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The free-particle Dirac wave function |Ii(x) is generalized to p(x)g'(z). Here, z denotes a set
of three complex coordinates, called internal coordinates, in an abstract complex three-dimen-
sional space, called internal space, a runs from 1 to 3, and $'(z) is assumed to contain a repre-
sentation of the state of a quark triplet. The maaa in the free-particle Dirac equation is replaced
by a second-order operator -8, operating on $'(z). The ao-modified Dirac equation ia assumed
to include a description of a free-quark triplet. Subsequently, symmetry-preserving interactions
in apace-time as well as in the internal space between two quark tripleta are introduced. Two
SU&-symmetry-breaking interactions, one transforming like the eighth corn.ponent of an SU3 oc-
tet vector and the other like the SU3 charge operator, are also introduced. A similarly general-
ized Bethe-Salpeter equation in the ladder approximation is obtained. This equation is treated in
greater detail in the following paper in which the Gell-Mann-Okubo formula for paeudosealar
meaona is derived with the coefficients determined by given relations. Then, spherical coordi-
nates and corresponding spherical harmonica in the internal space are introduced. Finally, the
equation for a one-quark system is brieQy treated.

I. INIODUCTION

Quantum mechanics, formulated about half a
century ago, has indeed served us very well in the
field of atomic physics. Quantum field theory,
formulated shortly afterwards, together with the
renormalization technique introduced about a quar-
ter of a century ago has been spectacularly con-
firmed by experiments in the ease of electromag-
netic interactions, at the present time down to
10 "cm, a distance considerably smaller than the
length scale of a, nucleus.

%'hen applied to nuclear phenomena and strong
interactions among the so-called elementary par-
ticles, quantum theory, here and hereafter limited
to cases in which particle masses appea. r as given
and predetermined constants, has proved to be
far less satisfactory in accounting for experi-
ments, both qualitatively and quantitatively. There
are several reasons for this. In the first place,
we do not have an accurate or even an adequate
representation of the strong interaction in spite
of a great wealth of experimental data, as we do
in the case of the electromagnetic interactions.
Thus, although we know the strong interactions
phenomenologieally, qualitatively, and semiquan-
titatively, there are features of strong interactions
which cannot be naturally fitted into the quantum-
theoretical description of today. Secondly, the
strong-interaction strength is greater than unity
and the perturbational approach, which is possible
in theoretical quantum electrodynamics and is es-
sential- in bringing it into contact with experi-
ments, fails. For the above reasons, the disper-
sion-relations approach of quantum theory to
strong interactions was devised to complement

the field-theoretical approa, ch. In spite of its
partial success, the dispersion-relations approach
is to be considered as an auxiliary theory in our
search for a more adequate description of the
strong interactions if our belief is that such a,

description is to take the form of a system of par-
tial-differential or differential-integral equa-
tions. The last belief is based upon our experien-
ces in all of the different basic branches of phys-
ics. Thirdly, particle masses are to be intro-
duced as parameters into quantum theory with
given and constant masses. This is practically
manageable as long as the number of different
masses is small. In an elementary-particle in-
teraction, however, a great number of particles
with different masses can be produced. To ac-
count for such interactions w'ith quantum theory
with given and constant masses, the la, rge num-
ber of different masses gives the theory a rather
clumsy appearance.

For these reasons at least, it is evident that
quantum theory with given masses must be suitably
modified or wholly replaced by another theory if
we are to account for strong interactions more
satisfactorily. The purpose of this paper is to
present such a possible theory. In the search for
such a more satisfactory theory, one may be
guided by the above discussion and look for a sys-
tem of partial-differential or differential-integral
equations. The great success of quantum electro-
dynamics further suggests that at least some basic
features of quantum field theory have fundamental
importance and hold as well for interactions other
than the electromagnetic ones. This is confirmed
by the pa.rtial success of quantum field theory ap-
plied to strong interactions. Therefore, quantum
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theory with constant masses will be used as a
starting point and be suitably modified or general-
ized.

Another line of approach to account for our ex-
periences in nuclear and strong-interaction phe-
nomena began in the 1930's when the isospin for-
malism, associated with the mathematical group
SU„was proposed, which formalism turned out
to be highly successful in classifying these phe-
nomena. Generalization of the isospin concept to
include strangeness or hypercharge and the cor-
responding generalization of SU, to SU, took place
during the 1950s and early 1960's. Based on these
generalizations, Gell-Mann' and Ne'eman' showed
that essentially all the then-known hadrons could
be fitted into an SU, classification scheme. More-
over, it was proposed that the masses of these
particles were to be considered as eigenvalues of
a mass operator operating on a set of functions
representing irreducible SU, multiplets. In par-
ticular, the mass operator was assumed to consist
of an SU, -singlet term and a term transforming
like the eighth component of an SU, -octet vector. '
In this manner, the Gell-Mann-Okubo formula
relating the masses of particles within a given SU,
multiplet was deduced and it agreed well with ex-
perimental data under certain assumptions. A

similar set of relations, concerning the electro-
magnetic splittings in SU, multiplets only, was also
derived' and likewise agreed well with experimen-
tal data. Along this line, Gell-Mann' and Zweig'
showed that essentially all the then-known hadrons
could be considered to consist of suitable combi-
nations of a fundamental triplet, called quarks,
much like the fundamental doublet, proton and neu-
tron.

The SU, and quark formalism is so practical and

powerful that it is natural that it has become of
fundamental importance to strong-interaction phys-
ics. By its very nature, however, the formalism,
apart from spin, does not contain any aspect of
space-time mechanics of strong interactions.
Since the experimental data are functions of space-
time, the formalism alone is obviously insufficient
in accounting for hadron interactions.

In the search for a more satisfactory theory for
strong interactions, therefore, it appears natural
to try to combine quantum theory with given and
constant masses and the SU, and quark formalism
in a suitable way. The above suggestion that quan-
tum theory with constant masses is to provide a
starting point and is to be suitably generalized can
now be made more specific; the generalization
consists of xncludzng the SU, and quark formalism
or its equivalent in a suitable way. In particular,
the suggestion leading to the Gell-Mann-Qkubo
formula, that masses are eigenvalues of a mass

operator, has been substantially followed. Fur-
ther, use has been made of the hypothesis that
quarks, formally represented by a triplet P,
where a runs from 1 to 3, or included in such a
formal representation for the time being, are the
fundamental constituents from which all hadrons
are built.

Since quarks have spin —„Dirac's equation for
a free particle will be used as the starting point.
The Dirac wave function is associated with a trip-
let $' representing the quarks and the mass term
in the Dirac equation is replaced by a suitable oper-
ator m„operating on t'. In this process, an ab-
stract three-dimensional complex space, called
internal space and denoted by M„together with a
set of three complex coordinates, called internal
coordinates and denoted by z, are introduced.
then takes the meaning $'(z) and m„becomes an
operator operating on functions of z. These
steps are carried out in Sec. II and the resulting
equation is assumed to hold for a free-quark trip-
let or simply a free quark.

In Sec. III, a quark is assumed to interact withan-
other quark with known state. Interactions in space-
time as well as in the internal space are intro-
duced. These interactions, however, preserve
both the I.orentz and the U, invariance of the
equations. In Sec. IV, interactions breaking
the SU3 invariance of the equations are introduced.
In particular, an interaction term in the internal
space transforming like the eigth component of an

SU, octet vector is introduced following the li.ne of
Qkubo. '

In Sec. V, the above generalizations are extended
to the Bethe-Salpeter equation in the ladder ap-
proximation. The so -generalized Bethe -Salpeter
equation for a quark-antiquark pair may account
for mesons. This equation is treated in greater
detail in the following paper' in which the Gell-
Mann-Qkubo formula for pseudoscalar mesons is
derived with the coefficients determined by given
relations.

In Sec. VI, spherical coordinates and corre-
sponding spherical harmonics in the internal space
are introduced following the work of 86g and
Buegg. '

In Sec. VII, the internal part of the free-quark
equation is solved for the case of a single free
quark. Solution is also given when an SU, -singlet-
interaction function arising from a point source
fixed in the internal space is included. A quantiza-
tion rule for the $'(z) field is given.

II. THE FREE-.QUARK EQUATION

The free-particle Dirac equation reads

(iy's~ —m)p(x) = 0.
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y" transforms like a contravariant spinor or dou-
blet function and is analogous to P which trans-
forms as a contravariant triplet function. The
covariant spinor X„is defined by X„=&„,X', where

(0
(2.6)

~-I 0)'
is a totally antisymmetric tensor. Similarly, g'
transforms like the complex conjugate of a contra-
variant spinor and g; like that of a covariant spin-

&'= E'"g„,g;= &;„.g", &'" has the same form as
e'", and e;„the same form as e,

„

in (2.6). The
physical quantities x ~ and physical operators 8 8
transform like a mixed tensor of second rank. Enti-
ties like x, x~, 8, and 8 sdo not exist in the physical
world.

The generalization of (2.2) to account for a free
quark makes use of the fact that a triplet $' has
been assigned to represent quarks and of the ear-
lier suggestion that rn is the eigenvalue of an oper-
ator m, operating on a set of an irreducible SU,
multiplet. In such a generalization, P is obviously
to be associated with X" or g' in a multiplicative
manner. It is natural to assume that g' can repre-
sent an irreducible SU, multiplet, namely, an SU,
triplet; m„then obviously operates on $'. The
formal form of m„is chosen according to the fol-
lowing discussion. In classical mechanics, both

Since one may anticipate that the triplet $ will be
involved in a generalization of (2.1), (2.1) is re-
written in the spinor form of van der Waerden':

i&".7J (x) my-" (x) = 0, ie„'y"(x)+ mq'(x) = 0 (2.2)

in order to facilitate a comparison between ((x) and
q'(x) and y"(x), on the one hand, and $' on the

other, are now on equal footing: cr= 1, 2 or v= 1, 2
referstothe spin-up and spin-down states of a
particle and a= 1, 2 refers to the isospin-up
and isospin-down states of a particle neglecting
electromagnetic interactions. g= 3 refers to a
state having a nonvanishing strangeness. From
van der Waerden' and Laporte and Uhlenbeck"
we can obtain

the momenta p„,or in spinor form p„', and the
mass m are observables. In going over to quan-
tum mechanics, the observable p„'was replaced
by the operator i8„'which operates on a spinor
function X introduced in this connection. The ob-
servable m remained unchanged. Presently, m
is also to be replaced by an operator m„operating
on the triplet $' introduced. Now P is on equal
footing with y" as discussed after (2.2). There-
fore, m„is assumed to take the formal math-
ematical form const& 8', by analogy with the form
is„'. Putting const= -1, (2.2) is thus formally
generalized to

i&";ti'(x)$'+ sf'y" (x) = 0,
ie„'X"(x)$ —&,Pq'(x) = 0

which possess a formal symmetry between the spin
or Greek indices and the triplet Latin indices.

The existence of g' transforming like the com-
plex conjugate of y' is associated with the exis-
tence of positive- and negative-energy components
of P(x). The latter existence depends upon the
existence of energy which together with momentum
form a Lorentzian space. If there were only posi-
tive-energy components, like those appearing in
the nonrelativistic case in which the space is
Euclidean, it would not be necessary to carry the
dotted Greek indices. From our experience in
working with the quark contravariant triplet func-
tion P, we have not encountered any aspect anal-
ogous to the above-mentioned positive- and neg-
ative-energy aspects. The anitquark triplet func-
tion can be represented by the covariant triplet

Also, as is shown later in (2.15), the space
to be associated with P is not l,orentzian but
Euclidean. Therefore, the dots on the index b

in (2.7) can be and are removed and (2.7) becomes

i&";rP(x)&'+ &',('y" (x) = 0,
is„&(x)~' s.'~'n'(x) = 0 .

6;$' is now interpreted as

82

8zg88

where (z, z, z') =- z' are three complex independent
variables spanning an abstract complex three-
dimensional space M, . Aspects of such a space
have been discussed earlier by Bdg and Ruegg'
and Tait. " p(z', z,) is assumed to transform as
z' or as a contravariant vector or triplet in M, .

The covariant space-time spinor y„is defined
in terms of the contravariant spinor X' by means
of the antisymmetric tensor e„in (2.6). The ten-
sor corresponding to &„,in M, is the totally anti-
symmetric tensor &„,where a, b, and c each run
from 1 to 3. There is no q„„whichcan be used to
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define a covariant vector z, = (z„z„z,) in terms
of z in M, . One is therefore free to define z, as
the Hermitian conjugate of z':

(2.10}

ized equations including internal coordinates,
(2.8}, is that the space-time part and the internal
part of the generalized equations (2.8) are put on
equal footing. Equation (2.16) can be separated to
give a space-time part in the form of a Dirac equa-
tion

ir's. y(x) -m q(x)=0 (2.17)

z"z,' = zbTb~Tcz, = z'z„ (2.11)

so that Tb*T,'= 5b. Using these relations, one can
show that

8
8ag

8zg

Bz 8 8
b T g Tff.g8b

8' 8zb 8zb
(2.12)

and thus transforms like a contravariant vector.
Similarly

8 8zb 8 881— Tb Tb8
8z~I 8zi' 8zb ~ 8zb (2.13)

and transforms like a covariant vector. The mass
operator -8~—= -s'/sz, sz' transforms like a mixed
tensor of second rank in M, and is analogous to the
energy-momentum operator ia;"in (2.8) which
transforms like a mixed tensor of second rank in
spinor space. The contracted mass operator -8',
and contracted mass operator squared 8b8, trans-
form like scalars in M„the latter is analogous
to the d'Alembertian operator in (2.5). Writing

~ —y, +iy» z =yg+iy4, z =ys+Q6, (2.14)

where the y's are real quantities, the invariant
quantity z z, in (2.11) becomes

6

b
Z Zb

f=l
(2.15)

showing that the space M, is Euclidean.
With the interpretation (2.9) and the discussions

and definitions that follow, (2.8) becomes well
defined. The spinor free-quark equations of (2.8)
can be combined to produce a bispinor free-quark
equation which is the corresponding generaliza-
tion of (2.1), namely,

ir"6„4(x)V(z)+ 6;4(x)&"( )=zo (2.16)

Here, z denotes (z', z', z', z„z„z,) and will be
referred to as internal coordinates. Similarly,
M, can be called an internal space and $'(z) an
internal quark function. One can now say that a
principle guiding the quantum-mechanical equa-
tions (2.2) in which m is a constant to the general-

$,(z', z', z', z„z„z,), representing the antiquark
triplet, is similarly defined as ($') and transforms
like a covariant vector or z, in M, .

Consider a unitary transformation in M, : z,'
= T,'z, . Its Hermitian conjugate is z,' = z"= z'T', *.
Unitarity requires that

and an internal part in the following form

6',g'(z)+m p(z)=0, (2.18)

where m~ is a mass-separation constant between
the space-time part and the internal part of the
free-quark equation (2.16).

The transition from the Dirac equation for a free
particle (2.1}to the free-quark equation (2.16) can
be achieved by following the formal prescription:
Multiply (2.1) by an internal quark function $~(a)
from the right, replace m by -8'„and multiply
the term in the parentheses which does not involve
m by 5b. This prescription is similar to that taking
classical mechanics to quantum mechanics with
constant masses. Classically, we have, for a free
particle

p,p" m'=0. (2.19)

The prescription for going over to quantum me-
chanics is: Multiply (2.19) from the right by a wave
function p(x) and replace p, by is/Bx' and p~ by
ie/&x~. Carrying out these steps one obtains the
Klein-Gordon equation for the same particle

( —m. ')p (x) = 0 . (2.2o)

If one considers the particle to be a pseudoscalar
meson, one can further generalize (2.20) by fol-
lowing a prescription similar to that applied to
the free-particle Dirac equation (2.1) mentioned
between (2.18) and (2.19): Multiply (2.20) by an

SU, -singlet internal function r(z) from the right
and replace m by 8„'8",. Carrying out these two
steps one obtains

( -~.)V(x)~(z)=(--. . ' —;s.')V(x)~(z)

where

6 = 8 8"= 8 8"
c d c c d

=0, (2.21)

(2.22)

and (2.5) has been used.
When going from the classical description (2.19)

to the quantum-mechanical description (2.20), the
observables p, were replaced by operators but
the observable m was not. When going from the
quantum-mechanical description (2.20) to the gen-
eralized description including internal coordinates
(2.21), the observable m was also replaced by an
operator. All the observable quantities in the clas-
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sical relation (2.19), p& and m, have now been re-
placed by operators and in that sense have been
put on equal footing. Equation (2.21) exhibits a
symmetry between its space-time part and its in-
ternal part just like (2.16) does. Like (2.16),
(2.21) can be separated to give

( -m„')y(x)= 0,

(~, -m. ')7(z) = O

(2.23)

(2.24)

which are analogous to (2.17) and (2.18), respec-
tively. m ' is the mass-separation constant be-
tween the space-time part and the internal part
of the free-meson equation (2.21).

III. SYMMETRY-PRESERVING INTERACTIONS

Consider a fermion with mass m and wave func-
tion P(x) interacting with another fermion with a
known wave function X(x) through the exchange of,
say, a pseudoscalar particle with mass m~. The
appropriate equations are

(zy & —m)y(x) = iy, U (x)q(x),

( -m .')U, (x)= V~X(x)r,X(x),

(3.1)

(3.2)

where pp is a pseudoscalar interaction parameter.
These two equations are generalizations of (2.1)
and (2.20), respectively.

The generalization of these equations to include
internal coordinates and functions begins by fol-
lowing the prescriptions given between (2.18) and

(2.19) for (3.1) and those between (2.20) and (2.21)
for (3.2). Multiplying (3.1) by $'(z) from the right,
replacing m by -~~, and multiplying the terms not
containing m by 5~, one has

iy"s,g(x)k'(z)+ 6;4(x)5'(z) =ir, U (x)P(x)$'(z)

(3.3)

Multiplying (3.2) by r(z) from the right and re-
placing rn»' by ~„oneobtains

(o -~.)U (x)&(z)= V X(x)r,X(x)&(z). (3.4)

The left-hand side of (3.3), same as that of (2.16),
and the left-band side of (3.4), similar to (2.21),
both possess symmetry between space-time and
internal parts. The right-hand sides of these
equations, one representing an interaction and the
other a source function in space-time, do not
possess such a symmetry. The next step in the
generalization consists of providing such a sym-
metry by completing the right-hand sides of (3.3)
and (3.4) in such a way that these equations become

ir's, 4(x)&'(z)+ s', 4(x)h'( )z
=ir, U (x)4(x)e(z)+~(z)y(x)&'(z), (3 5)

zy s q(x) —m, q(x)=iy, U (x)y(x),

s;('(z)+ m, p(z) = ~(z)p(z)

and (3.6) can be separated to give

( —m~')U (x)= p, X (x)y,X(x),

(~. —m, ')7 (z) = V.&.(z)K'(z) .

(3.7)

(3.8)

(3.9)

(3.1o)

Again nz, appears as the separation constant be-
tween the space-time and internal parts of (3.5)
and m~' as that of (3.6). The mass-separation
constants are analogous to the angular-momentum-
separation constant which arises when the time-
independent Schrodinger equation with a central
potential is separated into a radial part and an
angular part or to the energy-separation constant
which arises when a time-dependent Schrodinger
equation is separated into a time-dependent part
and a, time-independent part.

Another possibility to achieve a symmetry be-
tween the space-time parts and the internal parts
of the right-hand sides of (3.3) and (3.4) is to
generalize them to the following product forms:

iy, U (x)P(x)P( )-ziy, U (x)tfr(x)v(z)$'( ),z(3.11)

u x (x)r,x(x)7(z) -u, v,x (x)r,x (x)l,(z)l'(z).

(3.12)

The equations obtained by combining (3.3) with
(3.11) and (3.4) with (3.12) are, however, general-
ly not separable. The convenient mass-separa-
tion constants generally do not exist and these
equations may be difficult to solve. As an example
to further illustrate this aspect, let us consider
the generalization of the following one-dimension-
al Schrodinger equation

where p,, is an SU, -singlet interaction parameter.
The space-time wave function x (x), associated
with one of the fermions, has been generalized to
the quark-triplet wave function or simply quark
function X(x)P(z) just as g(x) was generalized to
$(x)P(z) and as the pseudoscalar interaction func-
tion Ur(x) was generalized to the pseudoscalar
SU, -singlet-interaction function Up(x)r(z). As with

X(x), P(z) is assumed to be known. By requiring
that (3.3) and (3.4) be made symmetric with re-
spect to their space-time and internal parts, inter-
actions between the two fermions in the internal
space are naturally introduced here and are in-
dicated by the last and introduced. terms in (3.5)
and (3.6). Such internal interactions play a dom-
inant role in the present theory. Equation (3.5)
can be separated to give

( ~,)U (x)~(z)
= V X(x)r,X(x)&(z) —ug. (z)t'(z)U (x), (3.6)

(3.13)

to a two-dimensional one. First, multiply (3.13)



14 QUARK THEORY WITH INTERNAL COORDINATES 2795

by g, (x,) from the right and replace &'/&x, ' by
&'/sx, '+ S'/&x, ' to obtain

(
8 8
, , +, , q, (x,)q, (x,)+Zy, (x,)q, (x,)
x]

= Vl(x|)kl(xl)42(x2) (3 14)

fy's, g(x) m„q(x)= y"U—„(x)q(x), (3.17)

If we let x, represent the space-time coordinates
x and x, the internal coordinates s, the transition
from (3.13}to (3.14) is similar to the transition
from (3.1) and (3.2) to (3.3) and (3.4). Now the
interaction term on the right-hand side of (3.14)
is not symmetric with respect to x, and x,.
One possibility is to generalize V,(x,) to the
symmetric-product form V,(x,)V, (x,) which
leads to a Schrodinger equation generally not
separable into x, and x, parts. If V, (x, ) = x,' and

V, (x,) = x,', then the interaction potential is
V, (x,)V, (x,) = x,'x, ', a form of little interest in
atomic physics. Such a generalization to a pro-
duct form is analogous to the generalizations to
the product forms given in (3.11) and (3.12).
Another possibility is to generalize V, {x,) to the
symmetric-sum form V, (x,}+V, (x,) which leads to
a Schrodinger equation separable in x, and x,. In
particular, for V, (x,)+ V, (x, ) =x,'+x,', two har-
monic-oscillator equations, one in x, and the other
in x„areobtained. This last generalization to a
sum form is analogous to the generalization of
(3.3) and (3.4) to (3.5) and (3.6), and this sum type
of generalization will be adopted.

So far in this section, the interaction function for
the two-quark system has been assumed to be a
pseudoscalar -singlet function U~(x)w(z) generated
by one of the quark-triplet functions y(x)P(z). In
principle, however, the singlet function v (z) can
also be associated with, instead of the pseudo-
scalar function U~(x), a scalar, vector, pseudo-
vector, or tensor function in space-time. In ad-
dition to the singlet function v'(z), there is a nonet
function ~', (z) which can be associated with U~(x)
or any one of the other four mentioned interaction
functions in space-time to form an interaction
function on the same footing as U~(x)r(z). For in-
stance, if the interaction function is a vector nonet
function, denoted by U~(x)z', (z), (3.5) and (3.6)
become

y's. C(x)e( ).s;C(x)~'( )z
= y'U„(x)g(x)h'(z)+ ~&(z)4(x)&'(z) (3 15}

(Z ~,)U„(x)~'„(z)
= g y(x)y, x(x)ur'(z) —gg, (z)V(z)U, (x), (3 16)

respectively, where p, ~ is a vector interaction
parameter and p,„anonet interaction parameter.
Upon separation, these two equations become

a', h'(z)+ m, 5'(z) = (g', (z)('(z),

( -m~')U. (x)= u~X(x)y„x(x),

(&, —m~')(u', (z) = p„g,(z)g'(z),

(3.18)

(3.19)

(3.20)

where m, ~ and nz~' are two new mass-separation
constants.

In general terms, each of the two internal-interac-
tion functions, the singlet-interaction function r(z)
and the nonet-interaction function &o',(z), can be a.sso-
ciated with each of the five interaction functions in
space-time, namely, the scalar, pseudoscalar,
vector, pseudovector, and tensor interaction func-
tions. Therefore, one has in principle 2 x 5= 10
different interaction functions to choose from.
Furthermore, the general interaction function for
the two-quark system can in principle consist of
a linear combination of the mentioned 10 different
interaction functions.

2Q = X3+ XB/v 3 (4 2)

and the X's are two of the Gell-Mann matrices.
G (z) is supposed to represent a semistrong in-
teraction and G, (z) an electromagnetic interaction

IV. SYMMETRY-BREAKING INTERACTIONS

Equations (3.5) and (3.6) are written in such a
form which shows that they are invariant under
Lorentz transformations and unitarity transforma-
tions in the internal space. Further, since the two
interacting quarks, represented by ((x)$'(z) and

y(x)P'(z), respectively, are by themselves iden-
tical, (3.5) and (3 6) also hold when g(x) is replaced
by X(x) and vice versa and simultaneously P{z) is
replaced by g'(z) and vice versa. Thus, the mass-
separation constants in (3.'l)-(3.10) can become
invariants under unitary transformations in the
internal space. The above discussion obviously
also holds for (3.15), (3.16), and (3.17)-(3.20) and
for the case with a more general interaction func-
tion.

Such a conclusion appears to disagree with the
rather successful proposal that the masses of the
members of an SU, multiplet consist of a term
invariant under SU, transformations and a term
transforming like the eighth component of an SU,
octet. Further, there are smaller electromagnetic
corrections to these masses. Taking these con-
siderations into account, (3.5) is further general-
ized to include two SU, -symmetry-breaking in-
teraction terms:
zy's, g(x)('(z)+ &;((x)]'(z)

= fy, U, (x)y(x)('(z)

+ [&(z)+G„(z)(~.)' + G, (z)Q']g(x)t'(z),
(4.1)

where
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(~. -m.')G„(.) = ~.~.( )~'( ),
(&.-m, ')G, (z)= p&&.(z)&'(z) (4.4)

Here, p, , is a semistrong interaction parameter
and p. an electromagnetic interaction parameter
in the internal space. Guided by the Qell-Mann-
Okubo formula, ' m, is assumed to be equal to m~
and the associated G„(z)is denoted by G p(z).
Equations (3.6), (3.8), and (3.10) now become

( —&.)Up(x)(~p. );(z) = V pX(x)y, X(x)(7p, );(z)

-[g,+ p, (~,);]&,(z)K'(z)U, (x),

in the internal space. Since the G and G, terms
are assumed to be corrections to the singlet term
v (z) in (4.1), they are assumed to obey equations
similar to (3.10):

When the interaction function is Up(x)(vp, );(z),
Up(x) is coupled to (wp, )»(z) via the mass-separa-
tion constant m„'. If the interaction function is
U,(x)((u«);(z), where

(~«)»(z) = ~;(z)+G v(z)(&.)», (4.11)

U„(x)!s coupled to (~«)»(z) via the mass-separa-
tion constant mv'. Here, G (z)-G„~(z)and m,
-m„in (4.3). In the case of the electromagnetic
interaction, however, such a mass -separation
constant vanishes. The internal electromagnetic
interaction function Q;G, (z) is decoupled from the
electromagnetic interaction function in space-time,
the photon function A, (x). This may be associated
with the fact that the classical equation (2.19) can
be generalized to include A (x), but not any other
type of interaction, at least up to now, so that

(4.5)
[p, -A, (x)][p' -A'(x)] -m'= 0. (4.12)

s;k'(z)+ m, &'(z) = (!p, );(z)5"(z),

(&. —mp')(~p8)»(z) = [pp+ ua(~8)'»]&. (z)&'(z),

respectively, where

(~..);(z) = ~(z)+ G..(z)(~.);.

(4.6)

(4.7)

(4.8)

Following the prescriptions between (2.19) and
(2.21), we obtain

([is, A, (x)][is" -A.'(x)] —&,]q (x)~(z) = 0,
(4.13)

The internal electromagnetic interaction G, (z)
is naturally associated with the electromagnetic
interaction in space-time. Therefore, a corre-
sponding space-time term for the electromagnetic
interaction, y A (x)P(z), is added to the right-
hand side of (4.1), where

which replaces (2.21). The remark between (2.22)
and (2.23) that all the observable quantities in the
classical equation (2.19) were replaced by opera-
tors in (2.21) also holds for the transition from
(4.12) to (4.13) since A~(x) is not an observable
quantity. Separation of (4.13) gives (2.24) and

QA, (x) = p, g (x)y„y(x) (4.9) ([i&, —A, (x)][i&' -A'(x)] -m„']y(x)=0 (4.14)

~,G..( )= ~.~.( )~'( ). (4.10)

and p, ~ is proportional to the fine-structure con-
stant = », . Since the photon mass is zero, mz in
(4.4) is therefore also put to zero so that (4.4)
becomes

which replaces (2.23).
Taking the SU, symmetry-breaking pseudoscalar

singlet and vector-nonet interaction functions and
the photon function, shown between (4.8) and (4.9),
into account, (4.1) is further generalized to

iy'S„k(x)P(z)+ '4S(»)5x'(x) = [iy, Up(x) + y'U, (x)+ y'A, (x)]!t!(x)F(z) + [(&!»!)»(z)+(&«)»(z)+ G, (z)Q;]0(x)5'(z)

(4.15)

Just like (3.6) was generalized to (4.5), (3.16) is similarly generalized to

( -&.)U. (x)(~,)i(z) = u X(x)y, X(x)(~ )i(z) -[!!».& (z)&'(z)+ u.&'(z)&.(z)(~.)~]U, (x) (4.16)

(4.15) together with (4.5) and (4.16) form a set of
equations describing the influence of a quark trip-
let with the supposedly known wave function
y(x)P(z) upon another with the wave function
g(x)$'(z). (4.15) and (4.16) can. like (4.5), be
separated. As remarked at the end of Sec. III,
it is in principle possible to suitably include sca-

lar, pseudovector, and tensor interaction functions
in (4.15) in addition to the pseudoscalar and vector
interaction functions present in it.

It may bp noted that the vector field U, (x) as-
sociated with the internal nonet interaction func-
tion (!d«)»(z) in (4.15) and (4.16) is not of a gen-
eralized Yang-Mills" type of field. In (4.15), the
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orientations of the g' axes in the internal space re-
main unchanged for different space-time points.

V. GENERALIZED BETHE-SALPETER EQUATION

In Sec. III and IV, the interaction between two
quarks was described assuming that the wave func-
tion of one of the quarks, g(x)P(z), was known.
This is generally not true. In quantum-field theo-
ry, the interaction between two fermions is de-
scribed by the Bethe-Salpeter equation. "'" In
this investigation only the so-called ladder ap-
proximation of this equation, namely,

(iy,'8„,-m, )(iyae~a -maH'2 (xi~xa)

= G~v(x„xa)4„(x„xa),(5.1)

will be considered. Here, I and II refer to par-
ticles I and II, respectively. 4„(x~,xa) is a 16-
component wave function in space-time and G~~
(x„xu)is an interaction function corresponding to
a one-particle exchange between the two interact-
ing fermions.

If a pseudoscalar particle, a vector particle, and
a photon are exchanged, as was indicated in (4.15),
Gp v takes the form

G~v(xg xa) =GPY(lx, —xa I) = &'y5» zG& (lx~ xa
I )+g„y)y u[Gv (I x~ x I)+ G h(lxi (5.2)

where G~„(lx,—xa I) is proportional to a, relativis-
tic generalization of the Yukawa potential with a
mass mJ, and an interaction parameter p,~,
Gv„(lx,-xu I) is proportional to a similar potential
with a mass m~ and an interaction parameter p. ~,
G h( Ixr —xu I) is proportional to n z Ixr —xu I

n&-», , andg, = 5 „forv=0andg~„= -5 „otherwise.
The generalization of (5.1) to describe the inter-

action of two quarks begins by following a pre-
scription similar to that intervening (3.2) and

(3.3). Equation (5.1) is multipliedbyan internal two-
quark function .M(z„za)from the right, m, is
replaced by -8'„,nz~ by —8„'~,8„is multi-
plied by 6» 8 z by 5„', and Gpv by 5'„5„'.The right-
hand side of the resulting equation is, as that of
(3.3), not symmetric with respect to the space-
time and the internal interaction functions. The
equation is therefore completed in a similar way
as (3.3) was completed to become (4.15). The re-
sult is

(~yf~~6't, +s' )(~yzs, &„'+~', )@„(x„x,):-""(z„z)=G„fix,-x )4'„(x„x):."(z„z)

+(7'(Iz, —z l)6'A'+id'(lz, —z I)(x,);(&,)'

+ [G.,(l z, z, I)+ G.',(Iz, —z, l)][(~,);6,'+ 6', (~,)„']
+ G'. (

I
z, - za

I
)(Q;6', + 6',Q'„)]4„(x„xu):-"(z„za).

(5.3)

(&, —m~')~'(I z, —zu I) = p,,6(z, —zu),

(&, -mv')(u'(I z, —
zu I)= p,„6(z,—zz),

(~. -m~')G.'z(lzz ul) = ~86(zx -za)
(&, —m )G' (lz —z I)= p6(z, —z ),
&.G',.(Izx-z. I) = ~o&(zi -zm).

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Here, ~, is to be interpreted as operating on z,
-z~ instead of on z as was the case in the previous
sections. Obviously, (5.4) has its origin in (3.10),
(5.5) in (3.20), (5.6) in (4.3) with m, -mJ, , (5.7)
in (4.3) with I,- mv, and (5.8) in (4.10). The two
A., terms and the two Q terms in (5.3) instead of
the corresponding ones in (4.15) are introduced to
assure symmetry of (5.3) with respect to the inter-

Here, z, and z~ denote the positions of the two
quark triplets or quarks in the internal space. The
internal interaction functions are assumed to de-
pend upon lz, —zu

I
only in analogy with the case

of the space-time interaction functions given in
(5.2) and satisfy

change of the two quarks. Further, X, represents
the Gell-Mann matrices with s running from 0 to
8. A., is defined here as

(z o 0)
~ =(-', )'~2 o 1 o .

(0 0 I

(5.9)

Each of the indices a, b, c, and d runs from 1
to 3.

If one of the two quarks is replaced by an anti-
quark, (5.3) is to be modified in the following way.
The space-time part of (5.3) is modified by mul-
tiplying (5.3) by y,y, from the right" and by re-
placing 4„y,y, by a quark-antiquark space-time
wave function 4'„(x„xz).The internal part of
(5.3) is modified by changing the contravariant
indices c and d to covariant ones and the covariant
index d to a contravariant one. In this way, the
generalized Bethe-Salpeter equation in the ladder
approximation for a quark-antiquark system reads



2798 F. C. HOB 14

(ir». Bl+Bl )e,.(xl xa)=. 3(zl z )(i~"8 5",+8„)=i'G~„(lxl -xa f».~,(xl xz».=:(zl zz)

+[6,„(fx, -xz f)+Gv„(fx, -xn f)]y,4'„(x„xa)y'=',(z„zx)
+ (v'(

f
z, —za

f
)5', 5', + (d' (

f
z, —z 2 f

)(X,);(X,),'
+ [G.', ( fz, —z, f)+G.',( fz, -z, f)][(~,);Bg+ 5', (~,)',]
+ G', (

f
z, —zs

f
)(Q;5,' + O',Q,')])I„(x„xz):.„'(z„za) .

As remarked at the ends of Secs. III and IV, (5.10)
can be generalized to include scalar, pseudovector,
and tensor interactions in space-time. (5.10) has
been treated in the following paper. '

VI. TR.ANSFORMATION TO SPHERICAL COORDINATES

z' = r sinB cos)e'"1,
z' = r sinB singe' "2,

z'= f

cosine'"3,

where
0 & 8 & ((/2, 0 & E & w/2,

(5.10)

(6.1)

0&(,) q„q,&2m.

(6.2)

It is useful to introduce spherical coordinates
and associated spherical harmonics in the internal
space that are analogous to the ordinary spherical
coordinates and spherical harmonics in three-
dimensional real space.

Following Bdg and Ruegg' closely, the following
transformation is made:

z, =rsinBsin)e '",
z3 v cos3 e ' "3

~

By means of (6.1) and (6.3), one can write

(6.3)

Taking the complex conjugate of (6.1), one obtains

z, = r sinB cosine '"1,

9 = 8
I Bzl

9
92= 2Bz

8 1 8 sing 8 i 8
—,'e '"1 sinB cos g—+ cosB cos$ ———

Bg r BB rsinB 8$ rsinBcos) By, '

8 1 8 cos( 8 i 8
—,'e "2 sinB sin) —+ cosssing ——+

Bf' r BB r sinB 8$ r sinB sing By, '

8 . ]. 8 j 9
2e '"3 cos3——sxn3 ———

KcosB 8@3

(6.4)

8~= 8+, 82= 8+, 8 = 8+.1P 2P 3'

A volume element in the internal space M, can be written as

d'z = dz, dz'dz, dz'dz, dz' =
f 83

f
drdBd)dy, dy2dy3,

where the absolute value of the Jacobian J, is given by

f J,
f

= 8r' cosB sin38 cos $ sin g.

Bdg and Ruegg' defined a set of harmonic functions for the group SU, as follows:

(6.5)

(6.6)

n (Bt 4 ylt y2t y3) ~ d (m3+2I+1) /2, (m3-21-1) /2( 8) (ml+m2) /2, (ml-m2) /2( (6.7)

They also pointed out that these functions (6.7) form a complete orthogonal set in the intervals specified in
(6.2) using

f
J3 f/8r' as the density function.

Here, the set of harmonic functions is normalized:

2I+ 1)(n+ 2
2m3(Q $ y y y ) —ei 3 y mlm2m31

nI t t lt 2t 3 2v3 7 (6.8)

where 5 is a phase angle not yet determined and may depend upon m„m„m„I, and n. Using the density
function

f
J', f/8r and observing (6.2), one can verify the following orthonormality relation:

(6.9)

A function of z, and z', with a = 1, 2, and 3, can be expanded as follows:
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n n-2 I 2I 2I- t m21

I»(z„z)=f(Y,3, ), q)„q),q) )=g g g p g f 1 2 3(Y)Y 1 2 3(8, f, q) q) &p)
n=O 2I~O m3=-(n&I) m2=&l m1=-(2I-)m))

One can also show the following completeness relation:
n n-2I 2I 2I- I m2I

Ym(m2m3»3(s)» )» q)» q)» ~») Ym)m2m3(s) ( ~ )
n=O 2I4 m3=-(n-2I) m2=-2l m1=-(2l- I m))

(6.10)

In accordance with Beg and Ruegg, ' the following identifications with quark theory are made:

P+q=n, P -q=m, +m2+m3,

Y = 3 (—2m, + m, + m, ), I, = —,
'

(m, —m, ) .
From this equation one obtains

m1 3(p —q)+ 2Y+I„m,= 3(p —q)+ 2Y I3 m3 3(p —q) —Y'.

(6.8) and (6.V) can now be rewritten as follows:

Y Y'113(s» ~» %1» q'2» P3) = Y

, , (2I+1)(p+q+2) ' ' 1 (/ qq1)/2 /2 $ I=e
2 7l'
cl 3 sand (0 3q6Y1+-3)q/6, (Is q 3Y 61 3) /-6'-l -I (-P )/36+ Y/ g3-2(1)

)(exp(i[3(p —q)+ zY+I3]q)1+ i[3(p —q)+ 2Y —I3](()2+ i[3(p —q) —Y]q)3j.

Similarly, (6.10) can be rewritten as:

(6.12)

(6.13)

(6.14)

I"(z„z')=f(Y, a, h,

P+qW 2I=O

q/1» P2» P3)
P+q 2I I I
Z Z Z f(»q»I I3 ) Y'Il, (6» ~ %1» (()2» P3)

(p-q)/3 "Y=-(p+q&I) (p-q) /3+ Y/2=-I I =-I3

(6.15)

The operator 9; can be written in the following
way:

I 9, 9 1
9 =9 +9 +9 =——f' —+—Qa 1 2 3 ~5 9~ 9~ ~2 5P (6.16)

where 45 is a second-order operator operating on
the angles 6, (, q)„q)„andq)3 only. Beg and
Ruegg' have shown that 1 PY'» is an eigenfunctionYII3
of 65:

6 YII (P+ q)(P+ 'q+ ) Yll '

VII. ONE-QUARK SYSTEM

(6.17)

Returning to the case of free quarks, (2.18) can
be solved by assuming that

p(z) = const x k' exp[i(k, z'+ k'z 3)],

so that

m„=kbu'= u,u'+ &2''+ u3k'.

(7.1)

(7 2)

If a box type of boundary conditions in M3 is as-
sumed, discrete kb and k' values are obtained.
The solution (7.1) does not, however, refer to a
single quark. The internal wave function of a
single quark is obtained by considering the follow-
ing expansion of P(z) for a one-quark system in

spherical harmonics:

$'(8) =(f'(a), e(a), e(e))
~p+1, q

Q, (P, q, Y, I, I3» Y) Y+1/3, 1+1 /2, 13+1/2

Q2(P, q, Y, I, I„&)YY 1/3, 1+1 /2, 1 1/2
p, q, Y, I, I3

q. (» S»,»» s)»s' )z, z, )
(7 3)

where T denotes transpose. Keeping the lowest-
order term, associated with p = q = Y =I= I3 = 0, only
and putting Q, = Q, = Q, = Q, (7.3) becomes

sins sss(s'
6 1/2

$'(z) = Q(0, 0, 0, 0, 0, r) —— sin8 single "2

cosine'"3

(V.4)
which can be considered as the internal wave func-
tion of a single free quark. $'(z) in (7.3) generally
represents states more complex than a single quark;
for instance, the p =

@=1 term may represent a
single quark together with a quark-antiquark pair.
In obtaining (7.4), (6.14) was used in which 6 was
put equal to 0 for P and P but to w for $'. This
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procedure enables (7.4) to take a form conforming
to (6.1) and leads to the cancellation of the angular
parts in the derivation of the next equation. In-
serting (7.4) into (2.18) and applying (6.4), the
angular parts cancel out and one obtains

5, 5Q" + —Q' ——,Q+ 4m, oQ = 0, (V.5)

where Q' = BQ/&x. The solution of (V.5) is

Q = const && —,Z, (24m, o x),
1

(V.6)

where J denotes Bessel's function. m~ can be in-
terpreted as an indeterminate mass of a single
free quark.

If a, singlet interaction term, v(z) in (3.10), is
included, (2.18) becomes (3.8). For simplicity,
it will be assumed that the source function in (3.10)
can be replaced by a point source function po6(z).
This assumption is analogous to the assumption
in space-time that the source of an interaction
function, corresponding to v(z), is a point source
located at the origin of a three-dimensional real
coordinate system in space. Further it will be
assumed that the mass-separation constant m~'
vanishes and that z-~z~=r. (3.10) then becomes

(7 7)

Making use of (2.22) and (6.16), (7.V) yields

has the solution

(7.10)

where v,' is an integration constant.
By analogy with G,„(gz-xa~), discussed after

(5.2), one may assume that r(x ~) P~ so that
p,, =0.

Equation (7.4) is now substituted into (3.8) and,
again, the angular parts cancel out leaving a radial
equation like (7.5)with m„replaced by m, —w(r)
Application of Frobenius's method to this radial
equation using (7.8) yields no solution when &„40.
If, however, pyp 0 one finds that

Q= const x—2Z ~9,~ „~|i2(2(m—p, 3) r), (7.11)

where mu = p, /128m'. Equation (7.11) is a modified
form of (7.6) with m, not determined. Thus, a
single quark cannot be confined by a central po-
tential in the internal space of the type (V.8) or
(7.10) in the sense that these potentials do not con-
fine the radial internal function Q into a certain
region in the internal space and make it vanish
exponentially outside that region.

Finally, it is suggested" that, in a second quan-
tization, g'(z) obeys anticommutation relations

f~ (x), ~'(x'))=i~.(x), ~,(~ )}=0,

7'(&) = 128'y
—2+ &io ~ + &2~ + i's~ (7.8)

S:&.(~) = ~.'6(x) (7.9)

where p,]p p2, and p,, are integration constants.
In this connection one may note that the equation

but commutes with g(x). Thus, the quark wave
function P(x)g'(z) is always even, leading to the
correct relation between spin and statistics of the
baryon decuplet.
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