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We describe a model of the baryons and mesons as trilocal and bilocal collective excitations of a self-
consistent ground state. The fundamental theory we adopt (in analogy with the BCS Hamiltonian) is quantum
chromodynamics (QCD). The hadrons are flavored excitations of a color-singlet vacuum condensate of ggq
pairs. Our approach is completely conventional, fully relativistic, and incorporates both a <ys-noninvariant
vacuum [partially conserved axial-vector current (PCAC)] and quark confinement. We derive the Gor’kov or
gap excitation equations for mesons from QCD. These Gor’kov equations provide the connection between
QCD and the phenomenological theory of the hadrons. We also discuss the solutions to the gap equation and
the gap excitation equation for confined quarks. It is noted that for an infrared-singular gauge field
propagator the exact gap equation becomes a differential equation for the quark propagator. These equations
are solved analytically and have the property of PCAC and confinement in the infrared limit. Qualitatively,
the same features are found as in two-dimensional QCD. The Gor’kov equations for the bound states are
obtained, and the ground-state meson mass spectrum is computed. Potentially, this approach can provide for
the determination of the fundamental features of hadron phenomenology.

I. INTRODUCTION

In this article we will describe a model of all
the hadrons as collective states of permanently
bound quarks. Our approach will be to integrate
several of the major ideas about the structure of
hadrons.

The first idea is the remarkably successful
quark model’? in which hadrons are states of
quarks and antiquarks bound in a potential well.
This nonrelativistic atomic picture of hadrons,
originally developed in the mid 1960’s, has re-
cently reemerged as the bag or sack® model of
hadrons, which takes the principle of relativity
and quark confinement into account.

The second idea about hadron structure we will
incorporate has its origin in the Nambu-Jona-
Lasinio model of the pion.? This model has as
its inspiration the BCS theory of superconduc-
tivity.® The bound-state pion is a collective ex-
citation, a Goldstone boson obeying partially con-
served axial-vector current (PCAC) as_a conse-
quence of spontaneous breaking of y, invariance
of the vacuum. Like the quark model, PCAC has
its dramatic experimental successes, although
the underlying chiral symmetry is more difficult
to test.® It would appear that any theory of the
hadrons that does not incorporate PCAC is nec-
essarily incomplete. The inclusion of both PCAC
and the quark model into a model of the hadrons
will be an insistence of our approach. In placing
PCAC in a fundamental place we deviate from the
current formulations of the quark model of had-
rons (as a bag or sack) which fail to give a cor-
rect description of the pion.

A third insistence will be the incorporation of

the assumption of quark confinement. No attempt
will be made to prove quark confinement; quark
confinement has never been proven in the context
of a relativistic (3 +1)-dimensional field theory.
However, the spectrum indicates that hadrons are
indeed built up out of quarks with the rule meson
~gq, baryon~qqq, as suggested by Gell-Mann and
Zweig.! The further evidence for confined quarks
is the experimental absence of quarks, linearly
rising Regge trajectories, and pointlike scaling
behavior of weak processes at high momentum
transfer.

Remarkably, these three assumptions, the quark
model, PCAC, and confinement, as applied to
quantum chromodynamics (QCD) lead in a rather
definite fashion to a picture of hadrons as collec-
tive excitations in the gap of a type-II supercon-
ductor. The vacuum is a color-singlet condensate
with the hadrons as flavored excitations of the
condensate. The hadrons have the quantum num-
bers of the quark model and the pion obeys PCAC.
Further, the interactions of all the gap excita-
tions (hadrons) with one another are completely
specified as solutions to the Gor’kov equations
for QCD.

The paradigm for our model is the BCS theory
of superconductivity and the application of these
ideas to particle physics by Nambu and Jona-
Lasinio. This is in contrast with models for
which the quarks are confined in a bag and for
which PCAC must be put in by hand. The Nambu-—
Jona-Lasinio model has been developed as a re-
normalizable field theory so that the bound-state
Goldstone phenomena is finite and cutoff indepen-
dent.” We also draw on a recent extension of the
Nambu-Jona-Lasinio model by Eguchi and Suga-
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wara®'® who derived the Gor’kov equations!® ap-
propriate for this model. The Gor’kov equations
essentially transcribe the microscopic theory
(BCS or Nambu-Jona-Lasinio) into a phenomeno-
logical theory (London or ¥ model).

An earlier version of some of these ideas is in
a paper by D. G. Caldi and myself,** which inte-
grates PCAC into the quark model as a solution
to the p-m puzzle. There it was proposed that the
p meson is also a collective excitation, a dormant
Goldstone boson transforming as the same rep-
resentation as the pion under the chiral group.
Then the quark model which places the 7 and p in
the same SU(6) multiplet and PCAC which requires
the 7 to be a Goldstone state are not in conflict.

The fundamental “microscopic” theory we will
use is QCD. The Lagrangian is

Locp =Lyus+iq Dyq,

with £yys as the Lagrangian for a colored SU,(3)
Yang-Mills-Shaw'? gauge field theory and ¢ as

the quark field transforming as 3 under local
SU,(3) and as the (n, 1)X(1,n) representation of a
global chiral SU(z)xSU(x) of flavor. The SU,(3)
local symmetry is presumed exact, while the
chiral SU(n)XSU(n) global symmetry may be ex-
plicitly broken by amending to £ocp a quark mass
matrix. We will not consider such explicit break-
ing here.

The advantages of the model have been described
in the literature.’® There is no evident conflict
with experiment [a possible exception is the U, (1)
problem'*] providing the spectrum of £ocp con-
sists only of color singlets (confinement) and the
chiral y, symmetry is broken in the ground state
(PCAC). A remarkable feature of this theory is
that all the fundamental fields that appear in £qcp
are to be confined and unobservable. It would be
ironic if QCD were correct inasmuch as quantum
mechanics was founded with the insistence that
only operationally defined observables have mean~-
ing. From the present point of view, strong inter-
actions are an epiphenomena of unobservable color
dynamics.

QCD will be our “microscopic” theory like the
BCS theory. The practical problem we address
is the extraction of the phenomenological content
of this theory. QCD can determine the equations
of motion for phenomenological fields correspond-
ing to the observed hadrons. This would be the
“macroscopic” theory. These effective field
equations are called the Gor’kov equations'® in
analogy with the same development in supercon-
ductivity. This development seems required if
one is to make a contact between experiment and
QCD. So we endeavor to obtain the Gor’kov equa-
tions for QCD.

Our derivation will be conventional, and it will
be consistent with our primary assumptions. We
will discuss only the mesons ~gq and not the bary-
ons ~qqq as a first step. The mesons are de-
scribed completely in terms of the meson gap ex-
citation function, a bilocal structure with the Dirac
decomposition

THx,y) =ole, ) I+m(x, p) by
+ Vu(x,y)')’u+Au (x’y)i75Yu+Tpu(x’y)0'yxu .

Here x and y are quark and antiquark coordinates.
T * is a matrix in flavor space. Baryons would be
described by a trilocal structure, the baryon gap
excitation function, T *(x,v,z). The Fourier
transform of = *(x,y) with respect to x +y specifies
the bound-state meson wave function = *(P,x —y).
The equations of motion for Z*(P,x —v), the
Gor’kov equations, will be derived below.

The equations of motion for Z * will involve the
quark propagator S(p) and the color gauge field
propagator d(q?). The quark propagator S(p) is a
Ys-noninvariant solution to the gap equation, which
is specified once d(q®) is given. So, given the
single function d(g®), the motion is determined.
The gauge propagation function d(q?) is in principle
determined by complicated color dynamics. No
attempt will be made to determine it; rather we
treat it like a “potential” in Schrédinger theory
and adopt a pragmatic attitude.

A knowledge of the fermion propagator S(p) is
important for this approach, and in the next sec-
tion we will describe solutions to the gap equation
for confining “potentials” d(q®). In the following
section the meson Gor’kov equations are obtained.

II. THE GAP EQUATION FOR CONFINED FERMIONS

A. The gap equation

Before describing the meson gap excitation equa-
tion we will discuss the usual gap equation. The
renormalized quark propagator is

S7Hp)=# -Z(p) =A(p*) ¥ - B(p?), ¢))

where Z(p) is the gap function. For QCD this
obeys the Schwinger-Dyson or gap equation

. da* "
Z(p)=i | Gfa T, =S (0~ )vs 33DYs(a).
@)
Here I'4, =31°T", is the proper vertex function and
satisfies a Ward identity:
98X (p +q)
9qp

cTg(p,p) = +ghost field terms,

2=0

3)
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where ¢ is a constant. The quark propagator is
gauge dependent, and it is convenient to work in
the Landau gauge. In this case the gauge field
propagator can be written as

" 5abd 2
DO?B(Q) = <_gocﬂ + quZB_> _—ng—) 5
so that
47 d* d(q? 8
Z( )=T (2134 (52) <_goc6+ ng>
XTB(P,P-Q)S(P-CI)YM (4)

where the gauge-coupling-constant dependence has
been lumped into d(q?).

A few remarks are in order. First, the asymp-
totic solution to (4) is known;

STHP) i B, (5)
on account of the asymptotic freedom of QCD.*®
This asymptotic region is really not relevant to
our problem for low-lying hadron phenomenology.
Second, it is possible that the gap equation and
the relevant Green’s functions may not exist, on
account of infrared divergences of QCD. This,
in fact, is what occurs for two-dimensional QCD.®
In the presence of infrared singularities we
assume that the gap equation can be regulated.

An example of this is given below.

We will assume that quarks are confined. This
means that S(p) does not have a pole. The per-
turbative solution to (4) does not have this proper-
ty, so one must go beyond perturbation theory
What confinement suggests is that d(¢®) is singular
as ¢°~0. This would imply that the low-¢® region
of the integral (4) is important. We will assume
that it is the low-g, region of (4) that is important.
This renders the problem tractable since in the
integrand we may then approximate

cTs(p,p —@)=Ts(p,p)
=[A"(p*) P -B'(p*)]2p5+A(p?)vs,

(6)

where the prime denotes differentiation with re-
spect to p2. This is consistent with the Ward
identity (3) providing the ghost field terms de-
couple at g, =0. Then the gap equation is

_4i (ad*q d¢®) M@.)
Z(p - 3¢ J (277)4 qz <_gocB+ q2

X{A(p2)y o +IA'(p?)# = B (p?)] 2p4}
XS(p-q)vs, )

a nonlinear integro-differential equation for S(p).
The gauge field propagator d(¢?) also obeys

integral equations.!” These integral equations
involve the proper vertices of gauge field self-
couplings and ghost-field—-gauge-field coupling.
In principle, d(q®) is determined from this com-
plex color dynamics of QCD; in practical terms
no progress has been made to determine d(q?).
Consequently we adopt the pragmatic attitude that
d(g®) is to be specified in conformity with fits to
hadron phenomenology and quark confinement. In
or approach it plays the role of a potential with
the gap equation (7) as the Schrddinger equation
for QCD. The solution of (7) S(p?,d(q?)), it turns
out, is all we require for the Gor’kov equations.

B. An example of confined fermion solutions
to the gap equations

It is illuminating to construct examples of con-
fined solutions to the gap equation. For quark
confinement d(¢?) must be singular at ¢*=0, as
emphasized by Johnson.'® [d(g?) =1 corresponds
to a Coulomb force law.] If we have a linearly
rising potential in configuration space this corres-
ponds to

2\ l=-e 2
d(q®) =lim (—‘i—> =t ®)
€e=>0 \ ¢

where €, an infrared regulator, is to be set to
zero at the end of the calculation and 1 is a mass
characterizing the confinement. This appears to
be a physically reasonable example. Remarkably,
the complete gap equation can be solved analyti-
cally in this case. No assumption on the vertex
T's(p,p —q) need be made since in the infrared
limit €¢~0 only T's(p,p) will contribute, and this
is specified by the Ward identity.

Substituting (8) in the gap equation (4) or (7) and
letting € =0, one learns the integral diverges like
e " and

B(0) ==y (p,9)S(P) v, + 18, ©

where m?=.%/64n%¢ and ft =finite terms as e—~0.
These infrared-finite pieces can be dropped in
what follows for | p2/m?| <e ~*. Using equations
(1) and (6) and introducing x =p2/2m? and C (x)
=B3*(x)/2m?, Eq. (9) is

e[1-A0)][xA%(x) = C (x)]
=A%(x) =xA' () A(x) +3C" (x) ,
€C (x) [xA%(x) = C (x)] (10)
==2A(x)C(x) —xA’(x)C(x) +3xA(x)C'(x),

where the prime denotes differentiation with re-
spect to x. These are the differential equations
for the quark propagator. To solve them we will
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look for infrared-finite functions defined by
Cx)=€?Cx), Alx)=€A(x), (11)
which, using (10) in the limit € =0, obey the non-
linear equations
—A(x) [xA%(x) =T (x)]=A%x) —xA'(x) A(x) + 1T’ (x) ,
C(x) [xA%(x) -C (x)] (12)
=—2AKx)C(x) —xA’(x)C(x) +1xA(x)C’(x) .

A solution to these equations is

-2 — 812

A
o) (13)

where X is an arbitrary constant. Using (13), (11),

(1), and (6) we find the exact solution to the gap

equation as €—0:

€(# —2mn) ’ »?
2 H

L1
— 4m m

€

S(p) = (14)

2

and

4m? 2 2mA
ceTg(p,p) = <p2_znm2>\z >|: ﬁzﬂiﬁ:nzyfz) "'7’Bj| .

(15)

A few remarks are in order. First, our solution
(14) is compatible with the usual analyticity prop-
erties of a fermion propagator in a completely
trivial way since ImS=0. Further, S(p) vanishes
as € ~0; quarks do not exist. However, the com-
bination

FB(P,P)S(P)=——%_1—M7/B, M =2mX\ (16)

is infrared finite and it is this combination that
enters bound-state integral equations. Interest-
ingly, (16) looks just like a fermion propagator
with a pole at p2=M? times a free vertex function.
But there is no free quark; nor do such states con-
bribute to the unitarity sums of color-singlet scat-
tering processes.

The solution (14) valid for | p2/M?| <€~ is not
incompatible with the result of asymptotic freedom
(5) valid in a different region | p2/M?|>e~%. In the
infrared limit € =0 it is (14) that is the relevant
solution.

Finally, we observe that A®2=0 corresponds to a
¥s-invariant vacuum and PCAC will not be satisfied
in this case. The appearance of an arbitrary con-
stant like X in the solution is interesting. The gap
equation is a consequence of equations of motion
following from a variational principle 6L =0. How-
ever, one also requires stability 6L <0, a require-
ment difficult to check, and this, we speculate,
may impose the PCAC phase condition A%>0.

Much of what we find here is qualitatively the
same as two-dimensional QCD, especially the
studies of 't Hooft'® and of Callan, Coote, and
Gross.'® We expect the same development for
scattering processes, etec., found in two dimen-
sions will also apply for the physically relevant
four-dimensional QCD.

III. THE GOR’KOV EQUATIONS OF QCD

Next we consider the fluctuations about the ground
state. These excitations are to be identified with
the hadrons. As a first step consider only the
mesons ~gq and not the baryons ~gqq. There could
also be excitations of the type qqqq, etc., but they
are unstable, decaying into mesons. We denote by
| Q) the ground state of the meson subspace and
this is the vacuum in the presence of sources for
all meson excitations. Our formal procedure will
be essentially equivalent to a Hartree-Fock Bethe-
Salpeter treatment of the bound-state problem.

The quark propagator in this ground state is

St x)po == T(gs(x") go¥)) | Q) (17)

and
S(pl’p) = fd4x/d4xei(l’"x’—P-x)S(xl,x) X (18)

The bare propagator is
S%(p’,p) =(2m)*6%(p’ =p)/# (19)

and the self-energy Z(p’,p) is defined as the solu-
tion to

’ =GQO( 47 d4p1 ’ l
S",p)=8%p",0) + | GryTS(ip)T(Prp) -

(20)

We remove the singular part of = (p’,p) by the
usual displacement familiar in the ¥ model:

(p',p) =@m)*Z(p) 6%(p" =p) +ZX(p",p),  (21)
where Z(p) is the usual gap function and = *(p’, p)
is the gap excitation function. Z*(p’,p) will de-
scribe the mesons. The quark propagator is as
in (1),

S™Hp)=#-Z(p),

S0 we may, resuming, express (20) as

S(p’,p) =(2m)*6%(p" =p) S(p)

* éﬁis(ﬁ',wz*(m,msw).

(22)

The self-consistent propagator is determined
from the Schwinger-Dyson equation
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Z(p’,p) = i (dy 7 Das(@) To(p',0" = q)
3 (271)

XS(p'=q,p-q)vs, (23)

where in the Landau gauge D,5(q) =(-gxs+qads/
q?)d(q?)/q? Substituting Eq. (22) in (23), identify-
ing the singular part of (23) proportional to 6%(p’
—-p), one obtains the two equations

p)_ i J (217)4 aB(ll)Fa(P,P"CI)S(P—(I)’)’B,

(24a)

4z d*q

Z*(P',P)" f (2 )4D s(CI)I'a(P',P'—CI)

da*
(zf‘ S(p"' =aq,p)Z*(p1,p)S(P) vp

(24b)

Equation (24a) is the gap equation which we have
already discussed. Our interest now is Eq. (24b)
for T*. Substituting (22) in the right side of (24b)
one obtains, upon iterating (22) in a Neumann
series,

zX(p',p) - )T Pes @ T a0’ =@ S(p" =) ZH(p" = 4,p)S(p)ys = T*(",1), (25a)

where the source function is

( ap)_ 3

(2 )4 ocB(q)F ,p' q)f 2,”.)4

Equation (25) is the meson gap excitation or
Gor’kov equation for QCD. Again, confinement
suggests that we may use I'(p,p — q) =Ty (p,p)
given by (6) so that (25) is specified by S(p) and
d(q®).

Comparing (25) with the Bethe-Salpeter equation
one sees that

2,) < [ e300, (26)

with ¢ =p’ +p, P =p’ —p, is the bound-state wave
function of a meson of mass P2 I *(x,P) is fur-
ther decomposed from (26), with

E*(P',P) =G(P',P)I+7T(P',P)i7’5 + Vu(i)',p)'yu

+Au(p’ap)i'}’57u"’Tpu(pl,p)ouv (27)

to exhibit its Dirac spin structure.

The Gor’kov equations (25) in principle establish
the spectrum and the interactions of all the mesons
once the “potential” d(q?) is specified. The pro-
cedure is as follows. Given d(q?) one first solves
the usual gap equation for the quark propagator
S(p). Here we must use I'y(p,p —q)=I'y(p,p) in
conformity with the Ward identity as discussed.
The solution for S(p) is specified by PCAC and
quark confinement. With S(p) established for a
given d(gq?) one has the information needed to solve
the meson gap excitation equation for = *(x,P). As
a first step one may ignore meson interactions and
set J*(p’,p) =0. Then (25) is the “free” meson
Gor’kov field equation and an eigenvalue problem
for the meson spectrum.

—)ZXp' = q,0,)S(b1)ZH*(p1,p)S(P) s +O(2*°) +

(25b)

In this interpretation the mesons are collective
modes, self-consistent vacuum fluctuations of the
color-singlet bilocal operator g(x) g(vy). We have
given here a simple framework which in practice
determines phenomenological meson dynamics
from the specification of a single function, the
“potential” d(g?). In principle d(g®) could be de-
termined from QCD, but this seems an undertak-
ing more difficult than actually solving the Gor’kov
equations. If one is optimistic, the Gor’kov equa-
tion (25) provides the link between QCD and meson
phenomenology. This method can provide an in-
tegrated picture of the hadrons that combines the
quark model, PCAC, and quark confinement.

A soluble example

It turns out that the Gor’kov equations are easily
established for the previous example of the infra-
red-singular potential, Eq. (8), d(q®)=(u%/¢*)' .
Substitutions of this potential into the gap excita-
tion equation (25), letting e ~0, and symmetrizing,
according to I‘,,yu—-i( Tyyu+ vuTy), one has

ZH(P' )+ 5 [rp(p' p)S(P)Z*(p',p) S(P)vu

+vuS(p") Z*(p’,p) S(p) Tu(p,p)]
=J*(p’,p). (28)

As a first step we ignore the interactions and set
J*=0, so that using our results for the fermion
propagator and vertex (14) and (15), respectively,
Eq. (28) becomes
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840 p) + g TeZH(07,0) (B =MD,

+'}’u(ﬂ/ —M)E*(P',P)Yp ﬁ_lM =0,

(29)

where M =2mx and all dependence on € has dis-
appeared.

We introduce the variables P,=(p’ - p),, which
is the meson total 4-momentum, and g, =(p’ +p),,
which is the momentum conjugate to the relative
coordinate of the quark-antiquark pair. An alge-
braic simplification is accomplished if we assume
that the meson bound-state amplitudes in the me-
son rest frame, P=0, are independent of the rela-
tive time of the two constituents. Such relative
time dependence, a feature of a relativistic treat-
ment, has traditionally been difficult to interpret.
This means p’2—p?=P g~ ~iMd /3t =0; so we look
for solutions with this property. One could retain
the P - ¢ dependence but it is not instructive to do
so. With P-¢=0 (29) becomes

4(p2=M*)Z*(p'p) = (B' +M) vy Z*(p,p)vu(# +M)
+(f#" +M)F*(p,p) +Z*(p’,p) ' ($ +M) =0.
(30)
Using the general decomposition
S, p) =a(p', P I+ 1 (P, p)ivs+ V(D' 0)vu
+37sYu Ap(p’,0) +0uu Ty (p',9) , (31)

opy =38 [y, 7]
Au(p’,0) =A(p",0) (p" +D)u+A_(p",0) (P" =Dy
Vu(p',0) =V (p",0) (p" +P)u+ V(D' 1) (p" =Dy s
Tuy(p’s0) =i(pliby =i bw) T(D,P)

+i€uyys PALB(D',P),

whereo, m, V,, A,, T, and B are invariant func-
tions of p’2, pZ,p’ +p, one obtains from (30) the
wave equations for the meson amplitudes. After
an exercise in y algebra one finds

EP%+3¢q*-8M?)g +3¢*MV, +P?q*T=0,

- 3Mo +(P*+2¢*—4M?) V., +P*MT =0, (32a)
20 —4MV, +(P?+ 3¢°-8M?)T =0,
3P2+3¢?)m+3P2MA_+P%¢?B=0,

- 3Mw+(4M?-g*)A_ - ¢*MB=0, (32D)
21 +4MA_ +(3P%+¢*-8M2)B =0,
(¢?-4M?*)V_=0,

(32¢)
(-P*+2¢%+4M?)A,=0.

Here (P?)Y2 is the meson mass operator and q° is
the Laplacian in the meson rest frame.

For the ground-state mesons evidently ¢®=0 and
(32) are elementary free-field wave equations for
which one can read off the mass spectrum. For
(32b) the physically relevant solution is 7 =$MA _,
B =0, and so M,%=0. This is just the Goldstone
pseudoscalar state and it is an automatic feature
of our general approach. We may similarly in-
spect (32a) for the ground-state spectrum. Dis-
regarding complex eigenvalues for P? and the
trivial solution ¢ =V, =T =0, one has either V, =0,
0, T+0 and the scalar and skew-tensor masses
given by

M2=%M°, M2 =M, (33)
or T=0, o,V,#0 and
M 2=%M? My,*=10M>. (34)

The skew tensor is, of course, a vector excitation,
so that in either case the vector excitations are
more massive than the axial vector at

MA+2:4M2 (35)

as follows from (32¢). An alternative solution to
(32¢) is A, =0. Of course only mass ratios have
meaning, since M? cannot be absolutely specified
in a theory like QCD, which has no mass scale.
Using the solution (33) the ground-state mass-
squared ratios are 07:0%:17=0:10:9.

The solution given above for the ground-state
meson mass spectrum is given in the absence of
explicit flavor symmetry breaking. Such sym-
metry breaking can be incorporated by adding £¢p
a quark mass matrix. Then the gap eqaution will
have an inhomogeneous term. The influence on
the solution (14) for S(p) will be to have A diagonal
but not proportional to the identity matrix in flavor
space, at least to leading order in symmetry
breaking. Then the Gor’kov equations imply that
the ground-state pseudoscalars will acquire mass
with the mass squared proportional to the quark
mass. Other flavor supermultiplets also have
their degeneracy removed.

Even if one incorporates explicit chiral sym-
metry breaking as a quark mass term, this is
well known not to solve the U,(1) problem.'* In
the SU(2) symmetry limit one will have four, not
three Goldstone states. It is now known'* that the
extra U, (1) symmetry is broken by the pseudo-
particle solution, and one has an effective U,(1)
symmetry-breaking term of the form detM
+detM™, M =g(1+y,)q, a six-quark flavor- and
color-singlet interaction. Such an interaction
necessarily alters the Gor’kov equations in the
flavor-singlet sector and one will avoid the U,(1)
problem. Exactly how to incorporate this modifi-
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cation of the Gor’kov gap wave equations (32) is not
known.

IV. MESON SCATTERING AMPLITUDES

The gap excitation function Z*(p’,p) is of order
1/e as is seen by inspecting (25). So we define

THp',p) =€ X(p',P), (36)
eS*(p’,p) =S(p’,p) — (2m)*8*(p’ —p)S(p),
which are finite as € — 0. Then (22) and (24b), in
the limit € -~ 0, are
S*(p',p) =S(p)ZX(p’, p)S(P)
f %; S*(p',p)Z*(p1,0)S(p)
(31
X', p) = =m7Ta(p’,p)S D', D)Ver » (38)

where the bar denotes that the factors of € have
been removed so the result is infrared finite. Con-
sequently, combining (37) and (38) we obtain as a
result a nonlinear integral equation for S * or
equivalently, using (38) for T* we obtain

S*(p',p) +m*S(p")To(p',0")S* (', )y ,S(p)

d?
+m f (z‘i;j S*(p

DD b)S* (D1, P)7vaS(H) =0

(39)

This is the generalization of the free Gorkov
wave equations (32) to include interactions. No
attempt will be made to solve these equations for
T *. The solutions will serve to establish the ap-
propriate boundary conditions on the free field equa-
tions (32).

An elementary (but approximate) procedure for
the construction of meson amplitudes now suggests
itself. The n-meson amplitudes are constructed
by joining meson-quark-antiquark vertices Z*(p’, p)
with quark propagators S(p) as in the stand-
ard duality diagrams. The factors of 1/€ from
the T *(p’,p) vertices just cancel the factors of €
from the quark propagators joining the vertices
so that the n-meson amplitude is finite as € - 0.

We have not proven that there is no further di-
vergence associated with the quark loop integra-
tion. This depends on the behavior of Z *(p’,p).
However, this procedure is suggestive of how the
dynamics of confinement yields nontrivial scat-
tering amplitudes in the color-singlet sector. Im-
portantly, if one cuts the diagram corresponding

to such an n-meson amplitude across the quark
propagators, the absorptive amplitude must van-
ish. This follows from the Cutkosky cutting rule
and the fact that quark propagator (14) has no ab-
sorptive part. Hence, thresholds corresponding
to quarks never appear in the absorptive part of
amplitudes in this construction. Whether such
amplitudes are unitary or approximately unitary
is much more difficult to establish.

V. CONCLUSION

We have described a method for extracting the
dynamics and spectrum of hadrons from a funda-
mental theory like QCD. This can be accomplished
in a manner consistent with PCAC, quark confine-
ment, and the principle of relativity. This investi-
gation is preliminary and incomplete. Outstanding
problems remain to be solved.

First is the problem of determining the gauge
field propagator d(g?) for small ¢g2. This is a
problem in QCD which we have not addressed and
which is associated with the strong-coupling be-
havior of the Callan-Symanzik function. We have
given as an example the infared-singular potential
d@? =(u?/q®*'"¢, for which the gap equation is ex-
actly soluble in the infared limit e - 0. If d(g?) is
more singular, then it may not be possible to reg-
ulate the infared singularity. So conceivably this
could be the right answer for small ¢? if the theory
exists at all. A remarkable feature of the infared
limit is that the integral equations are exactly
soluble. Other simplifications, already learned
from two-dimensional QCD, also result. So the
infared limit, rather than being a problem, may
be a virtue. Another important problem is to ex-
plicitly demonstrate the gauge invariance of this
approach.

Whether the simplicity in the bound-state prob-
lem found for the example above will be retained
for more complicated potentials is not now known.
The spectrum of the hadrons is relatively simple,
a linear Regge trajectory. Presumably the Regge
trajectory is the rotational spectrum of the gap ex-
citations with confined quarks and this should fol-
low in a simple way from the Gorkov equations.

Finally, we have found contact, at least in part,
with two-dimensional QCD. This suggests that the
scaling behavior, form factors, etc., found there
have an analog for four-dimensional QCD. These
and other problems will form the subject of a
future investigation.
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