically here. In order to
make predictions about the masses of the pseudo-
scalar octet mesons, one needs to derive similar
recurrence relations for the m and K mesons start-
ing from (8.21) and following the same procedure
used for the g' and q mesons here. These recur-
rence relations then need be solved numerically.
In this process, the unknown interaction constants
Xr» and Xro in (6.11) need be, and may hopefully be,
determined.

II. THE GENERALIZED BETHE-SALPETER EQUATION

The generalized Bethe-Salpeter equation in the ladder approximation for a pair of quark-antiquark trip-
lets, according to Eq. (5.10) of I, reads

(2.1)

(fy"Bp6s+Bsx)~..(xx xxx)"='u(zx zxr)(ry"Bxxx5.'+8'rx)

=& Gr m(lxx xxlx)y+s~ »( xr &xrr ) ysc(zx&zxr ) +[r"» (Ixr xrxl) +Gv (Ixx xrxl)]yr&+e»(xx&xxx)y" o~(zr&zxx)

+&(IZX ZXXl)5S6,
" +&(IZr -ZXXI)(~s)~S(~,)s+[r"~(IZX -ZrXI) +~~V(IZr —Zrrl)][(mrs)S5c+5'b(rXs)s]

+G. (Izx -zxxl)(@s5,'+5s@.")]+..(xx xxx)=-t(zr zrr)

(rxs r«rv')&(lzr -zxxl) = i .5(zr -zrr)

(&, -rrrr')G~(lzr -zrr I ) = XJ'5(zr -zxr)

(&. -«rrv')r" «(lzr -zxxl) = &s5(zr -z»)
~.&..(lzx -zrr I) =X g5(zx -zrr) ~

(2 8)

(2.4)

(2.5)

(2.6)

The primes in Eqs. (5.4)-(5.8) and (5.10) of I have
been droyyed here. The Greek indices p and v

generally refer to space-time and each runs from
0 to 3. The Latin indices a, b, c, d' generally refer
to the internal space and each runs from 1 to 3.
The Latin indices s, t, u, v also refer to the inter-
nal space and each runs from 0 to 8. The nota-
tions and the definitions of the symbols are given
in I. In (2.1), the pseudoscalar, photon, and vec-
tor interaction functions in space-time, G~, G&h,

and G~, respectively, have been included. As
mentioned in I, the right-hand side of (2.1) can be
supplemented by

{G,(~xr -xrx~)@„(xx,xrx)

+ s GQ(lxr xrr I) y"ys+&&.-(x„xxr)y,y„

+G (~xr —xrx()xx"'e„(x„xu)xx""}:";(zr,zxx). (2.7)

Here Go refers to a scalar interaction in space-

Equations (5.4)-(5.8) in I are

(Bas,' -rrrr ')&(lzx —zrxl) =4 r«rr ')T(lzr -zrrI)
=- p.,5(zx -z„), (2.2)

time, G~ a pseudovector one, G~ a tensor one,
and xxx" =(-,'r')(y" y' —y"y"). The corresponding in-
ternal interaction functions associated with (2.7)
are of the same nature as those shown in the last
term in (2.1) and are assumed to obey (2.2)-(2.5)
with m~' and m~' replaced by other mass-separa-
tion constants. For the present purposes, it is
not necessary to include these functions separate-
ly and therefore they will be left out. 4„has 16
components and "', has 9, so that 4„"'has S&&16
= 144 components.

One can transform the coordinates x„x», z„
and z« into the relative coordinates x„, also de-
noted simply by x, z' and z„also denoted simply
by z, center-of-mass coordinates X", and analo-
gous such in the internal space, Z' and g, :

x" =x" —x"I, X" =cy x" +(y x",I »~ —
I I »

z' =zr' —zx'r Z' = X3rz'x+ Puzxx

eI + e»=1,
(2.8)

where the n's and P's are constants. It follows
that

8„, = mr 8/BX" +8/Bx", 8„„=nrx 8/BXs —8/Bx",

Br = Px 8/BZ&& + 8/Bz»&Bxr = Pxxs/BZg —8/Bzs &

By( = 8s +Prs /8zsBZ +Px 8 /BZ~Bz +PrPx 8 /BZsBZ

(2.9)

Bsrx = Bs pxxB /BzsBZ pxrB /BZssz + pxxpxxB /BZ&&BZ

8', = 8'/Bz, sz'.
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xq(x) $,'(g}, (2.10}

where K„and I' are constants. It can be seen
that (2.10) satisfies a Klein-Gordon equation with

In analogy with the known procedure' in treating
the Bethe-Salpeter equation, one can look for a
solution of the type

@„(x„x«}=,'(z„z«) = exp[- i (K„X"+ L,Z'+ L'Z, )]

a squared mass equal to K„K". It will be assumed
that Kg K2 K3 0 so that the mass appearing in
the Klein-Gordon equation is K,. In analogy with
this assumption, it will also be assumed that
L, =L, =L, =0. (2.10) now becomes

e„(x„x«):",'(z„z«) = e '"0" g(x)],"(z) . (2.11)

By making use of (2.11}and (2.9}and assuming
n, = o.« =-,', (2.1}with the addition (2.7) becomes

(iy"8 6; +y2'K, 6;+8',)g( x)&„'(z)(-iy"a„6', +2y'K, 6', +8',)

=(&,(lxl)0(x)+i'G (lxl)y, t(x)y, +(G,h(lxl)+G» (lxl))y"p(x)y„+i'&„(lxl)y"y, g(x)y, y„+G (lxl)o""j(x)o~}C(~)

~(r(r)6;6~+&v(r)(A. ,);(X,},+G (r)[(A.,)'„6', +6;(A., )',]+G, (r)[Q;6', +6;Q~]}g(z)g~~, (2.12}

where

G.(r) =G.p(r)+G. »(r),

+828 +838 ~

(2.1s)

(2.14)

III. REDUCTION OF THE SPACE-TIME PART

The space-time part of (2.12}will be treated
first following the known treatments" of the
Bethe-Salpeter equation. First, Wick's' rotation
is introduced:

u(x), and v(x). The function s(x) is expanded in
terms of vector hyperspherical harmonics:

s{x)=pg g g e(ff', ~, L, I, m)
N=p 1=0 l, =l-j m=-l

x,- —ix,', 8, =—a/sx'- ia/sx"-=s,'. (3.1) &&V„„,(r, e, c). (3.6)

Following this rotation, a new four-dimensional
Euclidean space is obtained. Next, spherical
coordinates are introduced in this Euclidean space:

Again, similar expansions are also carried out
for t(x), u(x}, and v(x). We can write

R =R' sinI', x'2+x 2+x 2+x 2 =R'2.
0 1 2 3

x~ =R sine cos@, x2 =R sine sine',

x =Rcose, xp=R'cosl", (3.2}

&Jp„(I', e, 4 ) = Y; (e, @)8", (I') . (3.6)

Here, Y; (e, @) are the usual spherical harmonics
and

For g(x) in (2.12), a solution of the following type~
is looked for:

(p N(r)
2"" (++1)(X-I)!(I!)'"

(N + I +1)!

s(x)+o' s(x) i (x)+o ~ t(x) i
0(x =

u(x) + o' u(x) v (x) +o v(x) /
(3.3)

N l

&(x) =gg g &(ft, ~, i, m)g;„(r, e, c).
N=p l=p m=-l

(3.4}

Here, o = (o„o„o,) are the Pauli spin matrices.
The function s(x) is now expanded in terms of
hyper spher ical harmonic s":

x sin'r c„'"',(cosr),

where C„' ', (cosI') is a Gegenbauer polynomial.
Defining X 8 as

0) (1
X-g —

~2
—,X+g —

~2
-i

(3.7)

(s.s}

Similar expansions are also carried out for t(x), the vector hyperspherical harmonics are defined
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Further, the following relations are defined:

r, e, 4') = g C„(l,m; m —p, p)g;„

where C»(l, m; m —P, P) denotes the Clebsch-
Gordan coefficients.

The following definitions are introduced:

3 N(N+2)
R' +

R I ~R' F12

(3.9}

S =S(R', N, l, m)

=s(R', N, l, m)+ v(R', N, l, m),

V= V(R', N, l, m)

=s(R', N, l, m) —v(R', N, l, m),

U= U(R', N, l, m)

=u(R', N, l, m)+t(R', N, l, m),

—~R'N+ ~R'N-

—~R'N-~R'N-&+ ~

2N+ 7 (N+2)(N+4)
N+

T =T(R', N, l, m)

=u(R', N, l, m) —t(R', N, l, m),

S+ = S+(R', N, l, m)

=s(R', N l+1, l, m)+ v (R', N, l +1, l, m),

S =S (R', N, l, m)

(3.11)

R'N+ R N+1+ r

2N —3 N(N 2)—
R RI R' RI2

R N- ~R N-1- &

N+3 N-1
'N+-~R'+ R' ~ ~R N- -~R' R

l l
~Rt+ —~R+ R

(3.10)
= s (R', N, l —1, l, m) + v (R', N, l —1, l, m),

S'= S'(R', N, l, m)

= s (R', N, l, l, m) + v (R ', N, l, l, m) .

A set of quantities V„V, V', U+, U, U', T+,
T, and T'is defined in a similar way as the quan-
tities in (3.11) are.

For a given l and a given m, (2.12) can now be
transformed to 16 linear partial differential equa-
tions. These 16 equations have been obtained, but
only two of them are reproduced below:

[(— „+,'K,' + G, + G-~ —4G» —4G„—6Gr }&; D~bc $„']U6—", —(-,'K,d'b'c +db e,')c$,
' T&",

i/2 ~/2

(3.12a)

( „+218") —'K' —c +G —2G +2G„)$;+D', f„V c",

[l(l+i)]'~'
+ (2+odbc+ + bc-s0)4S-~i-1

2 1 Rt+ I+ El+2+ ~c V+~1+I2L+1

i/2 u'2

(3.12b)

where

G =G,.(l~l)+G». (l~l), G = G~.(l~l),

M b'. = 'r (»)&'b ~".+ & (&)(~.)' (~b.)'. + G (»')[(~b)'b ~".+ ~ b(~b)'] + G. (»)I Q l ti". + & b 0",],

(3.i3)

(3.14)
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The 16 equations represented by (3.12) are as-
sumed to describe rnesons with a total angular
momentum l and its third component m. For in-
stance, a vector meson or a pseudovector meson
is associated with l=.1 and a tensor meson with
l= 2. In what follows, only scalar and pseudo-
sealar mesons corresponding to l= 0 in the 16
equations represented by (3.12) will be treated.
Noting that 8",= 0 it can be shown that the quanti-
ties S', F', U', T', S, V, U, and T, in the
16 equations represented by (3.12) all drop out and
only eight equations survive. Four of these surviv-
ing equations are now multiplied by f dl"sin'I &' oN

from the left, and the remaining four by

fo dl sin'I" 6," from the left. The notations

S (R ', N +M, l, m), l&7 ~I',
SN(P)+M

0,

S,(R', ++M, I, m), cV-I,
S+N(P) +M

0, N&I,

(3.15)

and similar notations when S is replaced by T, U,
and V are then introduced. Only two of the eight
equations for the case of l =0 are written down
below:

N- N+-'Ko'+Go+GR-4G»-4G~ —6Gr)&: Dh. 4-]UN(o&

N+3"
ad b2 he+4 R'N+ N&o&+1+ ~ I '+N&o&+1 + "R'N- No&-1. 1

N I "+N&2&-1
]

2Kodhc-4 TN(o&

N+3 '' N-1 '/2
—1 qKogc R'N+ +N(o)+1 ~ 1 R'N S+N(2) 1--'. N+1 +

[(- „+-,'K,' —G, —G -4G -4G„+6G )$;+D'", g]S„„,

Ig d+d gb y Id&2d gb ~ y
~ N+3 N —1

& N+ N(0)+1 N 1 +N(0)+1 R N- N(1)-1 N 1 +N(2)-I

N+3"
+12Ko(c R N+U+N(o)+I ~ ~ R'N +N(2)-1 -(3 17)N+1 + + + N+1

One can show that the four equations represented
by (3.16) are decoupled from the other four by (3.1'7).

With the help of (3.15), (3.11), and (3.3), one can
associate (3.16) with scalar mesons and (3.17) with

pseudoscalar mesons.
Since N runs from 0 to , the eight equations

represented by (3.16) and (3.1'7) consist of two

infinite sets of coupled equations. It was found

that these chains of equations canbe suitably trun-
cated if all the functions with a subscript N' have

a magnitude of the order of e, where e«1, and

if S, =—S(R ', 0, 0, 0), V„U„and T, all depend weak-

ly upon A', the Wick-rotated relative four-dis-
tance between the two quark triplets, i.e. , the

derivative of these quantities with respect to R'
is of the order of e or higher. Making these as-
sumptions, the four equations represented by

(3.16) become, to the e' order,

[(—Ko'+ Go + GR —4G» —4G„—6G )(;r- D' E„'h] U,

(3.18a)

[(~K 2 + Go —Gp + 2 G» —2 G~)g —Doc gc ] To

(3.18b)

which are assigned to scalar mesons. Similarly,
the four equations represented by (3.17) become,
to the e' order,

[(-,'K,' —G, —G —4G —4G„+6G )g;+D~ g]S,
+2K db, +(d V0=0,

(3.19a)

[(,'Ko' —G, + GR—+2G»-2G„)g;+D;",(,] Vo

(3.19b)

which are assigned to pseudoscalar mesons. Since
Uo ~0 So an V, all depend weakly upon R', the
linear combinations of G„GP, G~, G„, and G~,
all assumed to be functions of R' only as indicated
in (5.2) of I and in (2.7), appearing in (3.18) and
(3.19}must depend weakly upon R', or essentially
cancel out, or are all of order e or higher to allow
for consistency. From (3.13) and the forms of Gph,

GR, and G» following (5.2) in I, it is seen that
the G's in general depend rather strongly upon B'.
Further, if the linear combinations of the G's in (3.18)
and (3.19}all vanish, then one can show that
G~ = G„=O and G, = GP =3G~. These relations are
very restrictive and are assumed not to hold.
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Thus, one is left with the assumption that all the
G s, the interaction functions in space-time, in

(3.18) and (3.19) are of order e or higher and are
small compared to M ~„ the interaction function
in the internal space. With this assumption, (3.18}
and (3.19) are now consistent with the present
truncation scheme. In the limit of e -0, Up Tp,

$„Vp are constants and the 6's can be neglected
so that (3.18) becomes

—.'I~,'&:(.) ~-.'If.[e; &'.(.) —e'. &;( )]
—(e', O', —M",.)&,'(z }=0,

q-1(=1)

p+1 (=6)

p(=5)

p-1(=4)

4
4 ~

q+) (=3)

(3.20) .

which refers to scalar mesons, and (3.19) becomes

—,'z, 'p(2) +-,'z, !e', ~',(2)+ s', p(2)]

~(e, s', —M;",)g(z) =0,
(3.21)

which refers to the pseudoscalar mesons. Here,
the w signs in (3.20) and (3.21) refer tothe solutions
Uo = + o "So =+ Vo respectively.

Thus, the relative meson wave function $(x)P(z)
as well as the interaction between the quark and

FIG. 1. Weight diagram used to obtain Eq. (4.6).

the antiquark are, to eP order, wholly internal.
Their space-time dependence enters as correc-
tions to their internal dependence and is of order
e or higher. In the following, only (3.21) and
(3.20) will be treated further. In this connection,
some useful mathematics is developed in the fol-
lowing two sections.

IV. EIGHT-VECTOR SPHERICAL HARMONKS

Corresponding to the vector spherical harmonics in space, Y (8, @) in (3.6), are the eight-vector spher-
ical harmonics in the internal space defined by

P q Pq ) &n ri

Y"I"12'( i ~s 9 1 i q 2i q 2} r'I'12 i
v"z"z" va, &

3 3/

(4.1)

where the Y expression was defined in (6.14) of I
and is proportional to that of Beg and Ruegg, '
A~', , is the SU, spin vector in octet state, corre-
sponding to ps in (3.9), and is, dropping the
superscripts 1 1,

A„, = — (li000000),
1

A„,= (1 —i000000),1

AO, O
= (00100000),

and the parentheses next to the summation sign
denote the SU, Clebsch-Gordan coefficients. "The
last coefficients can be written as

!

t' 1 1 p-q- pq &

lY'I'I,' Y"r"I," Ylr, f
f 11 p"q" pq c(i'I"I;I,'I,"I,),Y'I' Y"I" YI

(4 3)

1
A, i |= —~ (0001i000},

1A, | 1 = ~ (0001 —i000),

1
A, | = —~ (000001 i0),

1A, ||= ~ (000001 —i0},

Aoo, = (00000001),

(4.2)

d(P, q) =2(P +1)(q+I)(P +q+2) (4.4)

Next, in analogy with the expansion of f(x) in
(3.3)-(3.5}, $;(2) is expanded in terms of eight-
vector spherical harmonics in the following way:

where C(I'I "I;I2I,"I2) denotes the Clebsch-Gordan
coefficients in a notation different from the one
in (3.9) and the parentheses on the right-hand side
denote the isoscalar factor. ' It is conventional to
introduce the dimension nf a multiplet, '
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g(z)= Q &(P, q, Y, I, I~)[C(z)]r», ,
P t a e Y eI *I3

[f;(z)]~'~~ =g~,,(P —q, Y, I, I„r)Y„'I (3, $, (p„y„q),)+X~r'» (z) &;,
(4.5)

where ~', denotes the eight Gell-Mann matrices and A a set of expansion coefficients. Just as there are
three different kinds of vector spherical harmonics (3.5), there are a number of different eight-vector
spherical harmonics. One can write

X';»,(z)=g f;+, (p"-q", Y, I, I„r)Y»;,(p, q, 6, (, q„q„q.)
P'a

=~~+a+2(p -q Y I I3 r)Y'r'u, '"+&&+.+x(p -q+3, Y I, ls r)Yr»,' '

+ f~,,„(p —q —3, Y, I, I„r)Yr

+ f (p —q, Y, I, I, r)Y~ +f, (p —q+3, Y, I, I„r)Y~+ '

+f„, , (p —q —3, Y, I, I„r)Y~«,''+'~f„(p —q, Y, I I r)Y~,', ' ' (4.6)

where p +q —2 & p" +q" & p +q+2. This expression
can be constructed from Fig. 1 as follows. The
dots on and within the innermost full line belong
to the multiplet (P —1,q —1). The dots on and
within the middle full line belong to the multiplet
(P, q). The dots on and within the outermost full
line belong to the multiplet (P +1,q+1), and so on.
Combinations of the dotted lines and portions of
the full lines give rise to closed lines confining
the multiplets (p+2, q —1), (P —1,q+2), (P+1,
q —2), and (P —2, q +1). Each dot represents at
least one member of a given multiplet containing
it. It can be seen from Fig. 1 that each member
of the multiplet (p, q) is one step away from at
least one member belonging to the multiplets
mentioned after (4.6). Each of these last men-
tioned multiplets contributes a term to (4.6).
Members belonging to multiplets smaller than

(p —1,q —1) cannot reach the outer members of
the multiplet (P, q) by one step. The inner members

belonging to multiplets larger than (P+ 1, q+ 1)can of
course reach each member belonging to the multi-
plet (P, q) by one step. These members, however,
also belong to the multiplets indicated in (4.6) and
therefore there is no need to include the multiplets
larger than (p+1, q+1) which include these mem-
bers. The upper indices in the eight-vector spher-
ical harmonics in (4.6) must each be ~0; other-
wise the .corresponding harmonics vanish.

If the full expansion (4.5) is used, expressions
like s', $',(z), which occurs in this investigation
and involves derivatives of the d function, may
become rather bulky. Instead, only the singlet
term with p =q =0 and denoted by [g(z)]00„and
the octet term with P =q =1 and denoted by
[g(z)]'„,', in (4.5) will be kept. One finds, with
the help of (4.1)-(4.6), (6.14) of I, the expres-
sion for the d function, and tables of Clebsch-
Gordan coefficients and of isoscalar factors, that

p3 00

=g +f [ 1r(7f/3)"-] Y""'~' (4.7)

where
3 000

—,
' sin'Scos2$+ —', (1 —3cos'3)

2

—,
' sin2~cos(e"~~ ~3'

—,sin'3sin2( e'9'2 9'~'

——', sin'scos2(+ —,'(1 —3cos's)
—' sin23 sin) e"~2 ~s'
2

—', sin2~cos) e"~3 ~j'

—,
' sin2~ sing e"~3 ~2'

——', (1 —3 cos'3)

(4.8)

g, = — g, (0, 0, 0, 0, r) = Y,",,g, (0, 0 0, 0 r) (4.9a)

f, = ——— f, (0, 0, 0, 0, r). (4.9b)

The superscript (1) in (4.7) and (4.8) denotes singlet or p =q =0. In obtaining (4.8) the phase factor in
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(6.8) of I, 6, has been put to 0 in all cases except in the expressions for Yo,'o and Y", i i in which 6=v.
If this is not done, (4.8) would not be Hermitian and the derivatives of (4.7) occurring in this investiga-
tion mould not have the relatively simple forms shown later. For the octet term, only the l =I =13 =0
component is worked out. In a manner analogous to that in obtaining (4.7) and (4.8), one finds that

[$;(z)],"„=g,(0, 0, 0, 0, r)Y",„+f,(0, 0, 0, 0, r)Yo',, X', +f,"&'(0, 0, 0, 0, r)Yo"„"~'X',

+f&o~'(0, 0, 0, 0, r)Y'~&o~&A. ', + f,(-3, 0, 0, 0, r)Yoo A', ~ f (3, 0, 0, 0, r)Y'o A.,
+f (0, 0, 0, 0, r) Y oo

A.', , (4.10)

2 X/2Y" = —— (1 —3cos'3)000 (4.11)

I
ooo (4.12)

sin'3 cos2 $ —-', (1 —3 cos'3)
6 a/2

y' 1I (Sy )pe sin'3sin2& e"~~ ~2'

i-cos3 sin~ cos( 8 -cos3 sin3 sin( e"+ ~&' -', (1 —3 cos'3)

sin'Ssin2ke" " -nosnsinenos(e'' '

-sin'3cos2$ —-', (1 —3cos'3) -cos3sin3 sin) e"~o ~2'

(4.13)

y 11 (82 ) g+

cos3sin3cosge"& ~3' cos3sin3sin)e"~2 ~o'

-cos3 sind sin( e"~3 ~2' (4.14)

sin'3 cos3 sin( cos $ -sin'3 cos3 sin'g
X ~«&~+~2+~3) X &i (292+0'3)

-sin3 cos'3 sin $
i ( P2 +2 P3)

y 30
sin23 cos~ cos'$

X & (2~~'~3)

-sin'3cos3 sing cos) sin3cos'3 cos(
X ~i {q1+q~+y3) X ~& (Vg+20'3)

(4.15)

sin23 cos~ sin( cos (
X ~- i «~+~2+~3)

san'3 cos~ cos'(
Xg '(2~+~3)

&/2 -sin23 cosa sin' -sin'3 cos3 sin, cos (~03 ya
000 X ~- i (2V'2+0'3) X &- i (W&+F2+03) 0 (4.16)

-sin3 cos'3 sin )
X ~- «&"2&3)

sin cos2~ cos (
- i (Pg+2P3)

F22 A.'= 2

~aS~

(5 sin'3- 4 sin'3) cos2$

+ —,
'

(3 cos'3 —6 cos'3 sin'3+ sin'3)

(5 sin'3-4 sin'3) sin2$

X &i &9q-v2)

-2 (3 cos'3 sin 3 —2 cos 3 sin'3)

xcosE e

(5 sin'3 —4 sin'3) sin2 ( e"~2 ~i' -2(3 cos'3 sin3 —2 cos3 sin'3)

-(5 sin'3 —4 sin'3}cos2$

+ —,
'

(3 cos'3 —6 cos'3 sin'3+ sin'3)

XgOSP g'{9'3 ~1)

-2 (3 cos'3 sin3 —2 cos3 sin'3)

X Single"~~ ~2)

-2(3 cos'3 sin3 —2 cos3 sin'3) -(3 cos'3 —6 cos'3 sin'3+sin'3)

xsqn( e'«2 ~3)
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Again, in obtaining (4.13)-(4.17), the phase factor
& in (6.8}of I has been put to 0 in all cases except
jn the expressions for Y«««, Y«««, k, Y',0, and

1 in which & =n for a similar reason as that
given between (4.9) and (4.10). The superscripts
(8, ) and (8,) refer to the two kinds of octet, 8, and
8„respectively. Further, the following relation
for the contracted quantity:

~PP 6 54& 5YF ~II ~I I

(4.18)

holds for the quantities given in (4.8), (4.9a),
and (4.11)-(4.17).

Sb[$ (&)]000=S [g(2)]00o

+f [ )(()(/3)1/2] IF 11(1)pa (5.1)

tt 5 t 2 tt 22 t (5.2)

1 „5, 2 „22

f, =
4 g l'- —„g(~

3
fl'+ 3, fl —„, f.) .

(5.5)

(5.6)

f, =-,' g," ——g,'+ —f, +"f —,'.f), (5.3)
1 2 t 10 8

Sd [tb(2)]00 Sa Sd(g +f [ ))()T/3)1/2] lgll(1))(a].

g +f [ ))(7f/3)l/]2IF I 1 (1 ))(a (5 4)

V. EXPRESSIONS FOR SOME DERIVATIVES

By means of (6.4}of I, the following derivatives
can be obtained:

In this section the prime denotes s/sr Th.ese re-
sults refer to the singlet or P =q =0 case. In the
case of the octet or P =q =1 with Y = I = I, = 0, one
finds that

28')( — Y" F(2') =
000 8 000 & 5 y y2

go Flt

(5.7)

«/2
3' — Y" F(Y)3' = Y™~3' F — F" —'"F' F)c 2 000 b 8 PPP c 40 &2 +

&3 Q4

5 «/2 I

(8« ~g Y«5 1 Ftttt 10 Fttt 9 Ftt 87 F 192
4 2 3 —'" —' " 3 20 r x' r '

gg& y PP ga Ftttr Fttt Ftt
4 000 + 48 y y2 y3 y4 (5.8)

«/2 -
5 «/2

(3', 3;+5;3,)(—g43g)Y F(Y)=—— — Y""'3'+Y"—F —F —"~3rY 3;—F +F')"000 4 2 3 000 c 000 3 + 4 000 c

(5.9}

Y («A, +Y ——F + —F — --F + —F
4 2 3 000 c 000 3 20 r'

IYQQ ) a Fllll + Fill+ Fll Fl '

4 —000 —' 48 y 1' r' (5.10)

5~ ~2

b c 6 000 8 000 & 5 y' y2

lT 00 5 t 11 24——f3g Y ' 3;—F" +—F'+ F),000 & 36 g ~ 2 (5.11)
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5~ ih 2 ~ i/2
sb + Yll(ey)gd p(y)so sb &, :. yl& j'(+) sac 6 000 b & 3 c 2 ooo a (5.12)

(O', A;+.9„'A',) . ~5v Y" F(r) = —v~5m Y'" —F"+ —E' ——,I'c b b ~ 2
'

000 8
' 000 5 + +2

+ —-- — &"' '~'+~ ' —F + F'+ I (5.13)

9' —~5' F" X'E(l )B'= —~5m Y" X' F —'"F"——F — "F 'P)

C/2 5 Z/2

+
~ ~ 5

y gg(8&)ga y ].g 5 3 FIlf/ 20 ~Iil 81~„177 ~, 768
, 4 2 3 000 & 000 3 40 ~ y2 y3 y4

w ~~„.1 „„26 „, 20'I „561, 384 .

)4 000 c 32
+ y. + &2 y. 3 &4 (5.14)

VI. RADIAL EQUATIONS

With the aid of Secs. 1V and V, (3.21), assigned
to the pseudoscalar mesons, can be treated fur-
ther. The interaction term M,~ in (3.21), given

by (3.14), has been assumed to consist of two SU, —

symmetry-preserving terms, one proportional to
T(r) and the other to ~(r ), and two smaller SU, —

symmetry-breaking perturbation terms, one pro-
portional to the hypercharge interaction term G (r)
and the other to the electromagnetic interaction

term G, (r). Iet

$:(~)= (&0);(~)+ (4):(~) (6 1)

KQ —KQO+ KO] j (6.2)

where $, and K„correspond to the SU, -symmetry-
preserving parts and g, and K» to the smaller
SU, -symmetry-breaking parts in (6.1) and (6.2).
(3.21) can now be approximated by an SU, -sym-
metry-preserving zeroth-order equation

lK..'($.);(~) +-'K [8'($.),'(~) + 8',(5.)'(~)]+ el(4) '(~)8', —~(~)(4);(~)—&(&)(~.)'($.),'(~)(~,)', = o

and an SU,-symmetry-breaking first-order equation

—,'K„'((,);(~)+-,'K„[a;(~,),'(z}+8,'((,); (z}]+8',(],)„"(~)s',—T(t')($ ) (~) —(d(K)(X ) ($ ) (~)(x )',

(6.3)

=--'K,~„(k,);(~)+ 'K, [s'(k,),'-(~)+ s,'(h, )'(~)]+ G (&) [(~,);($,),'(~)+ ($,);(~)(&,),'].
(6.4)

Here, (3.14) was used and the electromagnetic interaction term involving G, (x), considered to be of second
order, has been dropped. In the case of the singlet or g' meson, ($,);(z) in (6.3) can be put equal to the
expression given in (4.7). With the aid of (4.8) and (a.1)-(5.6), it can be seen that the angular parts of (6.3)
cancel out and one obtains

p'(g,"+ 'f."')+ p'(5g',"+".f.")—p(5g.' ".f—,') —p'(2g,'+ 'f,')———(32+8p')f. + p-'( g. 'Sf.)-
2i7p(g 3f8)/K'OO + 126)p g~/KOO

(6.5a)

p'(g,'"+
3f,'") + p'(I og,'"+",f,'")+ p'(15g,"+38f,"—)—p'(2g,"+';f,")—p(15g.'+ 6f') —p'(log.'+ ~ f') —(64+ 32p')f, + 3p'g.

12p (1 + 6QJ)gs/KOO

(6.5b)
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in which the relation

(6.6)

7'(p )»--0, ru(p- ») -0.
With this assumption, (6.5) yields

g, ~f,~e",e"'

(6.V}

(6 8)

when p- ». The mass eigenvalue K» in (6.5}, if
real, may be obtained by a kind of variational
calculation. In order, to avoid divergence in the
integrals involved in such a calculation, the
asymptotic form e ' is chosen among the four pos-
sibilities given in (6.8). Here, K« is naturally
interpreted as an approximate mass of the q'

has been used. The prime in this section and the
following ones denotes s/Bp instead of 9/sr as in
Sec. V. Further, the upper sign in (6.3) was used
to obtain (6.5) and the substitution p = r(2KO, )' '
has been made.

By analogy with the electromagnetic or the
strong-interaction potential in space-time, which
vanishes at large distances from the corresponding
source, it will be assumed that

meson and it has been assumed for the sake of sim-
plicitytobe realandpositive. If+, is set real and
negative, the lower sign in (6.3) also leads to (6.5) and
(6.8) withp=r

~
2K» j

'~'. WithK» realandpositive,
the lower sign in (6.3)under the above circumstances
gives rise to

~ g ~ &(i~i)n/+& e(-&~i)P/ 2
t

when p- , and will therefore not be investigated
further.

In the case of the octet meson with K=I=I, =O

or the g meson, the procedure is entirely analo-
gous. (go);(z) in (6.3) is now put equal to the ex-
pression given in (4.10). The derivatives given
in (5.7)-(5.14) show that it is not necessary to in-
clude the f,"2' and the two f, terms in (4.10). Put-
ting

g, (0, 0, 0, 0, r) = g, f,(0, 0, 0, 0, r) = &6f, -
(6.9)

f, (0, 0, 0, 0, r) = —,
' ~15 h, f4(0, 0, 0, 0, r) =

p v 10j,
and making use of (5.7)-(5.14), (4.11)-(4.13), and
(4.1V), (6.3) with the upper sign gives

p'[6f" + 3h" —2j"]+p(-6f'+ 15h' —30j') —36h —96j —3p'(5h —2g) = 12rp2(5h —2g)/K«' —144&up g/Koo', (6.10a)

4 [p4(fIllf
+ g If' + hlfll +fIIII)

+ p3 (4ffl/ + IQgfff + I Qhtll + 20j fll)
y p2( ISfll Bg

II 9hll + 8 lf /I
)

+ p(15f' —BVg' —87h' —177j')+ 192(g + h —4j)]
—p [p2(14f"+ Bg"+ llh" + 6j")+p( —14f'+ 40g'+ 55h'+ 90j') —96g —132h+ 288j]+ 3p4(5h+ 2g)

=12rp4(Sh+ 2g)/Koo'+ 144(op~g/K»2 (6.10b)

36[ps(f"'+ g"'+ h"'+j '") + p'(6g" + 6h" + 16j")—12p(g'+ h' —4j')+ 12(g + h —4j)]

-3p2[p2(6f" + 3h" —2j")+p(30f'+ 24g'+45h' —10j')+ 24g+ 84h+ 64j]+ p4(27f- 5j)'
= 47'p (27f 5j)/KOO2, (6—.10c)

36[p (f""+g""+h""+j"")+p3(2f"'+ Bg"'+ Bh"'+ 18j"')+p (15f"+ 9g" + 9h" + 79j")

+ p(-15f'+ 87g'+ 87h'+ 177j') —192(g+ h —4j)]

-12p [p (12f"+6g" + 9h" + 4j")+p(60f'+ 18g'+ 75h'+ 20j')+ 96g+ 192h —128j]+Bp4(27f+ 5j)
= 327'p~(27f+ 5j )/K ' (6.10d)

Assuming (6.7), (6.10) yields a set of asymptotic
relations entirely similar to (6.8) and the form e '
is chosen for similar reasons. Again, K~ has
been assumed to be real and positive and the lovrer
sign in (6.3) leads to consequences similar to the
corresponding ones in the singlet or g' meson
case.

In the following, it will be assumed that the mass-
separation constants m~' and m„' in (2.2)-(2.5)
both vanish. In this case, the interaction functions
v, &u, G (r), and G, (r) all have the form shown
in (7.8) of I, which, taking (6.7) into the considera-

tion, is

&0 & &j.o
128m r' (6.11)

r(p) =K»'(p'~, + y, )/4 p',

(u(p) =K«'(p'~„+ y„)/4p',

G ~(p)=G, (p)=K»'(P~. +y.)/4p',

G, (p}=K«'(p'~q+ yq)/4p',

(6.12)

(6.13)

(6.14)

(6.15)

where p, ,o is an integration constant. Specifically,
with p=r(2K )'i'
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where

Ko = po/167PK«, yo = 16p, qo,

z„= p, „/167t K«, y„= 16p,,„,

~, = p, /167t'K«, y, =16',„,
~ = p, o/16m'Koo, y@

——16',,

(6.16)

(6.17)

(6.18)

(6.19)
g.(p) = e 'g g..p"",

v=0
(7.1a)

f.(a)=e 'Pf.,p"", (V. lb)

VII. RECURRENCE RELATIONS
FOR THE SINGLET MESON

The radial equations (6.5) will now be reduced
to algebraic relations using Frobenius's method.
Let

and p,,„, p.», and p, ,~ are integration constants
similar to g». When (6.12) and (6.13) are sub-
stituted into (6.5) and (6.10), these equations be-
come independent of their mass eigenvalue K,o

except through z, in (6.16) and a'„ in (6.17).

where o is a constant. Inserting (7.1) into (6.5),
multiplying it by e', and putting the coefficients of
p"" equal to zero, one obtains the following re-
currence relations:

(g,„+-'f..)V(p —1)(u - 2)+ (5g,.+ ",f,.)p(—p—1) —(5g„",f..-) p——32f,„
—~yo(g„—',f,„)—3y—„g,„—3(g„z+ —',f,„z)(g —1)(p —2) —2(5g,„&y'~f,„z)(p 1)

2 1 j.
~ngsv-2+gsv&+ &fsv-3+

~(gavel

Sfsvw)

(7.2a)

(g,„+ 3f,„)V (P — )(P, —2)(P —3)+ (10g,„+,f,„)P(p, —1)(W —2)+ (15g,„+38f,„)p(p, -1)
—( 5gs. + 6f-) & —64fsu- 3(yo+ 6yn)g..- 4(g., i+ -'f...)(V -1)(u -2)(V —3)
—3 (10g,„,+ ~sf„,) (p —1)(p, —2) —2(15g,„,+ 38f,„,)(p, 1)+ 15g „~+6f,„,

+ 4(g 2+ 3f,„,)(1 —2)(P. —3) + 4(5g,„~+&f,„,)(P —2) + 15g,„,+ 6f,„,
—3(zo+ 6g„)g,„2+4f,„,+ 2g,„~—,'f„~=0, —

(7.2b)

where p, = a+ v, v runs from 0 to ~, and g,„and f,
both vanish when o. (0. In the limit as v- ~, (7.2)
yields

%'gu=2g;v-x~ @sv=2fgv-i

which, together with (V. l), yields

(V.3)

g.(p), f,(p) "p'e' (7 4)

These relations yield diverging g, and f, when
p- ~, contrary to the asymptotic form e ' dis-
cussed in connection with (6.8). Thus, the series
g,„and f,„must terminate so that the e ' factor
in (7.1) dominates when p- ~. The situation is
analogous to that of the energy levels in a hydro-
gen atom in which a kind of terminated hypergeo-
metric series is involved. It will be assumed that
the series in (V.1) terminate when v ~A, so that

(7 5)

A set of necessary conditions is provided by (7.2)
with v= A. +4, X+3, A. +2, and A, +1. Making use of

(7.5), one obtains
1 ~

C s) 3J sgr

1
g "-i—3f"-i —2f.~

(7.6)

(7.7)

g, ~ ~
= ~f~~ 2

—2f,~ ~
—2(P, ' —1 —&„)f,~)

~, +2~„= (2p, '+ 3)(2p'+5),

g~ ~
——3f~ q

—2f~ 2
—2(p, —2 —K)f~ x

+ 2 (3 p,"+19p, '+ 13 —~, —8~„)f„

4(2 p, '+ 3)f, , = —(4p" + 18p,
"—40'' —87)f„

(7.8)

(7.10)

(7.11)

where

P. =0+ A..
Putting v= 0 in (V. 2), the indicial equation

(7.12)

o(o —2)(o+ 2)(o+4)(y, +4y„)

—16(o —2)(a+ 4)(yo+ 6y„) —yo(yo+ 6y„) = 0

(7.13)
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yp = o4+ 4o —20o —48o+ 128,

3(o —4)g„= (o+ 2)f~.

(7.15)

(V.16)

In order for the integrals mentioned after (6.8) to
converge at p= 0, it is required that o.& -3.

A procedure to solve (V.2) is to choose a value
for y„/yo and one for z„/vo which, to begin with,
can both be put to zero. Next, a pair of values o

and X are suitably chosen so that y„x„y„, and I(„
are known. By putting f„,= 1, g„ is known through
(7.14). (7.2) can now be used to generate f„, g„,
f„, g„, . . . , f,„, and g,~. Then, the boundary con-
ditions (7.6)—(7.8), (7.10), and (7.11) are checked.
If these are satisfied, a solution with the associat-
ed eigenvalue wp is found. If not, another pair of
values for cr and X are chosen and the whole pro-
cess repeated.

Obviously, one may instead of checking with the
boundary conditions (V.6)-(7.8), (7.10), and (7.11)
extend the calculation to f„,4 and g,~„and see if
all of the last four f and four g coefficients vanish.
It is noted, however, that if a solution is found
and K, known, the mass K« is still not determined
since the interaction parameter iJ,, in (6.16) is
unknown. To determine p, „and also the useful-
ness of the present theory with the assumptions
made, other members of the pseudoscalar-meson
nonet and possibly the first-order equation (6.4)
need be treated first and the results be compared
with the observed masses.

A preliminary computer calculation of (7.2), with

y„= ~„=0, indicated that the f,„and g„series could
not be made to terminate; (7.2) does not appear to
possess terminated series as solutions. However,
the eight coefficients f,~„, . . . ,f„~, g,~„, . . . ,
g„~ can each be made to vanish if X ~ 5 and o is
allowed to vary slightly around values near 0.5
for each of these eight coefficients. Thus, for
X=5, o=0.4813 +1.3 X10 3, X=8, o=0.4975925
+ 10 ', and A. =30, o =0.5129 ~ ~ ~ . If these values
are taken as an indication of some interest, one
may consider the following. With A. =5 and o=0.5,
(7.12), (7.9), (7.15), and (6.16) give x, =224 and

yp= 100. Since these numbers are greater than the
usual strong-interaction coupling parameter, -15,
the singlet internal strong interaction (6.11) thus
appears to be stronger than the usual strong inter-

and the relation between g„and f„,
[o(o —2)(o+ 4) ——,'yo 3y„]g',o

= ——',[(o —2)(o+ 4)(o+ 6)+ —,'yojf„,

(7.14)

are obtained. If y„=0 and y, 40, (7.13) and (7.14)
become

VIII. RECURRENCE RELATIONS FOR AN OCTET MESON

Equation (6.10) can be treated in essentially the
same way (6.5) was. The functions g, f, h, and

j in (6.10) are put in a form similar to that of (7.1)
with o - op. The recurrence relations consist of
four equations of the type given in (7.2) but are not
reproduced here. In a similar manner, f, g,
h„, and j vanish if n &0. In the limit as v- ~,
one finds a set of relations similar to (V.3).
Therefore, the series f„, g„, h„, and j„must also
terminate. Assuming a set of series termination
conditions similar to (V.5) with A. - A.„aset of 13
boundary conditions similar to (7.6)-(7.11) are ob-
tained for &„=0. One of these conditions reads

~, = (2 p, '+ 3)(2p, '+ 5), {8.1)

which is similar to (V.9). In (8.1), p, '= o, + A., re-
places (7.12).

If z„w0, one of the 13 boundary conditions can-
not be satisfied because two boundary conditions
contradict each other, similar to that in the case

action in space-time. This may therefore lend
some support to the assumption, stated between
(3.19) and (3.20), that the G's, the space-time
interaction functions, are of & order or higher and
can be neglected here.

The scalar-meson equation (3.20) can be treated
in an entirely analogous manner. A zero-order
equation corresponding to (6.3) has been obtained.
Using the SU, singlet zero-order internal function
(4.7), two coupled equations corresponding to (6.5)
are obtained. With (6.V), (6.8) also holds in this
case. Two recurrence relations similar to (7.2)
are also obtained. With v- , however, one finds
that either (V.3) or

vg, „=(I +i)g,„„vf,„=(1 a i)f,„,
holds. Assuming that the series termination con-
dition (V.5) holds in this case, it was found that a
boundary condition from one of the recurrence re-
lations contradicts a similar one from the other.
Thus, no terminated series exists as solution to
the scalar counterpart of the pseudoscalar (V.2).

The absence of terminated series as solutions
to the two cases of singlet mesons treated above
was found assuming that the zero-order mass
Qpp was rea 1. The partic le s to be associated w ith
these cases, namely, the pseudoscalar p' and the
scalar qp„are unstable and therefore have com-
plex masses. They are akin to the vector mesons
in this respect and differ from the pseudoscalar
octet mesons which are stable and have real mass-
es in the present context. The present equations
with complex Kpp have not been treated.
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of the scalar singlet meson discussed near the
end of the last section. This may lend some support
to the assumption of w„= y„=0 for the pseudosealar
singlet case treated near the end of the last section.

Putting v =0 and y„=0, one obtains the indicial
equation

The wave functions of (6.3) and (6.4) are now ex-
panded according to (4.5) and written in the
following form:

yo =Oo +4ao —44&o —96oo+ 608. (8.2) =-ga,„~„,(z)(~,);, (9.8)

lf Oo is to be real, y, must ~32. This yo value is
in order-of-magnitude agreement with the value
yo = 100 mentioned after (7.16) and again indicates
that the internal interaction (6.11) is strong. As-
suming f, =1, go, li„and j, can be obtained from
the recurrence relations with v=0. The rest of
the treatment can be entirely similar to that de-
scribed after (7.16). If yo =0, a set of relations is
oo =2 and go = jo =0 with the relation between fo and

ho not determined. This and a study of (7.13)-
(7.14}with yo =0 together with (7.15)-(7.16) seem
to indicate that y„or possibly y„and z„or the
whole nonet interaction oi(p) in (6.13) can be drop-
ped here.

The octet meson of this section, the q meson,
has real mass and the associated zero-order mass
E» has been assumed to be real and positive.

IX. GELL-MANN —OKUBO FORMULA

The zero-order equation (6.3) has been applied
to the g' and q mesons and may also be applied to
the other seven members of the pseudoscalar nonet
mesons. Knowing the zero-order wave function

($o);(z) and Ko„ the first-order equa. tion (6.4) can
readily be solved. For this purpose, the matrix

1O0)..=(-',)'* o

(0 0 1

0 (9.1)

(Z, );(Z, ),'5:=25„,
[A.„A.,]=2if„„A„, .

1Z, , X,)= —;5„+2id„„x„.

(9.2)

(9.3)

(9.4)

Here, f„„is totally antisymmetric and der~ totally
symmetric. Further,

is introduced. Let the subscripts S, T, U, and V
each run from 1 to 8. These can then be associated
with the SU, regular representation and corre-
spond to s, t, u, and v with each of which running
from 0 to 8. X, then denotes (Ao, A.r) where A.r are
the usual eight Gell-Mann matrices. With the
usual relations for ~~ we can show that

(f );(z)=Q& ($ );(z)

-=+A,„g„,(z)(X,};, (9 9)

where N denotes ( p, q, Y, I, I,), the set of internal
quantum numbers describing the state of a multi-
plet member, and Ao~ and A» are expansion coef-
ficients. Similarly, it is defined that

a,'-=(x,);a, . (9.10)

—r(i )(&,); —~(i )(&,);(&,),'(&, )'.]g&, &,(z)

= [--,'z„(z„„(~,); —(~, , ~,);a, )

+G (i)(Z„Z,};]A ( o(zz),

(9.11)

where only the upper signs in (6.4) were used.
This is consistent with the related discussion be-
tween (6.8) and (6.9).

With Sec. V, it can be shown that for the singlet mem-
ber M = (0, 0, 0, 0, 0) and one of the octet members
M = (1, 1, 0, 0, 0) the relations

fZ„~,):a,(„,(z) =g„,(z)(~,);,
(Z, );(X,),'(Z„);e,a „g„,(z) = il„,(z)(~,);,

(9.12)

(9.13)

hold where gii, , ii„, , and $z, have the same angu-
lar functions but different radial functions. Equa-
tions (9.12) and (9.13) are assumed to hold for the
other seven of the octet members as well. Fur-
ther, using (6.6) and (9.1), one obtains

For the zero-order internal meson wave function
($o);(z), only nine terms in (9.8) with N =M, refer-
ring to the nonet-meson eigenfunctions with p =q =0,
given in (4.7), and with p =q =1 of the type given in
(4.10), will be of substantial interest here. The
corresponding eigenvalue is denoted by +op+.
Equation (6.4) now can be written as

[-,'A„„'(X,);——,'lf„„(x,, X,]'a, + (z, );(x,)t(y„)', a, a „

Otu =0

dorv = drov = (&) er v1
2 y/2

oOt dgu o 0

(9.5)

(9.6)

(9.7)

oo(o')(&0);(&.)g(&o)'. 4,(z) = 6~(i )$~o(z)(&o); .

(9.11) can now be rewritten as

(9.14)
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(V.g(&1Ã/&OM)[~KOOM &Md(z) —8KOOM&ffd( )+fjffd(z) T(r)(M (z) —6&(r)$MO(z)~, o]

=- K, (&,);[Koo 5,(z) —f,(z)j+(A,,);[(4/0 6)5, $„,(z)+2d„, $,(z)]G (r)

(9.15)

where (9.4) has been consulted. In an entirely similar fashion, (6.3) takes the form

(A.,);[-,'KOOM'$»(z) ——
O'KOOM/M, (z) +rlM, (z) -T(r))M, (z) —6~(r) $»(z)5„]=0.

One can write

(~,); 4,(z) =(~.); ( .(z)+ (&, );(„,(z)

(9.16)

(9.17)

where )MZ(z) constitutes an irreducible SU, octet U.sing (9.17), a comparison between (9.8) and (4.5) gives

Ao)MO(z) =gp~0(p —(I, I, Io, r)Yrff,

(~,);(„(z)= X„';, (z)Z', .

(9.18)

(9.19)

Putting M =II in (9.16), the last three terms on the left sides of (9.15) and (9.16) can be eliminated. The re-
sulting equation is now multiPlied from the left by J d z(Ao), ]Lp(z), its Hermitian conjugate by

f d'z(XO); $LO(z), and both integrated equations are added together. One obtains

4(KooM KOOL ) d z(&(L/AOM+A&z/&OM)+040 8(KooM KooL) d (A(L)LOCLO/ oM+ fL4040i&OM)

I pl~&N QN d ~ A/0 Mo d ~ Afp~Afo+ NO~Mp + 8 d ~ L, o N8+ &0 Ala

(9.20)

where d'z is given by (6.5) of I and (9.7) was consulted.
The whole procedure is repeated with the multiplicative function (Xo); Qo(z) replaced by (AT); gLd'T(z) and

(/(0); )LO(z) by (&T),' ALT(z). Use is made of (9.19), (4.6), and the orthogonality relation (4. 18)which is now assumed
to hold, in addition to M=(0, 0, 0, 0, 0) and M=(1, 1, 0, 0, 0), also for the other seven of the octet members
with p =q =1. Here, it may be noted that the two X s in (4.18) are eliminated via (9.2). The resulting equa-
tion corresponding to (9.20) reads

—,(K, ' —K„'lfdzz(A/A+, /Ad, ,„„)Q„(„——,'((C„„„—ZZ„z) '
( dz(d"„( /A, „+d, ( ( /A, )

K015LM ~00M d zhMT (MT d z(4TKMT zMTKMT)

+ d'z[4dOUT(]LT]MU+ ]L U)MT) + (8/~)((LO(MO+ (L8(MO)G„(r)],

where (9.6) was consulted. Following the known procedure' '0 one has
2

dOUT)M U
= (D8)TU4U Od 8V W(FVFW)TU

=(1/W)[ 8FVFV+(F,'+F8 —+F8 ) OF8 ]TU)MU

= (1/W)[ —1+I„(I„+1) ——,
' YM'] )MT

(9.21)

(9.22)

where (D ) = d, (F ) = —8'fvTU, IM denotes the isospin of the multiplet member M, and YM the cor-
responding hypercharge. The last step in (9.22) was possible as (MU represents an irreducible SU, octet.
Putting L =M, subtracting (9.20) from (9.21), and making use of (9.22), one obtains

KplM ICOOM d 2(4Z4 T4T 040) — d Z($/(frrMT+ 4TLMT CtpkMO IzMOKMO)

=(8/W)(-1+I„(I„+1)——.
' Y„') d'zg, g„,G.(r),

(9.23)
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where K» was replaced by K»„, which indicates
that the mass correction Kp» here refers to the
multiplet member M.

The mass of the pseudoscalar meson Ko with
internal quantum numbers denoted by M can sim-
ilarly be denoted by K~. Up to first order, one
can write

Kpg' Kpo& +Kp1& ~

Similarly,

(9.24)

2 — 2
KpoN +2KOGMKoiAf ~

which together with (9.23) reproduces the Gell-Mann-
Okubo formula' for pseudoscalar mesons. The term
linear in Y in the Gell-Mann-Okubo formula is both
absent and unnecessary in (9.23). If such a term
is to be included, a term proportional to f«, needs
to be inserted in (9.15) and this requires that a.

term including the antisymmetric expression

quire that

POLM d z($L048 4048)G (10.1a)

d'z(4*840+ 484*0)G.(r) = o

If these expressions do not vanish, gL and 4 are
to be replaced by (L. and 4, which a,re mixed
states of $L and 4. Specifically, one can put

$L' 0 kLO +M040~ ~L'T 4T +MT4T &

(10.2a)

4'0 40 +L0$L0& 4'T 4T +LT(LT t

(10.2b)

where the B constants are determined by the re-
quirement that the matrix elements of K„between
the L' and M' states vanish:

(9.26)(~,);5",—6; (x,)',

be inserted in (2.1). This expression destroys,
however, the symmetry of (2.1) and was therefore
not included.

d'z($*.,4, + $ .,g, )G (r) =0,

d z(Q g +g 4 )G (r)=0,

(10.3)

(10.4)

X. MIXING, ELECTROMAGNETIC INTERACTIONS, AND
CHARMED MESONS

It is noted that (9.23) is not complete in the sense
that, if degeneracy exists in the zero-order states,
possible first-order degeneracy may exist and has
not been removed. Assuming that a degeneracy be-
tween two zero-order states described by L, and
M exists, i.e., KOOM =KOOL, (9.20) and (9.21) re-

d'«8pT((L'T(M'p+ $L T4'p)G (r) =0

Because d»~ is totally symmetric, only three re-
lations, (10.3)-(10.5), are obtained to determine
the four B's and, therefore, a relation between
two of the B's can be chosen Calc.ulation of (10.5)
can be simplified using (9.22). Equation (9.23) now
becomes

Kp&L i KOOM d z2(pzT)L T
—Q'pgL'0) d z()L' f T+Li)TLirgLiT —QsgLip —(L ip)Lap)

J

=(()HB)[(- ) +i, (&, +)) !&,*)fd'z('-„(,0 (~)+ (8„„)'(-.) +S„(r„+ )-!)&„') d'z('„( „0(~)„
(10.6)

The equation for K„„.is given by (10.6) with L'
M', L M, andM L.
To illustrate such mixing or removal of degeneracy

in first order, let L refer to the singlet function
(4.7) and M to the octet function with Y= I= 0 (4.10).
Equation (10.1), with the help of (4.7)—(4.13),
(4.17), and (6.5) and (6.6) of I, now gives

dr r 'gp(0, 0, 0, 0, r)f,(0, 0, 0, 0, r)G„(r),
(10.7)

POLM
(x: drrpg, (0, 0, 0, 0, r)f, (0, 0, 0, 0, r)G„(r) .

0
(10.8)

The angular parts of these integrals did not vanish
and these radial integrals may not vanish; the van-
ishing of other similar integrals depend usually
upon the vanishing of their anuglar parts. Assum-
ing that at least one of (10.7) and (10.8) is not zero
and that a degeneracy between I. and M exists or
Kopje Kpp& then such a d egene racy can be removed
by suitably mixing the singlet and the Y=I=0 octet
states according to (10.2)-(10.5). The mass cor-
rection to the L' state, K»L, is given by (10.6)
in which Ii, Yi, I&, and Y~ are all zero.

The results of this and the last sections were derived
by starting from the generalized version of the ladder
approximation of the Bethe-Salp~ter equation, (2.1).
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Thus, higher-order terms not included in the lad-
der approximation have been dropped. Further,
it was assumed around (3.18) and (3.19) that the
space time functions in (3.16) and (3.17) could be
ordered with reference to powers of a small pa-
rameter e. If the results of Secs. IX and X, es-
sentially first-order results based upon the first-
order part of (3.21), can be of use, the mentioned
higher-order terms and the space-time-c-order
terms must be of second order or it must be pos-
sible to separate the relevant effects of these

terms from the mentioned first-order effects.
These requirements are pushed one step further
if the second-order part of (3.21) involving the
internal electromagnetic interactions is consid-.
ered. Such a second order equation is obtained by
adding a second-order term ($,);(z) to (6.1) and
another second-order term K„ to (6.2). Substi-
tuting the so-modified (6.1) and (6.2) into (3.21)
and keeping the second-order electromagnetic in-
teraction term involving G, (r), the second-order
part of (3.21) reads

—,'K..'(4); (z) - -.'K..[s:(&.),'(.) s,'(&.);(z) 8;(&.),'(z)s", —~(x)(&,); (z) —~(~)(~,);(4),'(z)(~, )',]

+ —,'K K„($,)', (z) ——,'K„[B'~($,), (z)+8, ($,);( z)] —G (r)[(A.,)~($,), (z)+(g, )~(z)(X,), ]

= —,'(2K K, +K,')(( );(z)+—'K, [S~(4 ), (z)+S, (4 ) ~(z)] +G, (r)[Q~(& ),'(z)+(g );(z)Q, ],
(10.9)

where the upper sign was again adopted and 2Q
= A.,+ A.,/v3 according to (4.2) of I. The second-
order equation (10.9) can be solved to yield K„ in
a way analogous to that followed for the first-
order equation. The coefficients A,~ in (9.9) and

K„are obtained from (9.15), (9.16), and (9.23).
($,);(z) can be expanded in a form similar to (9.9)
with coefficients A, ~. Kith the help of the zero-
order and first-order results, %02 can be evaluated.
In doing so, it may be desirable from certain
points of view to make a unitary transformation in
the internal space so that the separation constants
F, I, and I, are transformed to Q, U, and U„
U-spin formalism is naturally more suited for
describing electromagnetic interactions. If degen-
eracy exists among the zero-order states as well
as among the first-order states, it can be re-
moved in a fashion similar to that given in this
section, giving rise to second-order mixing of
states.

During the past year, two particles, P(3.1
GeV)"'" and P(3.7 GeV)", have been found. It has
been suggested that each of these particles is a

charmed meson consisting of a charmed antiquark
and a charmed quark. " If this is the case and if
such charmed quarks are to be included in the
present formalism, a fourth complex coordinate
z', in addition to z' = (z', z', z') in (2.8) spanning
M3 is to be introduc ed. In such a case, one may
try to match the internal coordinates z' =(z', z', z')
with the spatial coordinates % = (x„x„x,) and,
therefore, z' with the time coordinate x, = ]. In
such a matching, one may be led to assume that
under coordinate transformations in the enlarged
internal space spanned by z', z', z', and z the
quantity

zlz +Z2Z +Z3Z -Z4Z -y' -Z4Z (10.10)

is left invariant in analogy with the fact that x
is invariant under Lorentz transformations.

ACKNOWLEDGMENT

To A. Pagnamenta, I would like to extend my
thanks for his supply of references on the subject
of the Bethe-Salpeter equation.

F. C. noh, preceding paper, Phys. Rev. D 14, 2790
(1976).

E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
(1951) .

3S. Okubo, Prog. Theor. Phys. 27, 949 (1962).
M. Gourdin, Nuovo Cimento 7, 338 (1958).

~W. Kummer, Nuovo Cimento 31, 219 (1964).
66. C. Wick, Phys. Rev. 96, 1124 (1954).
7M. A. B.Bbg and H. Ruegg, J. Math. Phys. 6, 677

(1965).

8J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
~P. Carruthers, Introduction to Unitary Symmetry

(Interscience, New York, 1966).
OD. B. Lichtenberg, Unitary Symmet y and Elementary
Particles (Academic, New York, 1970).

'~J. J. Auberge et al ., Phys. Rev. Lett. 33, 1404 (1974).
~2J.-E. Augustin et al. , Phys. Rev. Lett. 33, 1406 (1974).

Q. S. Abrams et af ., Phys. Rev. Lett. 33, 1453 (1974).
~4J. D. Bjorken and S. L, Glashow, Phys. Lett. 11, 255

(1964).


