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A model for relativistic bound-state perturbation theory is presented. For the bound-state wave function
needed in the perturbation formula, the covariant-harmonic-oscillator wave function is used. As for the

perturbing potential, the Feynman propagator corresponding to one-meson exchange is used. This model

produces a relativistic derivation of the Breit-Fermi formula, which was recently used by De Rujula, Georgi,
and Glashow in their study of hadronic masses.

I. INTRODUCTION

Most of the calculations in nonrelativistie quan-
tum mechanics require one or another kind of
perturbation theory. For scattering processes,
we often use a Born-type series starting from
plane-wave solutions. For bound-state problems,
we calculate energy shifts using normalizable
bound-state wave functions.

Let us review the attempts to make a Lorentz
generalization of these procedures. The plane-
wave expansion eventually becomes the covariant
perturbation theory in which the 8 matrix i.s
written as a sum of Feynman amplitudes. This
is possible because the Lorentz generalization of
the plane wave is simple and accepts Feynman's
interpretation of propagation. As for the bound
state, we do not as yet have any working per-
turbation theory. This is because there are no
normalizable covariant bound-state wave func-
tions. One possible way to avoid this difficulty
once appeared to be a bound-state perturbation
theory in terms of the functions associated with
the S matrix which are covariant quantities. '
However, in this approach, there are very serious
difficulties in maintaining proper asymptotic be-
havior of the bound-state wave function. '

These facts lead us to look into the possibility
of formulating a Lorentz-invariant eigenvalue pro-
blem and of finding normalizable wave functions
carrying a covariant probability interpretation.
For this purpose, Kim and Noz presented a model
based on covariant harmonic oscillators. ' ' The
purpose of this note is to present a covariant
bound-state perturbation theory based on the
harmonic-oscillator wave functions.

In formulating a covariant perturbation theory,
we also need a eovariant perturbing potential.
The concept of a covariant weak potential is not
strange in modern physics. This potential arises
from the exchange of a meson by the constituent
particles. Therefore, the Feynman propagator
for this intermediary meson is the ideal candi-

date for the covariant perturbing potential. '
While the primary purpose of this paper is to

formulate a covariant perturbation theory, it is
unavoidable to examine further physical impli-
cations of the covariant harmonic oscillator.
Like all theories, the oscillator formalism we
use in this paper started from phenomenology.
However, unlike other relativistic models, the
wave functions in the oscillator formalism can
be given a covariant probability interpretation.
This feature forces us to look into possibilities
of reexamining the present form of the quantum
superposition principle. In collaboration with
Vasavada and Nozs 4 this author has been dealing
with this problem in previous publications. ' The
present paper is also a part of the continuing dis-
cussion on this important problem. '

In this paper, we first formulate the above-
mentioned perturbation theory, and then apply
this formalism to the mass difference calculations
of current interest. In Sec. II, we present the
formalism of covariant harmonic oscillators and
discuss the physical implications which are needed
in formulating a bound-state perturbation theory.
In Sec. III, we discuss the first-order mass shift
due to the exchange of a meson. In Sec. IV, we
derive a. rela. tivistic Breit-Fermi formula, which
is needed for studying hadronic mass spectra.

II. CONSTRUCTION OF COVARIANT HARMONIC
OSCILLATORS

We consider a. system of two quarks bound to-
gether by a harmonic-oscillator force. We use the
organizational framework of Feynman et al. "and
sta.rt with the equation

(2[a, +,] ——,', (u'(x, —x,)'+m, ') g(x„x,) = 0,

where ~ is the spring constant. In this bound
system, the quarks can never be separated, and
their masses do not carry any meaning. Their
masses are intrinsically contained in CI, and U2.
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They do not have to be equal. Following Feynman
et al. ,

"we make the following coordinate trans-
formation:

familiar subsidiary condition

P~ ~x + y(x, P =0.
ex~

X=-, (x, +x,), x= (x, -x,) .
2v 2

(2) We can now define the inner product of the two
wave functions as

In terms of these new variables, we can write Eq.
(1) as

82
(6)

The differential equation for f(X) is a Klein-
Gordon equation in the X variables, which can be
regarded as the hadronic coordinate. The physics
of the Klein-Gordon equation is well known. Equa-
tion (6) is a relativistic harmonic-oscillator equa-
tion for the constituent quarks.

There are many different solutions to Eq. (6) de-
pending on boundary conditions. The set of wave
functions proposed recently by Kim and Noz'4
satisfy all the requirements of nonrelativistic
quantum mechanics in the hadronic rest frame.
The basic advantage of using these wave functions
is the fact that they carry a covariant probability
interpretation. "

The construction of Kim and Noz goes like this:
The hyperbolic differential equation of Eq. (6) is
separable in the x, y, z, t variables. It is also
separable in their Lorentz-transformed variables

x' =x, y' =y,

a'=(1 0') "'(x--(it),

t' = (1-3') '~'(t -3a)
where, 3 is the velocity parameter of the hadron.
The normalizable solution then becomes

q(x, P) =H„(x', y', z')exp[--', (u(x" +y" +a"+t")],

82 I 8
2+ma +, —~'x„' ~t) X, x)=0. 3BX„2 9

We can now separate the variables X and x, and
write

y(X, x) =f(X)y(x) .

Then f (X) and P(x) satisfy the following equations
respectively:

a'
, +m, '+ X f (X) = 0,

&X~ 2

($(x, P), g'(x, P'))= d'xy*(x, P)g'(x, P'). (10)

If the four-vectors P and P' represent the same
velocity, then both wave functions are in the same
Lorentz frame, and the inner product, after the
t' integration, becomes exactly the three-dimen-
sional inner product of nonrelativistic quantum
mechanics. If P and P' represent different ve-
locities, one wave function should appear Lorentz-
contracted in the rest frame of the other. The
Lorentz-contraction properties of these harmonic-
oscillator wave functions have been extensively
discussed in the literature. "

The crucial difference between the present form-
alism and the conventional nonrelativistic harmonic
oscillator is the presence of the t variable in Eq.
(6). This is the time difference between the two
bound quarks. The presence of this variable is
inevitable in a covariant formulation of quantum
mechanics. Quantum mechanics deals with un-
certainties in space separation. Relativity deals
with the linear mixture of space and time. There-
fore, the uncertainty in time separation should be
taken into account in any attempt to combine quan-
tum mechanics with relativity. " Indeed, this
time separation enabled us to construct a co-
variant theory of Lorentz contraction which is
urgently needed in high-energy hadronic physics. '

Solutions of the harmonic-oscillator wave func-
tions have well-defined space-reflection proper-
ties. Here we have, in addition, the time co-
ordinate. Equation (9) restricts the solutions of
the covariant-harmonic-oscillator equation to the
ground state in the t' coordinate. Since the ground-
state solution is even under the operation t'- —t',
all the solutions are even under this operation.
This means that the causality among the con-
stituent particles in the hadron rest frame cannot
be imposed on this permanently bound system,
and that we have to take into account both cases
when the constituent quarks interact with other
particles, such as gluons. This point will be dis-
cussed again in Sec. III in connection with formu-
lating a covariant bound-state perturbation theory.

where H„(x', y', ~') is a product of Hermite poly-
nomials corresponding to excitations along the x',
y', and z' directions. P is the four-momentum of
the hadron. We can suppress the timelike oscil-
lation along the t' direction by imposing the

III. PERTURBATION DUE TO FEYNMAN PROPAGATION
FUNCTION

Let us go back to Eqs. (4), (5), and (6). While

f (X) represents the plane-wave solution of the
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hadron, $(x) describes the internal motion of the
constituent particles. It is this P(x) function which
determines the discrete mass spectrum through
the localization condition on probability distribu-
tion. We now consider adding a small perturbation
to the oscillator equation of Eq. (6). Thisperturba-
tion will cause a shift in the harmonic-oscillator
mass spectrum. Let us now consider possible
forms of this perturbing potential. Among many
possibilities, we choose the Feynman picture of
perturbation due to the exchange of a meson. For
the exchange of a single meson, we can consider

5 V(x) = —iG'ap(x), ,

where 6 is the strength of the coupling of the me-
son to the quark. A~(x) is the Feynman propaga-
tion function and i&F(x) describes the meson pro-
pagation from one quark to the other. The con-
stant G' has no dimension. hz(x) has the dimen-
sion of m'. Thus the above 5V(x) can be added to
the binding potential ——,u&'x„x' in Eq. (6).

The energy levels and normalization conditions
on the wave function are well known. The first-
order mass shift becomes

particles. As was mentioned in Sec. II, we are
dealing with the system where the sign of the rela-
tive time can never be detected. Therefore, the
proper-time symmetrization, such as the sym-
metrization of Eq. (15), is required for the
harmonic-oscillator system.

Furthermore, this symmetrization is expected
from the following aspect of nonrelativistie quan-
tum mechanics. For scattering problems, we
use the representation of running waves to de-
scribe the process, and the Feynman propagator
is a representation of the running wave. For
bound-state problems, the standing wave is the
appropriate form, and we construct the standing
wave by superposing two running waves traveling
in opposite directions. The representation of Eq.
(15) is therefore a "standing wave" Feynman
propagation function.

After this replacement, the perturbation formula
of Eq. (14) takes a very simple form:

5m' =nG'-' — ' d'qd'q'y. *(q)4„(q')5((q -q')'- g')

5m'= iG'
~

d'xq„*(x)~, (x)y„(x) .

We now introduce the momentum wave function de-
fined as

e.(o)=(2, ) J &'* "'&.(*)

In terms of this momentum wave function, the
mass shift of Eq. (12) becomes

qual

q
2v .'

(q -q')2 —y, 2+is '

where p, is the mass of the meson being exchanged.
We note that the momentum wave function de-

pends on the velocity of the hadron. However, the
Feynman propagator in the integrand of Eq. (14)
is Lorentz-invariant. 6m' is therefore independent
of the frame in which the above integral is evalu-
ated.

Although 5m2 of Eq. (14) is covariant and carries
a physical interpretation, the perturbing potential
of Eq. (11) is not Hermitian, and 5m is complex.
This forces us to take the real part of Eq. (14).
The physics of this operation is not difficult to
understand. Taking the real part means replacing
the Feynman propagator in Eq. (I4) by

The propagator with the opposite sign of ie means
that the sense of time is reversed. We are con-
sidering here a system of permanently bound

The above integral is not difficult to evaluate when
the meson mass p. vanishes. For the ground-state
harmonic oscillator, 5m' becomes

(17)

At this point, we may raise the question whether
the above modification of the Feynman propagator
was necessary in view of the existing nonrelativ-
istic procedures. " %'e are familiar with the non-
relativistic procedure of obtaining weak perturbing
potentials from one-meson-exchange Feynman
amplitudes by means of a Fourier transformation.
This is possible only when the energy transfer
vanishes. When the mass of the final-state particle
is different from that of the initial state, the en-
ergy transfer does not vanish, and the denominator
of the propagator vanishes in the region of in-
tegration if the meson mass is sufficiently small.
Therefore, the question of taking the real part
exists even in nonrelativistic eases. Ignoring
the energy component of the denominator, under
the pretext of nonrelativistic approximation, makes
an infinite quantity finite. We therefore have to
conclude that there are no satisfactory solutions
to this problem in the nonrelativistic approach.

Another point we have to note is that Eq. (16)
is a perturbation formula for the (mass)'. Since
the invention of the Gell-Mann-Okubo (GMO) mass
formula, whether we should use the linear mass
or (mass)' has been an unsettled question. The
(mass)' has been favored since the linearity in



Regge trajectories became apparent. ' Although
the linear mass was used for the original GMO
mass formula for baryons the latest indications
are that the (mass)' formula is numerically more
accurate even for the baryonic ease." We shall
discuss practical applications of Eq. (16} in the
following section.

IV. APPLICATIONS TO HADRONIC MASS SPECTRA

In this section, we shall discuss possible ap-
plications of Eq. (16) to the physics of current
interest. What me have done in the preceding
section is in close pace with the quark-confinement
picture and mith the perturbation formalism based
on this picture. "

The ultimate goal of the confinement program,
which is based on asymptotic freedom and in-
frared slavery, is to get a, binding potential which
is nonsingular at the origin and becomes infinite
for large distances. The harmonic-oscillator
potential me use in this paper indeed satisfies
these requirements. At this time, it is not clear
how accurately the confinement program will
determine the binding potential. Even if the pro-
gram produces an accurate potential, and if this
potential does not take any simple form, soluble
models such as the oscillator and linear potentials
will play a major role in understanding the physics
of this presumably more accurate confinement
potential.

There are speculations on the linear potential
among those supporting the confinement idea. "
The linear potential is also soluble and contains
many desirable features. The eigenvalue obtained
in this approach is the linear mass. This is nu-
merically close to getting the (mass)' eigenvalues
using the harmonic-oscillator potential. " There-
fore, there is no basic conflict betmeen the linear
and oscillator potentials.

In Sec. III, we explained the reason for choosing
the (mass)' formula and consequently the har-
monic-oscillator potential. However, the primary
advantage of using the harmonic oscillator is the
fact that its formalism is covariant and accepts
a covariant probability interpretation. This point
mas also stressed in the preceding sections. All
the physical systems of current interest are
relativistic systems.

Among many possible applications of the rela-
tivistic perturbation formula, the most exciting
recent development ha, s been the symmetry-
breaking mechanism proposed by De Rujula et al."
The most striking aspect of their work is that the
symmetry-breaking mechanism is caused by one-
gluon exchange between the constituent quarks and

that this mechanism ean explain the GMQ mass
relation and other interesting mass relations. As
in all other papers on the ma, ss formula, the
weakness of their work is that their treatment is
basically nonrelativistic and that there is an in-
trinsic difficulty which we mentioned in Sec. III
in connection mith deriving the Breit-Fermi
formula for unequal quark ma, sses.

The key term in the work of De Rujula et gi. is
the spin correlation term with unequal quark
masses in the denominator. 1n this section, w' e
derive this spin-correlation term using the per-
turbation formalism given in the preceding sec-
tion.

Let us first discuss the baryonic case. The
baryon consists of three quarks, and me can as-
sign the four-momenta to these quarks'

P, = -I'+ —q—
243

1
p2 = -'P+-'q+

2 3 6

P3= -I' - -q,3 3 3

where I' is the total four-momentum of the baryon.
q and k are two independent internal four-momenta
for the three-quark system.

In terms of these momenta, the spatial part of
the ground-state wave function takes the form

P(q, &) = —exp ——[-q q" +2(q P)'!P']
1T CO 2' 4'

exp Q QP + 2 P Q 2 P2 $9

The above expression takes a particularly simple
form in the hadron rest frame:

((t!,k)=(—) exp' —(r+q, '+r+0, ') . (20)

Let us nom consider spins. If there mere no
internal quark motion, the spin wave function in
the hadron rest frame would be a Dirac spinor
with positive-energy component only, which is

where y; is the static Dirac spinor with appropri-
ate spin index for the ith quark. If the quarks
have the internal momenta, the spin wave function
for the ith quark mill take the form

yP;+m;

where i = I, 2, 3. The internal momenta P; are
given in Eq. (18}. m; is the mass of the ith quark.
We should note here that the spatial wave function
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does not depend on the quark mass, and that the
dependence on this mass comes solely through
the spin considerations. In the symmetry-br caking
picture of De Rujula et al. , this quark mass plays
the decisive role.

With these preparations, we can now consider
the mass shift due to the exchange of a massless

ggv
(pr -pr)'+&& (23)

The mass shift then becomes

gluon between the first and second quarks. We
take the gluon propagator to be

5m'= —rrG'N —
~

d'qd'kd'k'5((P, -P', )')exp ——(q'+q, ') ——(k'+k, '+k" +k,")

where

y P&+m& y. P&+m, — y P2+m „'y 'P2+m,
'Y„2 X X 2

'Y
2 X.

mg 1 m2 m2

y' p3+m3
2m X3

3
(24)

The momentum relations for the gluon and the constituent quarks can be seen in Fig. 1. The constant N
in the above expression is the normalization constant and takes the form

d'q d'k exp ——(q'+q, '+k'+k, ') ~ ~ y p3+m3

(25)

In Eq. (24), we assumed that the gluon is ex-
changed by quark 1 and quark 2 for convenience.
Since the baryon wave function is totally symme-
tric, this particular choice is equivalent to all
other possible choices. Now the remaining task
is to evaluate the above integrals. This calcu-
lation is extremely lengthy but is straightforward.
First, we write down the result of the normaliza-
tion integral of Eq. (25)

1 (rru)' 1 1 1I(m, +&M)(m2+ 3M)(m~+3M)
N 8m, m2m3

--,', rd(M +m, +m, +m, )] . (25)

We note that the above result is totally symmetric
under the exchange of quarks. Furthermore, the
numerical vlaue of rd is approximately 1 (GeV)',
and the mass of the quark is approximately one
third of the nucleon mass. With these numerical
values, we can ignore the second term in the
square brackets, and

(m, +3M)(m, +3M)(m, +3M).1 1

8 pngm2m3

(27)

In calculating Eq. (24), there are terms which
are independent of the quark spin, those which
are quadratic in the spin, and those which are

quartic. The terms that are independent of the
quark spin do not contribute to the mass dif-
ferences. The terms which are quartic in the
quark spin are numerically very small. Thus we
retain only those terms which are quadratic in
the quark spin. The algebra then becomes sub-
stantially simple, and the spin part of the inte-
grand of Eq. (24) becomes

(m, +3M)(m, +3M)(m, +3M)
32m'' 2 m3

~ 2 «2 1 k+k'
v'2

where o, and v2 are the Pauli spin matrices for
quark 1 and quark 2, respectively. The integra-
tions over q, k, and k' variables can now be per-

p 3P+ 6q —k p'= 3P+6 q —k'I I I I

I I r I I I

6 P~3 2 3 6 P JPp= P+ —q+ —k p= —P+-q+ — k

FIG. 1. Four-momenta of the quarks inside the baryon.
They are distributed in such a way that the energy-mo-
mentum conservation is preserved at each vertex.
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formed, and

(29)
Nonre I a t ivi s tie

Scat tering

Born Series

Bound State

BE = (P, Bvy)
Now considering other pairs of quarks, we have

(30)
Relativistic Feynman Diagrams F IRST FORMULA

This formula was used by De Rujula et al. in their
work on hadronic masses. "

The spin consideration for mesons is very sim-
ilar to the baryonic case, and the mesonic mass
formula will turn out to be of the form of Eq. (20).

V. CONCLUDING REMARKS

The purpose of this paper is not to derive the
consequences of Eq. (30). This has already been
done. " What is new in the present paper is the
relativistic derivation of Eq. (30). The derivation
may prove to be far more significant than justi-
fying the work of De Rujula et al. As was stated
in Sec. I, and as is indicated in Fig. 2, we do not
have an accepted relativistic bound-state pertur-
bation theory. The perturbation formula we pre-

FIG. 2. The present status of perturbation theory.
There is at present no accepted formula for relativistic
bound states, and the first acceptable formula will play
a key role for many problems of current interest.

sented in this paper is the strongest candidate
since the invention of quantum mechanics for the
first formula in a covariant bound-state pertur-
bation theory.
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