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A new approach to collective phenomena in superconductivity models is presented. In this approach nonlinear
spinor models are converted into equivalent theories involving fermions and collective bosonic states. For a
wide class of nonlinear spinor theories, interactions among fermions and collective states are of the
renormalizable kind, and hence these models themselves turn out to be renormalizable. The equivalence of
various four-fermion theories to known renormalizable models is pointed out. The original Nambu —Jona-
Lasinio model, for instance, is shown to be equivalent to the linear o. model. Detailed discussions are given on
the origin of massless fields and the local gauge invariance. Implications of Pauli-Gursey-type symmetry in
spinor theories are also expounded.

I. INTRODUCTION

The superconductivity model of elementary par-
ticles, first put forth by Nambu and Jona-Lasinio, '
has been a useful theoretical laboratory in helping
us to understand collective phenomena in quantum
field theories. Within a certain approximation we
can explicitly solve Bethe-Salpeter-type equations
and demonstrate the existence of bound states in
various channels. In the original model the exis-
tence of scalar, pseudoscalar, vector, and axial-
vector bound states was noted. However, the na-
ture and properties of these collective excitations
have remained relatively unknown except for the
massless pseudoscalar state, which received ex-
tensive studies in connection with partial conser-
vation of axial-vector current (PCAC). it has not
been well understood, for instance, in which chan-
nels what kinds of collective modes are generally
expected. In particular, practically nothing has
been known about the nature of interactions among
these bosonic bound states.

Recently, however, a simple method was dis-
covered' to analyze the dynamics of collective
states and to derive an effective Lagrangian which
governs their mutual interactions. In Ref. 2 a
nonlinear spinor theory with scalar, pseudoscalar,
vector, and axial-vector interactions was con-
sidered, and it was pointed out that the axial-vec-
tor, scalar, and pseudoscalar bound states inter-
act with each other like a gauge field and the real
and imaginary parts of a Higgs-type complex
field, respectively. Hence these collective modes
can be described by a Higgs-type renormalizable
Lagrangian. A Hartree-Fock self -consistency
method was used in this analysis.

The above derivation of an effective Lagrangian
has more recently been improved by Kikkawa, '
who has' introduced collective coordinates as inte-
gration variables in the path-integral formulation
of the theory. He thereby avoids certain difficul-
ties associated with Poincare invariance in the

previous Hartree -Fock treatment. "
The purpose of this paper is to further study the

dynamics of the collective states. In particular,
we shall show that in a wide class of nonlinear
spinor theories interactions among collective
states as well as those between collective states
and fermions are of the renormalizable kind and
hence the nonlinear spinor theories themselves
are renormalizable. In our treatment of the theory
the original perturbation series in four-fermion
coupling constants is converted into a renormaliz-
able series in the induced boson-fermion and
boson-boson coupling constants. In physical terms
the original four-fermion interaction can be made
sufficient1. y mild and renormalizable if a part of its
strength is exhausted in forming bound states.

One example of the above mechanism has been
known for some time. Soon after the proposal of
the superconductivity approach Bjorken and
others"' studied a theory with a vector-type in-
teraction and concluded that if a collective state
is excited in the vector channel it behaves ex-
actly like a gauge field and the resulting theory
becomes equivalent to spinor electrodynamics. In
this paper this kind of equivalence will be extended
to other theories. We shall show that the original
Nambu-Jona-Lasinio theory' is equivalent to the
linear 0 model, ' the theory of Ref. 2, and its non-
Abelian generalization to Abelian and non-Abelian
Higgs-type theories, ' respectively, and so on. In
these examples S matrices of the corresponding
theories become identical, although their Green's
functions are not necessarily the same because of
certain differences in ihe definition of renormaliza-
tion parameters.

The contents of this paper are as follows. In
Sec. II we explain our general procedure making
use of the Nambu-Jona-Lasinio model as an ex-
ample. In Sec. III the method of Sec. II is applied
to other theories. Detailed discussions will be
given on the origin of massless particles and local
gauge invariance. Sec. IV is devoted to an analysis
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of implications of the Pauli-Gursey-type symmetry
in spinor theories. Sec. V is used for discussions
and comments. Throughout this paper we shall
employ the method of Ref. 3 for the introduction of
collective coordinates.

II. a MODEL

Let us start with the following Lagrangian con-
sisting of an isodoublet of spinor fields:

(2.1)

where pp and Q pp are related to G, by

2
Cp

~p o ~

5P,p
(2 5)

The purpose of this section is to demonstrate that
our theory is equivalent to the linear 0. model.
Therefore, let us write down the Lagrangian of
the v model 2, and compare it with Eq. (2.4),

~.=([iy 8-gl(v+iy, ~ ~)](
+-,' [(s,v)'+ (e,m)'- p, "(v'+ ~')]
——,'Xt(v'+ v')'--,'5p,"(v'+ v'), (2.6)

where Gp is a bare four-fermion coupling constant
and is assumed to be positive. The theory has a
symmetry of chiral U(2) &&SU(2). Its generating
functional is given as usual,

1
W[R, n]=~ exp&[&(4, 4)+n(+In]] Ad4

W[7), q] = exp(i [2'(P, P, v, m)+ qg+ (q]]

x dgdgdvdv.

2' is easily found and is given by

&' = p [iy s -g, (v+ iy, w ~)]g

—z~600 (v +v ) ~

(2.3)

(2.2)

E is a normalization factor which will be sup-
pressed hereafter. Following Kikkawa' our first
task is to introduce integration variables 0 and m

and a new Lagrangian ' in such a way that the
above generating functional is expressed as

Zf +cL»+eggy (2.7)

Here p,
' is the symmetric renormalized mass of

o and pion and we have decomposed 4, into three
pieces: the fermion kinetic term Z f, the fermion-
boson interaction part Z», and the purely bosonic
sector 2,. So in our theory Eq. (2.4) we have both
Zz and 2», but the whole of Z, is missing except
for the mass counterterms. However, we shall
see in the following, it is generally possible to
create Z, out of Z

&
and Z» if we make use of the

quantum fluctuations in quantum field theories. '
The observation of this phenomenon constitutes
the principal ingredient of this paper.

In Eq. (2.4) we expect that the field v has in
general a nonvanishing vacuum expectation value
np. Hence we introduce a field s,

S+ 'Up (2.8)

and treat gpvp as a bare fermion mass. Next we
perform integrations over fields P and ( in Eq.
(2.3).' Using the standard formula we obtain

W[q, q] = vd7rexp~ i --,5p, '(v'+~') —iTrln 1—. g, (s+iy,.m r) +0.iy ~ 8 g,v, ' ' iy 8 -g, (a'+iy, v 7)

The second term is expanded into a power series in gp,

(2 9)

U—= iTrln 1 . -g, (s+iy, v. w) = g U'"',
iy & -g,v,

where

(2. 10)

U —= —Tr . g, (s+iy, m &)
(n) n, iy ~-gv, ' (2.11)

A diagrammatic expression of the above series is shown in Fig. 1. We note that these diagrams happen to
be the same as those of the lowest-order radiative corrections to the effective action in the conventional
formulation of the functional method. "'" However, in our treatment the external lines in Fig. 1 are quan-, ,

tized fields s and v and not their expectation values. In the present case fj" (i = 1, 2, 3, 4) give ultraviolet
divergences while U'"' (~= 5) are all convergent. After an explicit evaluation of the divergent part of the
diagrams, ' the exponent of Eq. (2.9) is given by
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& = --'(~ bozo' —2l.g.') (o'+ &') +I~.'z[(&.o)'+ (&,z{)']+I~,'(g, v, )'(o'+ P)

,'I-~-, '((r'+ P)'+2, (g„v,) + q . . -q,
zy & -g, (o+ zy, z{ r)

g Q II(f)+ Q U(z& (2.13)
4=2 i=5

(2.14)

(2.15)

and U,'" is the convergent part of U'". The separ-
ation of U"' (i = 2, 3, 4) into convergent and diver-
gent parts is done in a convenient way. I, and I,
are quadratically and logarithmically divergent in-
tegrals, respectively.

over g and P fields in

W{n, n{= jexp{i{E,(g, il, rr, fr)+t{g+ Pq{{'

&& dg rP do' dz{,

we find that the exponent is given by

+ (1+I,'g,")2[(&„o)'+(s„'7)']

+ —,'[X,'v,"+ 2I,'g;"(g,'v,')'] ({J'+z{')

--,'(~,'+ 2I,'g,")(o'+P)'

(2.16)

In deriving Ezl. (2.12) we have first calculated
diagrams using the field s and in the end we have
eliminated s in favor of a Although E{l. (2.12) con-
tains divergent coefficients, we have in fact creat-
ed kinetic and interaction terms of bosons out of
radiative corrections. In order to find out an ap-
propriate renormalization prescription for Eq.
(2.12) let us next perform a similar calculation
in the case of the 0 model. After the integration

~p ' 8 -g, ~o+ iy5w Y~

Here 2,(g,', v,') is obtained from Z,(g„v,) by sub-
stituting go and vo for go and vo Similarly I2 and

I,' are given by Eqs. (2.14) and (2.15) with g, and

vo replaced by a- an«:. No e at ~a has exac ly
the same operaiorial structure as Z.

Renormalization prescriptions for the linear cr

model are well known. "'" By the introduction of
wave -function and vertex renormalization factors
Z„and Z„ infinites in Eq. (2.17) are absorbed into
renormalization parameters,

(2.18)

~o+&ogo'= g' ~

-QJLl, o
—p, —A.OVO + 2I2go = 0 ~

Defining renromalized fields and vertices as
1/2 -1/2~

+R ~M +~ ~R ~M

v' = Z '/'v',
0 7

x'=Z -'Z 'x'
M 0~

we obtain the following expression of Z,:
[(s &)+(s ~)+~ '(& + )]

—4X'(as'+ 7'')'+ 2,(g,', v,')

1
zy s g,'(o+zy, z{-~ 7)"

(2.19)

(2.20)

(2.21)

(2.23)

Referring to the above procedure, we find that our
theory should be renormalized as follows:

FIG. 1. Feynman diagrams of the series Eq. (2.10).
External wavy lines represent the s or the 7 field.

2=1
10@0 =

g M

(2.25)
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4 ~O
@0 go g

-5P,,'+ 2E2g,
' = 0,

1/2 ~ 1/2
R ~N' ~ ~R N

Xo ~

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

1
+

iy 8 -g, (o+ iy, )) r) (2.31)

Hence generating functionals of two theories have
exactly the same structure,

W=%'P(go, Xo, v, ),
W, =XV(go, Xt, vo),

(2.32)

(2.33)

where W is a certain functional. Differences be-
tween Eqs. (2.18)-(2.20) and Eqs. (2.25)-(2.27)
are easy to understand. Since originally we had no

By Eq. (2.26) we have introduced a new parameter
A., into our theory. Then the exponent Z is given
by

,'[(s„—o~)'+(s„~„)'+Xv'(o„'+f s)]

--,'X(v~'+ ))„')'+2,(g„v,)

kinetic terms or interaction terms for bosons in
our theory, this explains the absence of terms such
as 1 or X, in the left-hand sides of Eqs. (2.25)-
(2.27). However, these missing terms have now
been created out of radiative corrections and the
difference between our model and the o model has
been absorbed into the relations between renor-
malization parameters and bare quantities. Since
no renormalization parameters or bare quantities
appear in S-matrix elements, both theories pre-
dict the same S matrix to all orders in perturba-
tion theory.

A convenient feature of the above method lies
in the fact that only those calculations correspond-
ing to lowest-order radiative corrections are
needed in order to demonstrate the equality of the
S matrix to all orders in perturbation theory. How-
ever there is a more formal argument by means
of which we can infer the equivalence even with-
out doing any explicit calculations. In fact, as we
see from the foregoing discussions our essential
observation is to exploit the ambiguities in de-
composing renormalized quantities into bare terms
and counterterms. We can rewrite, for instance,
the renormalized Lagrangian of the o model in
terms of bare quantities in two different ways:

4ir 4B 84( 8+ir ~R )4+ 2[( B) +( R) + ( R +~R )] & (+R ++8 )

= {$iy .&g g, (t)((r+ i y, m ~ t)g+ —,'[(&„a')'+ (&„)))' —g (o'+ P)] —,'6 )'(((o' —P+)—4X, (o'+ )7')')

1 —. 1
+ —1 T()iy &g — -- 1 g,$(v+iy, Tr v)g

ZQ Z

+ —1 —,'[(&„o)'+(&,v)' —g'(o'+ ))')]+ 26 p, '(o'+ P) —,
—' ——1 (()'+ P)'

= Sir ' SP -g V(&+ fr & ' 'r)0 —25po (& +))' )]

+] —-1 (tir &( — —1 g,F(& +ir.v 7)(+ 2[(&„o)'+(&„~)' —~'(o'+)(')]
Z+ Z ZQ

+-,'Itv. ,'(o*+P) — (' &
(o*+P)'I.

(2.34)

(2.35)

(2.36)

Equation (2.35) is the usual prescription, where
terms in the curly brackets are regarded as the
bare Lagrangian of the theory and those in the
large square brackets its radiative corrections.
On the other hand, Eq. (2.36) corresponds to our
treatment, where the bare Lagrangian consists
only of the threeterms of the first square brackets.
Of course such kind of ambiguities in quantum
field theories is well known and forms the basis
of the renormalization-group approach. However,
its relevance in nonlinear spinor theories has not
been well appreciated. If we take a variation of the
boson fields in the bare Lagrangian of Eq. (2.35)
we obtain the usual equation of motion,

o+ (p,'+ 6 po') v+go(t g+ zoo(o'+ 7(') = 0, (2.37)

and a similar one for m. On the other hand, the
bare Lagrangian of Eq. (2.36) give us the Euler
equations,

6 4,'o+ p„gg = 0,
6+o ))'+goglr5'r = 0 ~

(2.38)

(2.39)

In Eq. (2.37) the o field has its own degrees of free-
dom while in Eqs. (2.38) and (2.39) the boson fields
appear to be entirely dependent on the spinor field.
However, in quantum field theories, it is not
meaningful to argue about the distinction between
the two sofar asboth theories predict the same S
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matrix. Thus boson fields can be at the same time
elementary and composite.

Apparently the above arguments can be applied
to theories other than the 0 model and most re-
normalizable models involving fermions and bos-
ons are realized as various kinds of nonlinear
spinor theories.

However, it is important to not that the above
phenomenon occurs only if we have sufficiently
strong ultraviolet divergences in the theory so
that all the renormalization parameters, Z's, are
equal to zero. Fro instance, in the case of 2 or
3 (space+ time) dimensions the Z's turn out to be
finite and we do not have the equivalence of four-
fermion theories with models involving bosons
and fermions.

III. SPONTANEOUSLY BROKEN GAUGE THEORIES

In this section we consider the consequences
of possible symmetries of nonlinear spinor theo-
ries. If the primary interaction of four-fermion
theory possesses a certain symmetry, its equiva-
lent renormalizable theory will also exhibit a cor-
responding symmetry. Here the interesting phen-
omenom is that sometimes the latter induced sym-
metry turns out to be higher than the original one.
In particular, whenever a collective mode is ex-
cited in a channel of a conserved current we nec-
essarily arrive at a local gauge symmetry starting
from a globally invariant one. Let us next see
how this happens in the model of Bjorken."

The model is given by the Lagrangian

2 =$(iy ~ & -~,)g — 2'((r„l)Py" 0) (3.1)

e'
1 0Go=

~
(3.3)

The equivalence of this theory to @ED is well
known. In fact, if we perform a similar calculation
as in the 0 model, we find tha, t

2 = g[5+0 —2e() (I2+ BZO IO)]

+ (-,'e, 'I,)(=,'I .g"")+Z,
+ (fermion source term). (3.4)

Here E„„is the usual curl of A, and we have ex-
plicitly exhibited the photon mass term coming
from the lowest-order vacuum polarization dia-
gram. This is to be canceled against the photon

having a g]obal U(1) symmetry. Applying the same
technique as in Sec. II we obtain

&'= p(iy s —m, )g —e,gy~gA~+-,'5p, ,'A A. ',
(3.2)

where

mass counterterm —,'5p, ,'A„A". Then via the re-
normalization presciption,

5/lo —g eo (I2 + 1%0 Io) .= 0 „ (3.5)

3e I =—
0 0 g 3

(3.6)

1 = ~Go(I, + mo'I, ) . (3.8)

In the Hartree-Fock method it is derived by as-
suming that

where g is a certain constant vector. In this con-
text the above equation is sometimes regarded as
implying a spontaneous breakdown of Lorentz in-
variance. From this point of view of photon is a
Nambu-Goldstone boson associated with the break-
down of Lorentz symmetry. " However, we have
to keep in mind that even in this interpretation the
actual I,orentz symmetry is not broken at all since
Eq. (3.9) can always be understood as a particular
gauge condition on A, ." Moreover, if in the above
we had made use of a gauge-invariant regulariza-
tion scheme instead, the photon mass term would
have been automatically eliminated in the evalua-
tion of the vacuum polarization diagram. In this
case we have to set 5p,,=0 in Eq. (3.2). This choice
seems a bit awkward but it is certainly legitimate.
Then Eq. (3.5) reduces to a trivial one, 0=0. Thus
the form of Eq. (3.5) has a certain dependence on
prescriptions on how to handle divergent quan-
tities. Hence in this paper we do not adopt the
above interpretation of the photon as a Nambu-
Goldstone boson but regard Eq. (3.5) simply as a
renormalization prescription. This method of re-
normalization which makes use of gauge nonin-
va, riant counterterms and regulators consistently
with the Ward identity is know to work in both
Abelian and non-Abelian gauge theories. "

From the above example it is already apparent
how we can create a local gauge symmetry start-
ing from a global invariance. In Eq. (3.2) we have
a collective excitation A„which is coupled to a
conserved current gy, t/. Hence Z' is invariant
under

A„A +8„A, (3.10)

ultraviolet infinites are eliminated and we obtain

4E~„—s—I " +Z, + (fermion source term),

(3.7)

which has exactly the same structure as the cor-
responding expression in QED.

lt is possible to interpret Eq. (3.5) as a, gap
equation, '
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with an arbitrary A. Although the mass counter-
term 25p,,'A„A" seems to spoil this invariance,
it in fact eliminates the gauge-noninvariant photon
mass term coming from radiative corrections and
preserves the gauge invariance.

The non-Abelian analog of the above mechanism
is quite similar. If we take as our starting La-
grangian

&'=br s0 gP(4,-+ir, A, )g

e,V(r, -~" + r,r„&')0
+ (mass counterterms), (3.13)

then V and A, behave like a vector and an axial-
vector gauge field. Since mesons P~, P~, V„,
and»„do not carry a baryonic charge, V, will
couple only to the spinor field. Qn the other hand,
under a chiral rotation fields transform as

(3.14)

4s+ ~~P e- lnm2 (3.15)

V~~»~ -V. »~ ~ (3.16)

Hence both spinor and Q fields are axially charged
and interact with A„. Since P develops a vacuum
expectation value as in the a model A, acquires a
mass due to the Higgs mechanism. Therefore,
our model will be equivalent to a broken gauge
theory of chiral U(1) x U(l) symmetry where only
the axial U(1) gauge is spontaneously broken. In
fact, after a detailed calculation we find that the
equivalent theory is described by the Lagrangian

where X are SU(n) matrices, and introduce an ex-
citation A„ in the channel $y„A g, then it behaves
exactly like an SU(n) Yang-Mills field and we ar-
rive at the so-called quantum chromodynamics.

Kith the above preliminaries it is now possible
to tell which kind of nonlinear spinor theories lead
to which kind of renormalizable models even with-
out going into detailed calculations. For example,
let us take the model considered in Ref. 2. It is
given by

& =Vir at+ .G.(P4—)'+(Vir, 4)']

-2G,'[Pr, 4)(4r"g)+ Pr,r„4)(lr,r'P)]. (3 12)

The theory possesses a symmetry U(1) x U(l) and
hence a conserved vector and axial-vector cur-
rent. Therefore, if we introduce collective fields
according to

F„„,= 8„V„—8„V„,

G „=8„»„—„A„.
(3.18)

(3.19)

It is also easy to discuss the non-Abelian analog
of the above example. ' The Lagrangian is given
by

& =Fir at+ 'Gd 0-()'+(0~.0)'+ p iyp)' +(Ar, &.g)']

+ Pr,r„4)Pr,r"P)+ Pr,r„~.4)(4r,r'~. 0)]

(3.20)

The theory has a symmetry U(n) x U(n). After a
similar treatment as in the previous case, the
model is shown to be equivalent to a spontaneously
broken gauge theory of chiral U(n) x U(n) symmetry.

Physical spectra of the theory which we obtain
via the Higgs mechanism depend on the choice of
vacuum expectation values. In the case of n= 2,
for instance, if we take (Q~) o 0 and (Pz) = 0 then
we obtain a theory of massive Pe, Pz, A, and
A, fields interacting with massless V~ and V„
mesons. In this choice the axial U(2) symmetry
is completely broken while the vector U(2) gauge
is left invariant. Note that the number and rep-
resentations of the Higgs fields are fixed by our
construction and are not at all arbitrary as in the
usual treatment of the Higgs mechanism.

IV. PAULI- GURSEY TRANSFORMATION

It is well known that the fermion kinetic term
igy sp is invariant under a certain transformation
which mixes particles and antiparticles, the Pauli-
Gursey transformation. " If we make use of this
invariance, it is possible to introduce collective
excitations in the fermion-fermion (on antifermion-
antifermion) channels as well as in the fermion-
antife rmion channels.

In the Abelian case the transformation is defined
as

g —a/+ by, (',
g'- a*)'+ b*y,P,

(4.1)

(4.2)

where ~a t'+ ~b ~'= 1. This is very similar to the
Bogoliubov transformation which gives rise to a
coherent mixture of particles and holes in the
theory of superconductors. Let us consider the
model

2„,.«, = --,'E„Q'"—W, „G""+i$y &/+
~
&„P+2ieg„~'

r-.4(4s+ ir54~)4 e—07(r„&'+r,r„&")4

(3.17)

where
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& = fair st+ -'G.[(g4)'+ (4~r, g)']

4-c;[(gr„4)(4r"0)+(4r,y„P)(4y.r"0)]

(3.11)

)~f'+ b '=1,
where (o is a G conjugate of g,

)~=Ca,g.

(4.13}

(4.14)

0-X=~2 ((+r.('), (4.3)

which we have already encountered in Sec. III.
Here, however, instead of directly introducing
collective modes to Eq. (2.11}we first perform a
change of integration variables, 1x=~2K+('), (4.15)

In this case bilinear forms pg, piy, g, gy„vg, and

gy, y„P are invariant under the transformation
while, on the other hand, if we define X by

10'- x'= ~&(4'+ r,4), (4.4)

and then form bound states in various Xx channels
as

the other bilinears transform as

X&x = '(P7 -4+ 4&0),

xiypx = 2 (tgiy, &g+ giy, 7g },

(4.16)

(4.17)

(4.18)
IV[n, n'] = e~b[&'(X, X, e, V.,A„)+eX+Xnl]

xdx dx dQ dV„dA~, (4.5)

&'(x, x, l v„A,)=xir sx vox(A-s+ir~Ap)x

—eox(r, v'+ r,r, A")x

+ (mass counterterms).

(4.6)

Here the field y is an equal mixture of the Dirac
spinor ( and its charge conjugate and hence is very
much like a Majorana field. Using its definition
we find that

xx = 2(yc 'r, e+ 4r,c4 },

xiy, x = ,'(pic '—g+(ic(),

xr.x= 2(&C 'r. r—.C+ Or.r.cc),

xr,r„x=4r,r„4.

(4.7)

(4.8)

(4.9)

(4.10)

Hence only the field A„couples to both X and g
while the others do not have a Yukawa type cou-
pling to g. These fields Qz, Q„, and V~ are inter-
preted as diquark (qq) [or dilepton (Il )]-type bound
states. Therefore, our theory describes a situa-
tion where we have collective states both in qq and

qq (or qq) channels. Still in this case the Higgs
mechanism works as we clearly see in the y rep-
resentation, Eq. (4.6). The axial-vector field A„
absorbs the massless pseudoscalar diquark P~
and converts into a massive axial-vector meson.
This phenomenon was first discovered in the study
of superconductors. "

Non-Abelian analogs can be worked out in a
similar way. In the case of an isodoublet of quarks
the transformation is given by

xr, x = ~2(Pr, (+ 4r, 4'), (4.19)

xr,r„7x= 2(Pr,r,~4+ gr,y, ~8')

Hence Qz, Q~, V~, and A„are diquarks. If we
take (Q~) c 0, we obtain a broken gauge theory of
massive mesons Q~, Qz, A„, and A interacting
with massless vector fields V„and V„.

A curious feature in the above construction of
diquarks is that we always obtain only one com-
bination of qq and q q while a priori it seems pos-
sible to have both qq + q q. Charge-conjugation
properties of diquarks are determined according
to the choice of the mixed field X. With our choice
Eqs. (4.3) and (4.15) diquarks have opposite charge
conjugations to their qq counterparts.

Apparently the above models cannot be realistic
ones; however, in view of the recent speculations
on the unified gauge theories of weak interactions, "
it will be still worthwhile to look at the possibility
of constructing a broken gauge theory of (quark or
lepton) number conservation along the lines we
have described.

(4.20)

V. DISCUSSIONS

In the preceding sections we have discussed
spinor theories with scalar, pseudoscalar, vector,
and axial-vector interactions. Then how about
tensor interactions'P In fact, recently there has
been some speculation on the relevance of anti-
symmetric tensor fields in various physical con-
texts. "'" We have looked at this possibility but
unfortunately could not find interesting theories
involving tensor fields. Here the basic difficulty
comes from the noninvariance of the antisymmetric
field under chiral rotations. In fact, go„„g trans
forms as

g- a/+ bg

qG &eye+ I gy

(4.11)

(4.12)

g&x~„P- cos2&gv„„g+ sin2o. giy, o„„g, (5 1)

under an axial rotation. The invariant form is then
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1=G;I; (i=S P, ). (5.3)

Here G, is the coupling constant for the type-i
four-Fermi interaction and I's are certain diver-
gent integrals which in general differ from each
other. Hence if G's are given as a result of a
Fierz transformation applied to a particular four-
Fermi interaction, it is generally impossible to
satisfy the above equations. Thus the requirement
of the elimination of self-energies fixes the choice
of collective modes and the type of the correspond-
ing renormalizable theory.

given by

(0& .0) + (0» Q,AP '

however, the above combination vanishes identical-
ly. Thus it is impossible to introduce an anti-
symmetric tensor in a chiral-invariant manner.
Once the chiral symmetry is broken the axial-
vector field A no longer interacts in a gauge-
invariant way and this causes certain difficulties.

Readers may have already wondered whether it
is meaningful to discuss various four-Fermi in-
teractions separately, since they transform into
each other by Fierz rearrangements. For in-
stance, in the Bjorken model if we first apply a
Fierz transformation and then introduce collective
coordinates, we will obtain a theory with scalar,
pseudoscalar, vector, and axial-vector fields
which is apparently different from the electrody-
namics.

The solution to this puzzle is given as follows.
As we have seen in preceding sections the condi-
tion for the elimination of self-energies for each
collective field is given in the form of a gap equa-
tion,

As we see in the above not all of the spinor
theories are made renormalizable even in our
treatment. For instance, a theory of scalar and
pseudoscalar interactions with different coupling
constants cannot be renormalized. A similar
situation obtains if a theory involves vector and
axial-vector couplings with different coefficients.
On the other hand, most renormalizable theories
of fermions and bosons seem to be realized as
nonlinear spinor theories by our method. At least
in the case of renormalizable models in four di-
mensions with no dimensional coupling constants
no counterexample has been found so far as the
author could check.

In this paper we have developed a new approach
to collective phenomena in superconductivity mod-
els and have revealed unknown relations between
apparently nonrenormalizable theories and renor-
malizable models and also theories of one field
and those of many fields. We hope that our ap-
proach may be useful in our further studies on
collective phenomena in quantum field theories.

Added note: After submitting this paper for
publication I came to know that Dr. N. Snyderman
has obtained similar conclusions as mine in the
Nambu- Jona-Lasinio model making use of a some-
what different method.
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