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A detailed investigation of a class of nonrelativistic multichannel potential scattering models is presented. A
subset of the channels contain confinement potentials that allow only a discrete spectrum with an
accumulation at + cc (like the states of the quark model); the remaining channels contain the usual scattering
states, which are allowed to communicate with the states of the permanently confined channel through an off-
diagonal local potential. We formulate the problem in this paper in such a way that many of the usual
properties of partial-wave scattering theory can be extended to this case. We generalize the I.evinson theorem
to include this class of models and attempt to use it to make a distinction between two types of resonances:
those related to the fundamental states of the quark model and accidental resonances not associated with
quark-model states.

I. INTRODUCTION

In this paper we present a general discussion of
the quantum theory of many-channel potential
scattering in which scattering channels are allowed
to interact with permanently confined channels.
The confined channels can be thought of as being
like a system of a quark and an antiquark, with
infinite-range forces that permanently trap them;
there are no scattering states in these channels.
This is in contrast to the scattering channel, which
can be thought of as a two-hadron system in which
scattering states definitely exist.

In particular we consider a very simple model
which contains much of the essential physics.
Namely, we consider nonrelativistic quantum me-
chanics with the two- channel Hamiltonian

where

(H. 0) (0 V)

For simplicity H, =K+ tJ and II, =K, where K is
the kinetic energy (K= —V', U and V are the poten-
tials of confinement and of communication respec-
tively for two-particle systems in the c.m. frame).
The quark structure of the hadrons is neglected
and the potentials V and U are assumed to be local
and depend only upon the relative separation of the
two-body systems in each channel. A more realis-
tic model would include many scattering channels
with particle production and the quark structure of
the hadrons. The neglect in the scattering channel

of potentials of the same class as V does not com-
promise our work in any way. ' Also, the neglect
of structure in the hadrons which are qq states is
not crucial. We will communicate some progress
in this direction elsewhere.

For low energies this class of models is some-
what similar to those of compound nuclear reac-
tion theory, ' but in ihe latter case all channels be-
come scattering channels at a sufficiently high en-
ergy. To our knowledge there has been no syste-
matic discussion of systems with permanently
confined channels at all energies. We wish to
treat the problem from a rigorous point of view
and establish general results for a large class of
potentials. We will find that while the scattering
theory has many similarities to ordinary potential
scattering, there are some novel and interesting
features (see below). The motivations for our in-
vestigation are the following:

(1) We hope that a thorough study of such models
will be useful to sharpen our ideas on hadron dy-
namics when the physics of confinement and scat-
tering are present in different channels.

(2) It is also possible that nonrelativistic quan-
tum mechanics could be directly relevant to quark
confinement derived from a fundamental theory,
such as Yang-Mills theory with exact color gauge
symmetry. We have in mind that the confinement
mechanism may well involve quarks of infinite
mass for which nonrelativistic quantum mechanics
might be directly relevant, if the energy of the
scattering channel is not too high.

(2) In addition there may be some possible phe-
nomenological applications to hadronic systems,
such as charmonium' or baryon-antibaryon sys-
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tems.
Very mathematical properties of the Hamilton-

ian in Eq. (1.1) that are usually taken for granted
will be established for this model in a separate
paper. ' The mathematical results are the follow-
ing:

(i) proof of the self-adjointness of X for V
c L, (E~);

(ii) proof of the existence and completeness of
the generalized wave operators for V c L,(E,)
AL, (E,) (E, is the Euclidean three-space};

(iii) detailed spectral properties, namely that
the spectrum of the Hamiltonian consists of two
parts: a point spectrum at a discrete set of ener-
gies on the real axis, lower semibounded, with a
possible accumulation point at+~, and an abso-
lutely continuous spectrum on the real axis at en-
ergies above the scattering threshold; and

(iv} proof of the eigenfunction expansion associ-
ated with the Hamiltonian of Eq. (1.1) [the eigen-
functions consist of normalizable bound states and
distorted plane waves (the scattering states)].

Such mathematical results are possible because
of the detailed and elegant work on scattering the-
ory discussed in the books by Kato and Simon. '

The theory for the partial-wave equation for
spherically symmetric U and V will be presented
in this paper. The starting point is to convert the
time-independent Schrodinger equation implied by
Eq. (1.1) to a Hilbert-Schmidt integral equation
with the use of the Green's function for the unper-
turbed Hamiltonian. We avoid the use of Jost solu-
tions, which do not, in general, exist for this
problem. The analytic properties of the physical
partial-wave solution, of the Fredholm determi-
nants, and of the partial-wave S matrices are rel-
atively easy to establish.

The main novel and interesting features are (i)
the existence of square-integrable eigenfunctions
at a discrete set of energies above the scattering
threshold (these bound states are degenerate with
the continuum'; at these energies there are poles
of the full resolvent kernel but not of the S matrix
and hence the unitarity of the S matrix is not com-
promised) and (ii) a generalization of the Levinson
theorem for the phase shifts. It is not surprising
that the Levinson theorem is modified here, since
its usual hypotheses are not satisfied in this case.
However, when the level spacing between the
states of the confined channel is bounded from be-
low,

~

E„-E,
~

& 4 at large E„, we obtain a gen-
eralization, namely the statement

bers of bound states of K and H, respectively for
energies less than E„+&. One consequence of Eq.
(1.2) is that the physical phase shift tends to +~
at E„=+~ if m„ is finite, and there are an infinite
number of resonances where the phase shift in-
creases by ~. We then use Eq. (1.2) to make a
distinction between the two types of resonances,
those directly related to the states of II, and those
arising from the coupling between channels.

The organization of our paper is the following:
Section II contains a discussion of the Hilbert-
Schmidt problem and the analytic properties of its
solution. In Sec. III we derive expressions relating
the partial-wave S matrices to the Fredholm de-
terminant; a proof of the generalization of the
Levinson theorem for these models is also pre-
sented. Section I7 contains a discussion of the
resonance behavior associated with the bound
states of II, and a mathematical example with a
bound state in the continuum and no accumulation
of bound states at +~. We also make some con-
cluding remarks in this section. There are two
appendixes dealing with some bounds for the
Green's function relevant to these models.

[-IV„'+m(x)+ V(x) j@(x)= E@(x), (2 1)

II. STATEMENT AND SOLUTION OF
THE HILBERT-SCHMIDT PROBLEM

A. Preliminaries

In the usual development of the theory of poten-
tial scattering, ' use is made of the Jost solutions
even in the case of many-channel scattering.
From the Jost solutions, the physical solution is
constructed and the partial-wave S matrix is iden-
tified as the ratio of incoming to outgoing waves in
the asymptotic behavior of the physical wave func-
tion. This is a useful construction since the Jost
solutions are designed to approach incoming and
outgoing waves in each channel, and relatively
modest requirements on the potential guarantee
the existence of such solutions. However, in our
problem scattering-type boundary conditions can-
not be maintained in both channels. Therefore, we
avoid this procedure in the following and convert
the Schrodinger equation to an integral equation
that can be rigorously treated by general methods.
Even though the confinement potential is un-
bounded, its Green's function is well behaved and
its properties can be exploited through an integral
equation.

The Schrodinger equation for our system in the
time- independent formulation is

(1.2)

for 0 & e & 6j2. In Eq. (1.2) m and n are the num-

where 4 is a vector
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4(x) = P $,(~)1",„(~), (2.2}

I is the unit two-by-two matrix, and 'u= —', (1+ (T,)U
and U= Vo, (o,. are the usual Pauli matrices). For
spherically symmetric functions U and V we can
simplify Eq. (2.1) by the standard partial-wave ex-
pansion

O(x"') at x=o,

G;(x, x', k, f) = —k(x&j, (km&))(xk;(kx))), (2.7a)

where k;(kx) is the spherical Hankel function
(k;(kx) -exp[i(kr--,'l)i}]/k~ for x-~). The confined-
channel Green's function has a similar represen-
tation:

and obtain the ordinary differential equations (
t E t) — ~0 i( &}J+(( &)

c w (2.7b)

I — 2+ 2 +% t'+ UQ Q )Q =E
d' l(t+ 1)

(2.3)

where y„(x) and y„(~) are two linearly independent
solutions to

l(l+ 1)k'+ + —,— -U y=0

The operator on the left-hand side of Eq. (2.3) is
well defined on piecewise differentiable functions
of second order, the space [C'(0, ~)]'.

Next we transform Eq. (2.3) to an integral equa-
tion; for 'Ug, (= 5)(R), the domain of the resolvent
operator 6l = (IE —R„) ':

P,(~) = 4')(~)+ ~"d~' "',' -' 'U(~')q, (~'),

(2.4)

where (',(z) =(O,j,(kz)), j,(kx) is the spherical Bes-
sel function (k' = E}, and 9„ is the appropriate
Green's kernel for the resolvent @,:

which satisfy the boundary conditions yo((x)
=O(~"') as v-0 for U(x) less singular than r ' at
x=o, and lim„„y„(x)=0; W is the Wronskian
W=y, y,' —y, y,'. Also in Eqs. (2.7a} and (2.7b)

(r ~-'~ i~-~'i}.
On the 1., space of functions we expand an arbi-
trary function f(~) cL, in terms of the eigenfunc-
tions of H„g„,(= L, as f =Za„xg„,(x); hence, G,
can be given a meaning in terms of an eigenfunc-
tion expansion,

(,„) fG, (~, ~', k, l)

G;(r, ~', E, /)f
~ a.~ 4.,(~) (2.8)

6, and G', are the confined-channel and scattering-
channel Green's functions which satisfy

k' +,—,—U G,(x, x', k, l) = 5(x —r'),(
d' l(l+ 1)
A 'v

(2.6a)

which converges absolutely for f (= L,.
For convenience we choose H, such that its

spectrum lies above the scattering-channel thresh-
old i=0, i.e., E„&0 for all n. The modifications
required for the case when some of the bound
states of II, lie below threshold are trivial.

cP l(l+ 1)k' + —,—,G;(x, y', E, l}= 5(r —x') .

(2.6b)

B. Hilbert-Schmidt theory

The main result of this section is the following.
Let the potentials U and V satisfy these conditions:

The confined-channel Hamiltonian II, has dis-
crete spectrum E= aE( 0)H; hence, the integral
operator in Eq. (2.4) is not defined at E= E„(=v(H, ).
However, the precise location of the poles of 8„
is due to our choice of separation of perturbed
and unperturbed Hamiltonians. We can always
choose a different separation of K into 3C„' and '0'

such that 8„"0' in Eq. (2.4) does not have a pole at
a particular E„. In our companion paper' we show
how to deal with this question in detail.

The scattering Green's function has the custom-
ary representation satisfying outgoing-wave
boundary conditions at z=+ and vanishing as

(i) ~v (= L,(0, ) n L,(0, ). (2.9a)

(ii) V is of finite range, i.e., there exists an o(0

&0 such that for 0&~&~, we have

e'"rV E I.,(0,~) . (2.9b)

(2.9c)

(iii) V has at most a finite number of singulari-
ties.

(iv) U is such that G,(z,r', E, l) satisfies
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for Eg o(H,), where C depends on E but not on r.
We will refer to this condition as the strong
Carleman condition. In Appendix B we show that
it is satisfied for the simple harmonic oscillator,
and it is also easily seen to be satisfied by the
infinite square well.

for

C =(4„4)c Q,

where

fd=.
l
';r.) I'&" (2.13)

Let B be the Banach space of continuously bounded
functions with norm

Then either there exists a unique solution in B to
the integral equation (2.4), or the homogeneous
equation

is the norm on L,(0,~).
It is easy to see that for every solution P, cB to

Eq. (2.4) [or Eq. (2.10)i, C = r'U, g, is a solution to
Eq. (2.12a) (or the corresponding homogeneous
equation) and C cQ:

(2.10) (2.14)

has nontrivial solutions in B. The set of energies
o(K,) for which there are nontrivial solutions to
Eq. (2.10) is bounded below and discrete, with the
only possible accumulation point at E=+ ~.

For O'= E in the neighborhood of a particular
eigenvalue E„ofH„we can always shift the loca-
tion of the pole in the confined-channel Qreen's
function G, by choosing a different separation of
the full Hamiltonian X into unperturbed Hamilton-
ian X„'=X„-5V and perturbation '0' = %3+ O'U, where
5Q is a diagonal potential in the confined channel.
All of our arguments go through for the integral
equation (2.4) with 9„'0 replaced by 9„'Q', and the
solutions to the new integral equation are identical
with the solutions of the original integral equation
for O'= E not equal to the poles of either kernel.

To establish this result we convert Eq. (2.4) into
a Hilbert-Schmidt integral equation for E= k in
a domain including the real axis. ' ' In order to ac-
complish this we factor the potential as

And for every solutions EOto Eq. (2.12), the p, given
by

)t)"'(r) = dr' ' ' ' ' V (r')@ (r')G (r~r'd E~l)
0

qI"(r) =j,(kr)

d"' '"' ' "v,(.)e,(")
0

satisfies Eq. (2.4) and g, cB:

=clio. ll

'" ' ("
c+cllv, ll lie, ll

sup

where we have used the Schwarz inequality and the
boundedness of Vyj and we have proved in Appen-
dix A that

u =a,u, =(v,f)(v, ~„), (2.11)

d(r) =e(&)+ f X(&,,&')d(&')d&'
0

with

(2.12a)

K(r, r') = u, (r)9„(r,r', E, l)a, (r'), (2.12b)

where C = V,rg, 4, ='U, r(t'» and we drop the l de-
pendence for simplicity of notation.

Next we define a separable Hilbert space Q
=L, SL2 with the norm

lf c'll. '= Z II
4'*ll""

with V, bounded and of finite range and V, of finite
range, which is possible from Eqs. (2.9a) and
(2.9b). Multiplying Eq. (2.4) from the left by r&,
we obtain

&C O'=E realr
Having established the one-to-one correspon-

dence between solutions of Eqs. (2.4) and (2.12a),
we need only study Eq. (2.12a) in the Hilbert space

The operator norm for a kernel K(r, r')
c @x @ is defined by

r(KK')= ffKff

=g f d&J d&'Ix„(&,&')I' (2(d)
0 0

And we can easily show for all k cD, D=(&
l
Imk

)-olo/2, k =Ega(H )), that

K= u, (r)9„(r,r', k, l)u, (r') c @xgi.

r(KKt) is a sum of two terms:
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~(nn') f=dr «']r(r)]']r(~')]'I]n l~, r', nl]'+G(~, ~', n)]*]
0 0

gC+g S
(2.16)

For the scattering piece ~' we have
dO

v, (~)
I I

~'v. (~ ) I
0 0

G+ & &d E)e-(n/2)re-(a/2)r' 2

Ff Y
(2.17a)

where we have used (see Appendix A or the text of
De Alfaro and Regge'}

G+ & r k e-(n/2)re Ldd/2)-r

Sup ' ' ', ~ const (2.17b)

R,(~,r ', k) =N, (~, x', k)D, '(k) . (2.22)

A. is a coupling parameter which we have factored
out of the potential, 'U- X'U, to organize the deter-
minantal expansions

D~(k) = det(I —Ui)
for Imk ~ —o)/2. The norm T, is bounded by

7 = dy dr'IG, (r, r', k )I Iv (r)I IV (r')I
0 0

I~'v, (~') I', (2.ls), IlG, r', ', k' ll

0

where we have used
I
V, (~)

I

& c; and by the strong
Carleman property of G, and the fact that zVc: I.,
we have

= P ) "t„(k)
n=o

= det(I —)(.8„'U)

N, (x, x', k}=g &."N„(),x', k),
n=&

(2.23a)

(2.23b)

lla ~ l~ll '
&,—C Sup ' ' ' ' '

II) 'V, II'&C (2.19)
0

where 6„and N„are given by expressions involving
E and TrE" in the text by Smithies xo For our pur-
poses we need only

for Ego(H, ), where C depends only on E.
Thus the operator K is a compact operator on Q.

And K is easily seen to be meromorphic in Imk
& -n o/2 (see Ref. 4 for a. proof) . Thus we can apply
the analytic Fredholm theorem, which we quate
here in a form suitable to our purposes.

Theorem: Let K(k) be a compact operator-
valued function meromorphic in some connected
domain D of the complex k plane, and let the resi-
due of each pole of K(k} be an integral kernel of
finite rank. If [I—K(k)] ' exists at one point k cD,
then [I—K(k)] ' exists and is meromorphic in D.
The poles of [I—K(k)] ' occur at the discrete set
of points [k,.] where the homogeneous equation

(2.20)

and the bounds

[&(KK+)]n/2en/2
I

~n
I &n/2

x K„(r',~, k), .

[&(KKr)](n+1)/2e(n+). ) /2
[~(N N')]"'~

N, =E,
6 =1,
5, =0,

d, =red'=Q f drf dr'n»(r, r', d)
0 0

(2.24)

(2.25)

4 (~}= 4,(r)+ R„(~,~', k)C,(~')dr',
0

where the resolvent A~ is given by

(2.2i)

has nontrivial solutions in @r and the residue of
each pole is an integral kernel of finite rank. For
the proof see the paper by Tiktopoulos. '

The detailed solution to Eq. (2.12a) can be found
in any text on integral equations":

The bounds in Eq. (2.25) ensure the uniform con-
vergence of the series in Eqs. (2.23} for k cD.
Thus D,(k) is meromorphic in Imk&- n, /2 with
poles at k'co(H, ). And D~(k) has zeros at the
energies O'=E, for which the homogeneous equa-
tion (2.20) has nontrivial solutions: The order of
each zero is equal to the number of linearly inde-
pendent solutions. "

We must still determine the order of the poles in



R. F. DASHEN, J. B. HEALY, AND I. J. MUZINICH

D~(k) at k' c v(H,). Let us focus on one pole at
E=E„and rewrite the unperturbed Green's func-
tion and the kernel K in terms of a modified ker-
nel plus a dyad:

In)(nl
8 g g

tonian into 3C„'=BC —O'U and 'O' = 'U+ O'Q where FU has
only a diagonal component ML in the conf ined channel
and is chosen such that E„is not contained in the spec-
trum LE„') of H,'=H, —ML. Then, as discussed in
Ref. 4, the resolvent kernel 8„' of H' = (O' —K'„) '
must satisfy the integral equation

&, ln)(n t ~,K=K'+ —'
E —E„

(2.26)

= 9„+ 9„'V'9„- 9„'5~9„, (2.30)

where K' and 9„' are defined through Eqs. (2.5),
(2.7b), and (2.8} with one pole at E= E„missing,
and n) is an obvious Dirac notation for the state
4'„(x)(1,0) of the confined channel. If K(= Q x@ then
obviously K' c Q && @ by the same technique as the
proof that K(= @&& @. Using the identities

from which we obtain the relation

D,(k) = det(I 9„~)
= det(I —8„"U')det(8„9„' ')

=D,(k) jQ
n n

(2.31)

d t:(( m) =t( )((-m'- '")("' ~)
= det(1 —XK')

(2.27)

which follow from the Fredholm theory, and

D,'(k) = det(E —9„'u') .
If a pole of D,(k) at O' = E„decouples, then D,'(k)
must have a zero at O'= E„; this zero of D„'(k) cor-
responds to a solution to the homogeneous equation
(2.10) with 9„'U replaced by 9„''U'.

det(I+ ~f){g'~}=1+(f,Z} (2.28) C. Relation to solutions of the Schrodinger equation GC4' = E4
for f,gcj„we obtain the following relation be-
tween determinants:

(2.29)

with

D,'(k) = det(I ue),
N'(k) = &,[(I—AK') ' —I]'U,D'(k) .

The formal manipulations leading to Eq. (2.29) are
justified since all of the operator products and ex-
pansions necessary to define the objects in Fqs.
(2.27) and (2.29} exist and all factors are well-de-
fined kernels in @&,o. Using the expansion corre-
sponding to Eq. (2.23) for N,'(k) we see that
(n ~&)', (k)

~

n}» reg»» at k'= E„And since by con-
struction K' has no pole at O'= E„„D,'(k) is also
regular at that point. Thus D,(k) has at worst sim-
ple poles at the eigenvalues E„ofH„provided only
that the eigenvectors of H, are not degenerate. It
is easy to see that in general the maximum order
of the pole in D,(k) will be equal to the multiplicity
of the eigenvalue E„.

It is possible that a particular eigenvalue E„of
H, will not show up as a, pole in D,(k) and that
D,(k) will be finite at this point. If a pole decouples
m this way, then Eq. (2.20) must have a nontrivial
solution 4 c ~g at this point. To see this we must
use a different separation of the complete Hamil-

The previous subsection was limited to the dis-
cussion of the integral equations, (2.4} and (2.12a).
In order to make full contact with the Schrodinger
equation, (2.1), it is necessary to make some fur-
ther assumptions on the potential V, namely, that
V is Holder continuous except at a finite number
of singularities and that V(x) = O(x '~' ') (e &0) for

These assumptions enable us to prove4 that
the square-integrable solutions to the homogeneous
integral equation (2.10) are also the square-inte-
grable bound-state solutions to the Schrodinger
equation BC/ = E)t). Furthermore, the set IE,.)= o(K)
is restricted to the real axis, with a finite number
of bound states below threshold and a discrete set
above threshold (bound states embedded in the con-
tinuum) with a possible accumulation at E=+~.

The confined-channel element g', "(r) of any solu-
tion P,(~) to Eq. (2.10) is guaranteed to be in I.,
because of the strong Carleman condition on G,.
For E&0 the scattering-channel Green's function

G, is also a Carleman-type operator, so ihe nega-
tive-energy solutions to Eq. (2.10) are obviously
square integrable. From the homogeneous integral
equation we see that a necessary condition for the
square integrability of a solution to this equation
for E,.&0 is
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since

0"'(~)= &(. I'U~t&&+0(~ '" ') (2.33)

+ O(&-3/2-s) (2.34}

for large ~, where we have used the fact that the
free Green's function reduces to G,(x, r', 0, I)
= —r& 'r&'" for k=o. We see that g, is always
square integrable for E~1, and for the s wave

g, , will be square integrable provided

f,
"x'&(x'))t)", o)(x')Ch'= 0. The latter possibility is

excluded in ordinary potential scattering by the
positivity of the derivatives of the Jost function,
but there is no analog of this argument to prevent
it from occurring in our models. Qn the other
hand, if f,"x'V(y')p", o)(r')Ch'wo then the zero-en-
ergy s-wave solution to Eq. (2.30) is not square
integrable and is not a bound-state wave function.

Thus the situation is essentially the same as in
ordinary potential scattering. The only solutions
to the homogeneous integral equation (2.10) which
are not normalizable bound-state solutions to the
Schrodinger equation are those zero-energy 8-
wave solutions mhich are not square integrable.
And just as in ordinary potential scattering, the
nature of the zero-energy solution (if one is pres-
ent) to Eq. (2.10) will manifest itself in the order
of the zero of Di(k} at k'=0. To see this we em-
ploy a method which was originally introduced by
V/einberg. " We consider the integral equation

q(z)p(r, z) = ~"d~' " ', ',
' ~(~')y{r', z), 8„(~,~', E, I)

and {p»
~

'U
~

)t), & is the coefficient of the leading term
in the expansion of the wave function at large z.
Iii Ref. 4 Eq. (2.32} was shown 'to be satisfied pl'o-
vided E&0. The condition Eq. (2.32) decouples the
bound state from the scattering amplitude and
gives a zero width for such bound states embedded
in the continuum.

A zero-energy solution to the homogeneous inte-
gral equation requires special consideration. In
that case, the confined-channel element of P,(r) is
still in I,, and the scattering-channel element is

("'(r) = —r ' ' f r"V(r')('"'(r')dr'
0

D,(k) = [ [1—)I,.(k')].

If D(k) has a zero at k2= 0, then one (or more) of
the eigenvalue trajectories must pass through
)I,.(0)=1; to each iI,.(z) which satisfies this condi-
tion there corresponds a linearly independent so-
luti. on to Eq. (2.10) for E=0. So to examine the
order of the zero of Di(k) at k' =0 we need only
examine the behavior of the eigenvalue trajectories
near E=0.

If the solution )t)(x, E) ={x~$,,(z)& to Eq. (2.35) with

q(z) = rj, (E) i.s square integrable, then applying the
SchrMinger operator (K„-E) to Eq. (2.35},

{q,(z) ([(~.—E)n, (z)+~]
( e(z)& =0,

and differentiating with respect to E we obtain

o =czar,
.(z) ~[(se„z)g,(z)+~]

~
q,.(e)&

= c,( )Edz[{~.-z)~, (z)1 c,(z

ol

dn;(E) {Pi(z)I 0;(z)&
q,.(z) dz {)r),.(z) I (X„-E) I &,.(z)&' (2.38b)

„, «,(E)I~{z-~.)- ~I~,(z)&.
{q,(z) I ~I C, (z)&

Evaluating this at E= 0 and using the positiviiy of
K„we have

d 1,(i)E(g,{0)I g, (0))
dz ~, ((,(0) Ix„I$, (op

If il&(0) =1, then

)I,.(z) = I+q,'. (0)z

for small E, and Di(k) has a double pole at k2=0.
To each square-integrable zero-energy solution to
Eq. (2.10) corresponds a double pole of D,(k} at
k'= 0.

On the other hand, if there is an 8-wave solution
to Eq. (2.10) which is not square integrable, then
we obtain from Eq. (2.35) the relation

= (z x„)-'~q. (2.35}
evaluating the imaginary part of the right-hand
side explicitly for small real E&0 me have

For each fixed E there will be a discrete set of
values )I,(z) for which Eq. (2.38) has nontrivial
solutions. Following Weinberg me mill refer to
these ii,.(z) as the complex eigenvalue trajectories.
The r/,.(E) are real analytic functions of E, and for
any fixed E the Fredholm determinant can be
written in the form"

fo" A t/( )~i ){,E)
{C,(z) I ~I C,(z}

Thus in this case D,(k) has a simple zero at k = 0.
We summarize: At every energy &2= F,„for

which the Schrodinger equation (2.3) has a nor-
malizable bound-state solution the Fredholm de-
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terminant Di(k) for that partial wave has a zero
For E,4 0, the order of the zero is equal to the
multiplicity of the bound state. For E& =0 there is
a zero of order 2 for each bound state, and for
every non-normalizable 8-wave solution to the
homogeneous integral equation (2.10) the D,(k) for
the & wave has a, simple zero at k'= 0.

D-,(k) = dec m, s-„(E)~,)
=det(I- Xu, (g'„[9„])'0,)
= det(I —M),9'„'0,)

&& [I+ (I- m, g„'~,)-'~,[9„]~,]
=D;(k) det(I+ (I Xu,g'„~,)-'u, [9„]g,) .

III. THE SCATTERING MATRIX
AND LEVINSON'S THEOREM

(0~ ySC (3.1)

The asymptotic behavior of the scattered wave
which follows from Eqs. (2.4) and (2.Va) is

Here we derive the standard relation between the
partial-wave S matrix and the Fredholm determi-
nant and then use this relation and the analyticity
properties of D„(k) to establish a generalization
of Levinson's theorem.

The scattering amplitude can be deduced by sim-
ply finding the asymptotic behavior of the wave
function in Eq. (2.4). First we separate g, into (j)',

and the scattered wave P in the standard way:

Here the discontinuity of the unperturbed Green's
functLon

is a separable kernel or dyadic, and so the last
factor on the right-hand side of Eq. (3.V) can be
evaluated using the identity (2.28):

D (k) =D'(k)[l —2ik((C)', i'02I)I~'0,
i
(/P}(D~(k)) "]. (3.8)

The series e ansions (2.23} for the determinants
D;(k) and D~(k converge uniformly in the domains
Imk& —o.,/2 and Imk & c(,/2, respectively; thus the
formal manipulations leading to Eq. (3.8) are justi-
fied.

Comparing Eqs. (3.6} and (3.8) we see that

[q (y)], ~ ——exp(ik~) ~"q', (r')0(~')(I), (~')
g ~ (I 0 S,(k) = D;(k)/D;(k) . (3.9)

0(~-3/2 I)

The on-shell scattering amplitude is simply

(3.2}

T'(&) = -f ~"« P(~ ) U(» )()('~)''''
0

(3.3)

where we recall that (j)', =(0,j,(kx)). Using Eqs.
(2.21}and (2.22} with C =ra, g, and C, =re, (t)', we
can write Eq. (3.3) as

T(k) = —(y',
i
~P,V,

i
q', }(D,(k)y'. (3.4}

Then, with the usual relation between the S-matrix
element and the T-matrix element,

While this is a well-known standard result for
ordinary potential scattering, we have derived it
here directly from the Hilbert-Schmidt theory. "
Even though the precise form of D, (k) depends on
the particular sepa, ration of the Ha, miltonian X into
X„and u in Eq. (2.4), the S matrix is unique; and
the (infinite number of) poles of Di(k) at the spec-
trum of the particular B„while inevitable, do not
effect the unitarity of the S matrix since the same
poles occur in Di(k) and D~(k).

Although the analysis presented here was car-
ried out for the case of only one scattering chan-
nel, it is clear that the method can be extended to
any finite number of scattering channels. In par-
ticular, Eq. (3.9) then takes the form

S(k) = 1+2ikT(k), (3.5)
det S, =D),(k)/D)', (k), (3.10)

we arrive at the expression for the partial-wave
S matrices

S (k) = 1 —2ik(0',
i

'0 I(/, 'U2
i

(j)',}(D;(k)) ', (3.6)

where we use a+ superscript to remind ihe reader
that the scattering Green's function which enters
9„ in Di(k) = det(l —M),9'„'0,) has the customary + ie
boundary condition.

To relate the numerator on the right-hand side
of Eq. (3.6) directly to the Fredholm determinant,
we evaluate D,(k) = det(1- X'0,9„'0,), with the -ie
boundary condition used for the open-channel
Green's function: D;(k) = (D;(k))* (3.11)

and one can calculate all elements of the partial-
wave S matrix from the Fredholm determinant as
a function of the independent channel momenta.
The results have the same form as in ordinary
multichannel potential scattering. '

It is obvious that Eq. (3.9) embodies the unitarity
of the S matrix, which is generally satisfied for
ordinary potential scattering, and was established
for this particular class of models in Ref. 4.
Since Di(k) is a real analytic function of E = k' and
satisfies
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by virtue of Eq. (3.12), we can represent the S
matrix in terms of the phase

D(k)-1 for Ik I-~ with Imk~0 and E= k'go(H)
it is sufficient to have

n(k) = -»gDl(k) (3.12) 0 ~&o(lkl- ), n &0 (3.16)

or

S,(k) = D;(k)/D;(k)

= (D;(k))*/D;(k)
= exp [2 i7l(k)] (3.13a) S, =~EI IE„-EI~~~0 Ior all ~] (3.1'I)

in all directions in the half plane Im 4 &0 and on
sequences of points 5, for real E =fp' that avoid
the poles of the confined-channel Green's function.
Such sequences are defined by

with the symmetry property

D)', (-k) =D2{k), k real. (3.13b)

The discontinuity of lnD2(k) across the cut in the
energy plane is given by

[lnD ~(k)] =—lim[ln D), (k+ ie) —lnD „(-k —ia)]
Q

= InD2 (k) —lnD), (k) = —2ig(k) . (3.14)

The phase, q(k), is determined by Eqs. (3.13a)
modulo v. Since D(k) has poles at k2=E„E&(H,)
and zeros at the bound states imbedded in the con-
tinuum k' = E, ~ 0, the phase q (k) has discontinui-
ties

Iim[q {(E,. )2~'+ e) -q ((E()'~2 —(.}]= ~

and

lim[q ((E„)'~'+a) —q ((E„)'~' —e)] = v.

6, (k) = q(k) p Iim[q ((E„)'~'+~} 7} ((E„)'~' e)]

limp E, ' '+& -g E;' ' —&

E.& E

We must define the physical phase shift 6,(k), with
the discontinuities removed, by

for any fixed &&0 such that 2&& ~=min„&„, (E„,,
-E„( for some finite n, . Then it follows from
Eqs. (2.23) and (2.25) that

0 —ID(k} —1I 'o(lk
I

(3.18)

for (k (-~ in all complex directions and on the
sequences S, . In Eq. (3.18) we have retained the
first nontrivial term (n= 2) in the expansion of
D, (k), Eq. (2.23). We have checked Eq. (3.16)
in detail for the harmonic-oscillator confining
potential in Appendix B, and it can be easily estab-
lished for the infinite square well.

There will be no real sequences S, on which Eq.
(3.18) is satisfied unless the level spacing is
lower semibounded, (E„„—E„(&&, for large ~.
This actually places a requirem nt on the confine-
ment potential, namely that E„must increase at
least as fast as n for large n. The harmonic-os-
cillator potential is the borderline case. For a
potential increasing as x~ as x-~, one can show
that E„=0 n{'~~ ~(" ))as n-~, by a, simple WEB
argument. Thus p& 2 (and hence the linear poten-
tial in nonrelativistic quantum mechanics) is ex-
cluded.

To establish the Levinson theorem, we use
Eqs. (3.15), (3.16), and (3.18) and consider
the Cauchy integral of (d/dk) lnD(k) over a contour
C in the upper half plane,

(3.15) -mx«+ . dlnD)„(k)=0.
1

E &' 27ri
(3.19)

It is this phase shift that will actually be impor-
tant in the discussion of the Levinson theorem. Of
course, if a continuum bound state occurs at an
eigenvalue of H„ then the corresponding discon-
tinuities will cancel, but to count states properly
we must include these terms in Eq. (3.15}anyway.

We now have all of the ingredients for the proof
of the Levinson theorem except the crucial asymp-
totic behavior of D~(k). In order to establish that

The contour C is from E„—& to E„-+e (E~ is a
large eigenvalue of H, ), avoiding the poles of D~,
zeros of D„and the origin by small semicircles
in the upper half k plane; the contour is closed by
a semicircle of radius R large enough to include
all ms &, of the zeros of D, (k) below threshold.

Using the symmetry property (3.13b) we can
write out Eq. (3.19} as

1 —2iq ((E~)2~2+ c)+ 2i P [7i ((E„)'~'+ (.}—q {(E„)'~'—c}+7)]
2im

E~&Eg

+2( P 3((Z,. )' '+3) —3((2,.)' ' —e) —w)+2(3(D)+ 32 —)nD(2))=n „. (3.20)
E ~ &Eg dk
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From Eq .(3.14) and the asymptotic behavior
(3.18) we obtain the relation for the physical
phase shift

fying if one could prove our generalized Levinson
theorem from the existence and completeness of
the generalized wave operators, as has been sug-
gested in other situations by Jauch" and Polking-
horne. "

mhere n~ „and m~„„are, respectively, the num-en+ 8

hers of poles and zeros of D, (k), counted accord-
ing to their multiplicities, between threshold and

E„., As in ordinary potential scattering, if there
is a non-normalizable s-wave solution to the homo-
geneous integral equation, then this counts as half
a bound state in Eq. (3.21) for / =0. If the num-
ber of positive energybound states ofX, m„, is finite
then we obtain in the limit of large E~

(3.22)

where m = m„+ m~« is the total number of
bound states of the complete Hamiitonian @. We
have not been able to prove that m„ is finite in
general, although an example in the next section
does have this property.

Equations (3.21) and (3.22) are the generaliza-
tion of the Levinson theorem for this class of mod-
els. Although there have been some earlier state-
ments of the Levinson theorem when hidden chan-
nels are present, namely within the context of the
Low" equation and the Lee model, to our knowl-
edge ours is the first systematic discussion within
the context of confinement potentials.

It should come as no surprise that the number of
poles of the confined-channel Hamiltonian H, plays
a role in the final behavior of the phase shift. The
physical reason lies in Jauch's" interpretation of
the Levinson theorem as a statement of the equal-
ity of the total number of states for interacting
and noninteracting particles. The difference be-
tween the phase shifts at E = 0 and E = ~ is just
the difference between the dimensionalities of the
spaces of scattering states for interacting and
noninteracting particles. To correctly balance
states in the generalized Levinson theorem we
must also include the bound states of the confined-
channel Hamiltonian H, with the free-particle
states and include the bound states of the full
Hamiltonian X with the interacting states. This is
exactly what Eqs. (3.21) and (3.22) do.

Of course, the confining potential can never be
regarded as a small perturbation relative to the
kinetic energy operator, so one cannot define a
phase shift relative to the free-particle state in
both channels. For "noninteracting" particles we
must always choose free particles in the scatter-
ing channel and confined particles in the confined
channel. In this connection it would be very satis-

IV. RESONANCES AND BOUND STATES
IN THE CONTINUUM

This section will be more heuristic than the pre-
ceding sections and will contain our concluding re-
marks. Some of the results quoted in this section
will be based upon examples as opposed to general
mathematical methods.

A. W'eak coupling and high-energy limit

By weak coupling, we simply mean that X7 is a
small parameter in the expansion in Eqs. (2.23)
and (2.24). We then can expand the Fredholm de-
terminant and keep the first nontrivial term in A7'.

A.2

D, (a) = I-—
=1-X' A d~'V xG, x, x' Vx' G, x', x

0 0

D (k) =(k —k„)' (k —k, „k'k'—- 0'dk/(«i'uf(j(', )/'
E —k'

+i~~' nl V

xi!(Z —k'(), (4.2)

where P means the principal-value integral. While
we have not justified the use of Eq. (4.2) in the
neighborhood of E„, we know from the discussion
of the Levinson theorem that D -1 at high energy
except in shrinking neighborhoods of o'(H, ), where
D has simple poles. Thus we know that the physi-
cal phase shift increases by m as we pass each E„,
indicating resonances of shrinking widths. We
expect that the resonance is characterized by a

n

(4 1)
the la,st step follows after use of the eigenfunction
expansion (2.8) and the spectral representation for
the scattering Green's function (2.7a). In Eq. (4.1)
I«) and l(t(', ) correspond to the unperturbed eigen-

functions for the confined channel and the scatter-
ing channel (j(„, (1, 0) and j,(kr)(0, 1), respectively.

The approximation in Eq. (5.1) is valid for Xv

small, either for high energy, Z(= S,of Eq. (3.17),
or for weak coupling, or for both. If we retain
the approximation even when E is near a particu-
lar E„, i.e., jE-E„(« IE-E i, E ~E„,eventhough
~ is not small we obtain



THEORY OF MULTICHANNEL POTENTIAL SCATTERING WITH. . . 2783

Breit-Wigner formula with position

p
k2

and width

(4 3)

(4.4)

such states at +~.
The example is simply an infinite square well

for the confinement potential and a finite square-
well off-diagonal perturbation. For s waves we
have in the notation of Eq. (2.1) (U is the confine-
ment potential), letting (I) = r(I),

(«(11~(E)—J r «E„,(r)y(r)1, (Er)
0

Next we split the integral in two pieces:

(4.6)

We now estimate the size of the widths at asymp-
totically large energy in terms of the behavior of
the potential at the origin. For all partial waves
we have

1,r -a, 6(a —r ) (r r -,
' (1 r a, )U) Q (r ) = E E (r )dr

(4.9)

where a& 1. If we introduce the vector notation
(t) = ((t)„P,) we obtain from Eq. (4.9) the following
coupled equations in the various regions:

d2
, y, (r)+ V y, (r) =E y, (r),

(« ~11~ El) =f '«Er, ( )y( .)ry (Err)

(4.6)
, y, (r) + V y, (r) = E y, (r),

r&a (4.10)

where R =O((1/k)' ') at large k. In the second
member of Eq. (4.6) we use the asymptotic be-
havior

7rj, (x) ~ —sin x —(1+1)—
X~ ()o g 2

, P, (r) =E P,(r), 1 & r & a

d'
, (t), (r) =E P, (r), r&a

QI

$, =0, r&1

(4.11)

and the facts that P„, is bounded and r V(= L„ to
prove that

r
OO 00 Cr'dr p„,(r)V(r)j, (kr) & — rdr V(r) & —.

for U = 0 (r & 1), U =«) (r & 1).
The solutions are straightforward and are given

by

(t),(r) =A, sink, r+A sink r,
(4.7a)

For the first term in Eq. (4.6), we use the bound
for j, (kr) in Appendix A, j,(kr) &(1/r)C for Imk=0.
Next, we assume that r V(r) =O(r ') for 0&r&R,
to obtain

and

P, (r) =A, sink, r -A sink r,

P,(r) =A sink(r —1), 1 & r & a

1' &a (4.12)

J r'dr $„,(r)V(r)j, (kr)&k ~' '
0

Putting all of this together we obtain

=O(k'-"-' )

(4.7b)

(4.8)

(t), (r) = Be'""+Ce "", r & a

where

k, =(k'w V)'~'

(4.13)

for large k; the width decreases for e ~0.3.
Therefore the partial-wave scattering amplitude
for this class of models consists of an infinite
number of resonances with decreasing widths for
reasonable off-diagonal potentials, i.e. , r V(r)
=O(r ') for r-0, e &0.3.

B. Bound states in the continuum

In this subsection we present an explicit example
of a coupled-channel model of the type discussed
in the previous sections which can be solved ex-
actly. This example contains a bound state em-
bedded in the continuum with no accumulation of

A, sink, a +A s ink a =A

sink�(a

—1),
(4.14)

A, k, cosk, a+A k cosk a=kAcosk(a —1),

A, sink, a-A sink a=Be'"'+Ce '"',
(4.15)

A, k, cosk, a-A k cosk a =ik(Be'" —Ce '"').

and we have used the physical boundary conditions
at x=0 and r =~.

Matching boundary conditions at r =a yields the
equations
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= k cotk(a —1) . (4.16)

Using the definitions of k, and k, we looked for
solutions with 0 & E & t/' and a= 0.5. In particular,
after rearrangement of k, cotk, a for F. ~ V we
found that a solution of

(E + V)'~' cot(E + V)'~'a = -(Z)~' cot(E)~'(1 —a)

= (V- Z} 2 coth(U —E} g:

(4.17)

is given by t/'=44. 5, E=23, and a=0.51 in arbi-
trary units. The example is simple and is pre-
sented primarily to show that such states exist.
The bound-state wave function is given by Eqs.
(4.12), (4.13), (4.14), (4.15), and (4.16) with B=C
= 0, and a remaining overall constant is obtained
by normalizing the state. The wave function is
confined inside the region x&1, as are the unper-
turbed states of the confined potential, but for
other confinement potentials we do not expect such
bound states to vanish like the eigenstates of the
unperturbed confinement potential.

We also have examined the solution of Eqs. (4.14)
and (4.15) for the scattering states with the nor-
malization C = 1, which is compatible with the in-
tegral equation (2.4). We quote here the result
for x&1 which is relevant to scattering:

y (&) 8-ikr+ Seikr (4.16)

where S is the s-wave scattering matrix and is
given by

S=f( k)/f(k), —

and f(k) is given by the formula

f(k) = e'k —2ki+ —In[u, (r, k)u (r, k) j
d

d'v — r &

(4.19)

(4.20)

where u, (x, k) are the regular solutions to the sin-
gle-channel Schrodinger equations with potentials
aU. Equation (4.20) is actually very general and
gives the exact S matrix for any off-diagonal po-
tential V and the infinite square-well confinement
potential. For the particular example of the finite
square-well perturbation the solutions u, are

Equations (4.4) and (4.15) a,re sufficient to de-
termine the physical wave function up to one con-
stant that can be fixed by an incident flux normali-
zation for scattering states or by (4, 4}=1 for
bound states.

For any normalizable states degenerate with the
continuum F & 0, we must have gg = C =0. Equations
(4.14) and (4.15) immediately gives us the neces-
sary and sufficient conditions:

k, cotk, a=k cotk a

given by the linear combinations u, = (P, + g,), Eqs.
(4.12). In general, since the Schrodinger equation
can be diagonalized in the region ~~ 1 the relevant
solutions are defined by the Volterra equations'.

u, (k, ~) = sinks " sink(~- r')V(~')

C. Discussion

In principle the I.evinson theorem (3.22) differ-
entiates between two types of resonances, namely
"fundamental" resonances, which are related to
the bound states of II„and "accidental" reso-
nances (we are tempted to call these "hadron
molecular states"), which are not. If we gradually
turn off the off-diagonal coupling (i.e., take X-0)
then the fundamental resonances approach the po-
sitions of ihe bound states of II„and their widths
shrink to zero; on the other hand the widths of the
accidental resonances increase, and in the limit
of zero coupling they disappear altogether.

More importantly from a physical point of view,
each fundamental resonance makes a net contribu-
tion of & to the asymptotic behavior of the partial-
wave phase shift in which it occurs but the net con-
tribution of each accidental resonance is zero.
What we mean by this is the following: If the phase
shift is set to a finite value at threshold, then as
the energy is increased the physical partial-wave
phase shift continuously increases by z every
time E passes a pole of the confined-channel Ham-
iltonian, and there is a resonance of the type
mentioned earlier in this section. At high energy

(4.21)

The bound states in the continuum for this prob-
lem are formally very similar to those found in
ordinary multichannel potential scattering some
years ago. ' In the usual multichannel potential
scattering with different thresholds, the poles cor-
responding to the bound states in the continuum
which occur between thresholds are contained in
the analytic continuation of S-matrix elements be-
low the higher threshold. This is not the case
here, since there do not exist S-matrix elements
in both channels. The reader is referred to the
excellent text by Newton' for a general treatment
of the bound states in the continuum and the as-
sociated resonance theory.

Finally we point out that in our example there is
no accumulation of bound states at+~. For as-
ymptotically large E it is impossible to satisfy
Eq. (4.16), since the leading terms in the expan-
sion of k, are k, =km V/2k. For arbitrary t, l&0,
this is also true since the Bessel functions can be
replaced by their respective asymptotic expansions
and the same argument will apply.
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the phase shift escalates very rapidly through an
odd multiple of m/2 a,s E pa.sses each E„, and the
resonances decrease in width as they approach
the locations of the eigenvalues of II,. In the limit
E-~ the phases shift approaches+~. Near a,c-
cidental resonances the phase shift also increases
rapidly by &, but as the energy continues to in-
crease the phase shift then gradually falls back
down by the same amount. This is in accord with
Jauch's interpretation" of the Levinson theorem
as a statement of the equality of the total numbers
of states for interacting and noninteracting parti-
cles.

If the resonances are widely separated relative
to their widths, then this last point may give us an
opportunity to distinguish phenomenologically be-
tween the two types of resonances. As an example
the analysis of Dashen and Kane" shows that the
deuteron should be considered an accidental state,
not related to the fundamental quark-model states,
since when the relevant p-n phase shift is averaged
over an energy range of a few hundred MeV around
the deuteron the net contribution is zero. This is
satisfying since everyone, agrees that the deuteron
is a composite state. On the other hand, as Da-
shen and Kane have pointed out, the major well-
studied hadronic resonances, including the p, 4,
etc. , do produce net contributions to the relevant
phase shifts and are correctly regarded as funda-
mental.

Another system for which our analysis might be
relevant is the g-J system. In models of the type
we have discussed both accidental and fundamental
resonances can be very narrow, and so one should
be aware that the assignment of every state of the
g-J' system to a quark-model classification, as in
the charmonium scheme, is not the only possibili-
ty. Likewise, the apparent absence or gross dis-
placement of a particular quark-model state should
not necessarily be regarded as a failure for the
quark model since even in the nonrelativistic re-
gime the state could be radically altered by the
complicated hadron dynamics.

Of course, at high energies one would expect to
see only regularly spaced narrow fundamental res-
onances if models of the type we have described
are relevant in that regime. However, at high en-
ergies inelastic channels, which we have ne-
glected, become important; in any case we are
under no illusion that a phase-shift analysis can
really be carried out in the presence of increasing
numbers of inelastic channels at high energy.
Therefore we do not think it is meaningful to per-
form any detailed numerical calculations here.

There are several directions for future work on
the problem of scattering theory with confined
channels. It would be very interesting to investi-

gate the analytic structure of the scattering am-
plitude in detail for such systems, and in particu-
lar to establish the validity or nonvalidity of dis-
persion relations. Also one could try to formulate
the inverse scattering problem for these systems.
And of course one could certainly enlarge the class
of potentials U and V for which the results we have
already established are valid. In this connection
we recall that we have not dealt with the linear
confinement potential, which seems to be a favorite
candidate for the quark-antiquark binding potential.
However, we wish to emphasize that one should ex-
pect the general properties of the nonrelativistic
harmonic oscillator, not the linear potential,
to carry over to the relativistic linear potential.
The crucial issue is the growth of E„ for large n.
The linear potential in relativistic quantum me-
chanics actually corresponds (for large momenta)
to a wave equation linear in both coordinates and
momenta, with an energy spectrum satisfying E„
= O(n) as n-~, just as for the nonrelativistic har-
monic oscillator. For the nonrelativistic linear
potential, E„=O(n'~') and the Levinson theorem we
have derived does not even make sense.

Qn a more grandiose scale one would like to de-
rive the confinement force and the finite-range
forces between observable hadrons from local
quantum field theory. There is some work in this
direction from two-dimensional Yang-Mills theo-
ries,"from the Schwinger" model, and from lat-
tice gauge theories. " Perhaps in some approxi-
mation our model could be obtained from such a
theory.

Note added in proof. Let Dq(E) have a zero of
order P at E =E;, and let P; be the projection onto
the m-dimensional eigenspace of K at E;. Then by
using the integral equation for the Green's function
it is easy to see that

p= Iim (E -E, ) lnD;(E)
E~ Eg dE

= lim (E —E;)Tr[99,'0]

= Tr[P;9@3]

=TrP;

For more details see Ref. 11.
After the completion of this work we received a

report from C. Dullemond and E. Van Beveren
[University at Nijmegen report (unpublished)] who
treat essentially the same problem.
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APPENDIX A

In this appendix we establish the bounds on G, used in Sec. II and the Carleman property of the harmonic-
oscillator Green's function.

The bound for the scattering Green's function is found in the text of De Alfaro and Regge', we merely
quote the results here. From Eq. (2.7a) and the bounds for Bessel functions,

Cfkfz
(k )~

-i x i

~~k'(k~)
~

e""'"&—Cfkfx
1+ Ill ~

we obtain

, , i+ fufr &

(Al)

(A2)

~G (~ ~' k l)~ &C ei' "i" for Imk&0
&+ ft f~

(A3)

fd ~
I

'G-=

~ 14„(x)i'=~la' Et"
n n

where g„(x) is the full three-dimensional harmonic-oscillator eigenfunction.
It is clear that we can introduce a partial-wave analysis of the eigenfunctions for the spherically sym-

metric three-dimensional oscillator and obtain

(A4)

(,) )~, g I g„,(~) I '(2l+ 1)

nl

where x= ~x~ and

g„,(x) = f(2n+ 1) '[&(n —I —1)]![I'(—,'(n+ I+ 1))] 'P~'x'e" ~'Lt'„'~'»&, (x'),

for 0~I~n —1 and 1 ~n~~; I~ are Laguerre polynomials. No Legendre functions enter Eq. (A5) since
both arguments of the product of the Green's function with its adjoint are the same. Identifying the sum
over n in Eq. (A5) with the norm,

~~
G,(~, ~, k', I) ~~, for the partial-wave Green's function, we have

(
!IG,(r, , k', I)ii ' ~ if„,(x)i'

n= l+1 n

(A6)

where C depends only on E=k' and is finite for k'go(H, ).

for z&z' and all physical /.
Next we establish the Carleman property of the partial-wave Green's function given the analogous prop-

erty for the full Green's function. In our companion work' we establish the strong Carleman condition for
the three-dimensional harmonic-oscillator potential. In the interest of economy we quote the result here:

APPENDIX B

In this appendix we prove that for the harmonic-oscillator confining Hamiltonian

& ~ G(
~

E
~

' ~"'), with e & 2 for s waves (B1)
as Jk(-~ in all complex directions and on the real sequences S, of Eq. (8.17) which avoid the spectrum of
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the harmonic-oscillator Hamiltonian, H, . First we write the Hilbert-Schmidt norm r(KK ) = r'+ r' as in
E(I. (2.16). We carry out the procedure for s waves explicitly. For the scattering part we have

7s — d~ V g y V y
0 0

+ f «l~v(. ),
l f lv', (.)l: ' ~+' (a2)

Noticing that le"vl& le' "
l

and le' "/rlsle' " /r
l

for all r~r' and lmk~0 we have the bound

v =llv, ll f « l~v, (")I ' ",' +II«, II f « Iv, (~)l (a3)

Now divide up the integrals into pieces with 0 ~ r &R and r &R, and choose R such that r V, = O(r '), & & —,',
in that region, which we can do since V has only a finite number of singularities. Then using

hei
kr'

~ Min(1, (kr') ')
kx'

we obtain

(a4)

After changing the variable of integration in the first two integrals to y =x'k, we obtain

c, llv, ll(k)-'"'+ &k, llrv, ll llv, ll+c, llrv, lfk 'cl-E

Next we bound the Hilbert-Schmidt norm for the confined-channel kernel:

(as)

d& V
0

(a6)

For positive real E we split the integral into three pieces:

7C
R G(r ri k2) 2 R
dr'lr v, (r')l' ' ', ' + drlv, (r)l' tlv( l)l2 c( 0 ) )

v, (r)

7 + 7 + 7 ~

The first term 7', can be dealt with by using the following asymptotic behavior" for real E» x, ~'.

sin(2E)' 'r'/(2E)' '
lG, (r, r, E)l = (as)

The analysis proceeds in the same way as the scattering Green's function. Choosing R= lEl", K& —,', we
obtain

O(E)-). /2+6
7C~ (a9)

which decreases like O(E'~"') as long as E=k' S,(of Eq. (3.17).
For the second term, ~,', we use the finite-range nature of V, and the fact that V, is bounded to write

7g~ gee2A + V + eCf2
'

G (alo)

For the- third term, we obtain in a similar fashion

7' —Ce & z'Vx' ' G
0

(all)

by using the fact that we can choose V, such that V,e i is bounded.
Next we use the eigenfunction expansion for

ll G,(r', , k') ll' and the bound for s-wave eigenfunctions
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I
q (~') I'&c"' ' (see the article of Schwid"} to establish

+Z/2 ~1/2

zi ". z "z Zz "z "z
n

(B12)

For the harmonic oscillator E„=(n+—,)K&u, and the series in Eq. (B11)for C certainly converges. We have
a large margin because of the exponential factors in Eqs. (B9) and (B10). In particular, Sup

I
E„/(E —E„)

I

& E/e on the sequences S, which avoid the eigenvalues of H, at E„. Therefore (we summarize), on the se-
quences S, we have

ce "ll~'e."'v, llz o(ze" ), (B13a).;=ce-- "ll~'v. llz&o(z. --,"), (B13b)

for E= IEI wlth0&K&-,'.
Next we return to Eq. (B6}for complex E; we proceed exactly as in the way we treated r2 and 7,'. We use

the fact that V, (x) is bounded and xVcL, to obtain

7'c( Q
00 n"'
«'IIG. (~' ')ll'I ' ' I'

ll

' ll'p ~z z [n

(B14)

For argzw0, f(E) = O(lz
I

'~'), which can be seen by relating f(E) to the generalized Riemann f functions.
Thus we have

0="=o(lzl ~ -), ,&-. (B15)

for lkl-" in all complex directions and on the sequences S„and this completes the proof of Eq. (Bl) for
s waves. For higher partial waves and for the infinite square well the analysis proceeds in essentially the
same way. For the infinite square well E„=O(n') for large n and there is a larger margin of convergence
than for the harmonic-oscillator case.
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