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In this note we examine how a low-lying Regge trajectory provides a natural explanation of the departure
from mirror symmetry in the 7 N elastic-scattering polarization at intermediate energy. This result confirms

the conjecture of Dash and Navelet, who invoke the same mechanism in NN scattering.

In a recent paper, Dash and Navelet! proposed an
elegant explanation of the anomalous energy de-
pendence of the polarization parameter in pp and
pn reactions for an incident momentum between 2
and 6 GeV/c. They have shown that such a be-
havior might be explained by the occurrence of the
exchange of a low-lying vacuum trajectory with
negative intercept, referred to as the o trajectory.
A “0” component in the flip amplitude is adequate
to reconcile the “good old” Regge theory with the
experimental data for p,, above 2 GeV/c. This
o has been identified as a Reggeized continuation
of the strong attractive scalar potential needed to
describe the low-energy NN phase shifts.? Since
this scalar exchange is naturally associated with
the /=0 n7 s-wave resonance € at m, ~ 700 MeV,
it is appealing to examine the effect of this tra-
jectory in 7N elastic scattering above the reso-
nance region. Here again the most sizable effect
occurs in the polarizations. In conventional Regge
models one predicts that the polarizations in 7*p
and 77p are just opposite; this is referred to as
the “mirror symmetry.” This is indeed the case
at high energy. However, the data in the inter-
mediate region (2 GeV/c < p,,, <6 GeV/c¢) strongly
violate this symmetry. Experimentally the sum of

the two polarizations 7*p and 77p, i.e. the positive-

signature part, decreases with energy faster than
their difference, the negative-signature part, by
roughly two powers of energy. Therefore the de-
parture from the mirror symmetry cannot be
accounted for by a strong flip component of the f,
exchange, since the sum and the difference of the
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polarizations do not have the same energy behav-
ior. The purpose of this paper is to show that
this unexpected behavior is a manifestation of the
same low-lying o trajectory as in NN scattering.
We turn now to the analysis of the data. We
denote by P the effective vacuum-exchange am-
plitude, whose trajectory intercept is around 1;
this includes the naive Pomeron with «(0)=1, and
the f, component with @(0)~0.5. In the differential
cross sections, all contributions are screened
by that of the Pomeron, which gives by far the
leading term. Thus, for the polarizations we
have the approximate expression

2Im[(P+0+p), (P+o+p)k_] (1)
K '

Let S (D) be the sum (difference) of the two polar-
izations; S (D) is the interference term of the ef-
fective vacuum nonflip amplitude with the ¢-chan-
nel isospin 0 (1) flip amplitude, namely,

Pol(r¥p) = -

Im(P,,0*_)

e @

S=Pol(r* p) +Pol(n p)= -4

D= Pol(n*p) - Pol(r™p)=~ 4 I—’-“l(—%L) . 3)

In the expression for S we have neglected two
terms:

(i) the P,, P*_ term, which is negligible as
stated by amplitude analyses® (furthermore, this
term will not decrease fast enough with energy);

(ii) the (p,,p*.) term, which has a fast 1/s en-
ergy dependence but gives a very small contribu-
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FIG. 1. 7*p and 77p elastic polarizations: (a) ® 7 p, O 77p P, =6 GeV/c (Ref.4), (b) @ 1*p, O 17p P, =5.15 GeV/c
(Ref. 5), (c) ® m*p Py, =2.39 GeV/c (Ref. 5), x m'p P, =2.74 GeV/c (Ref. 5), O 7p P, =2.74 GeV/c (Ref.5), & ™
P,,=2.5GeV/c Ref. 6), (d) ® mp P, =1.87 GeV/c Ref. 6), ¥7*p P, =1.988 GeV/c (Ref.6), O 77p P, =1.988 GeV/c

[Ref. 6), A m7p P, =2.07 GeV/c (Ref. 6).

tion, namely,

_2Im(p,.p%) do/dt(n"p—~n‘n)

~Pol(n~p— 1°n)

|P,.[* do/dt(n*p) +do/dt(np)

<1072, (4)

As far as D is concerned, its energy dependence
is quite compatible with that given by the Pp
interference. The parametrization we choose for
S and D is similar to the one given in Ref. 1:

,  (5)

ag(t)=ap(t)
S~ AVZT sing[ap(t)—ac(t)](Lli) et

0
and

’

B - v ap(t)-ap(t)
D=BV -t smgap(t)cosé-[ap(t) a,,(t)](yo)

(8)
with v=2myE,, v,=1 GeV?, and the sin(n/2)a,(t)

accounts for the wrong-signature nonsense zero
(WSNZ) of the p-flip amplitude at a,(t)=0. (This
parametrization obviously has a shortcoming: As
one goes down in energy the polarization parame-
ter may become larger than 1 at some t value.)
Such a parametrization yields a very good fit to
the polarizations of 7*p and 77p at p, =6 GeV/c
with the following parameters.

ap(t)=1.0+0.2¢, a,(t)=0.56+1¢,
a,(t)=-0.32+t, A,=4.9 GeV™', B,=1.13 GeV™!,
A:Aoe-z.qqt, B:Boe-z.zmt.

The trajectories of P and p have been chosen

a priori; that of the o has been determined by
studying the energy dependence of S as one goes

to low energies. The experimental accuracy on the
polarizations in the 2-3 GeV/c domain is poor;
nevertheless the effect of the ¢ is sizable, and the



282 G. GIRARDI AND H. NAVELET 14

resulting a,(f) is similar to the one used in NN
scattering by Dash and Navelet.! We have deter-
mined A and B by using the data at P, =6 GeV/c
because of the great accuracy of the measure-
ments.

By studying the total cross section, we notice
that at 2 GeV/c we are still in the resonance do-
main for 7*p but not for 77p; thus there is a better
agreement for the polarization of 77p than for
m*p at 2 GeV/c. The agreement of this crude
model with the experimental data®™® is shown in
Figs. 1(a)-1(d).

Some final remarks are in order.

(i) As shown in Figs. 1(c) and 1(d), the experi-
mental accuracy at low energy is poor. The P”
trajectory of Barger and Phillips’ of intercept 0 or
the low vacuum trajectory of Bali and Dash®
«@(0) =-0.03 might as well reproduce the data.
However, we want to emphasize that in NN scat-
tering® the trajectory is well determined with an
intercept ~~0.4, and this intercept is compatible
with the experimental data in the 2—-3 GeV/c do-
main. Furthermore, a shift in the intercept leads
to a shift in the position of the zero of S.

(ii) Since the sum S decreases faster than the
difference D, the mirror symmetry for the two

polarizations is predicted to develop at high ener-
gy, but the lower the energy (above the resonance
domain) the bigger the violation of this symmetry.
(iii) Most amplitude analyses at 6 GeV/c have
shown that M?_ amplitude corresponding to the
exchange of /=0 in the ¢ channel has both its real
and imaginary parts negative. This suggests that
the component 0,_=-y_ exp(-3ita,) (y,>0), which
has these features, is still present at 6 GeV/c.
(iv) As stated in Ref. 1, it appears that the ¢
is more strongly coupled to NN than to 7. Indeed
one can evaluate the ratio of the nonflip couplings
(yomm/yoNN),, by looking at the quantity A defined
in Eq. (5);

T ot (TN)A N = (YUW")(YO'NN)+- ,
0 (NN)Ayy = (yoNN), (yoNN), _,

which yield, using the value of Ay, determined in
Ref. 1,

(yomm/yaNN) .~ .

All the above remarks support the existence of the
o exchange in 7N scattering, which provides a
natural explanation for the departure from the
normal Regge behavior.
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