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Quantization condition for 't Hooft monopoles in compact simple Lie groups
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The quantization conditions for 't Hooft monopoles and their related conserved topological charges are obtained
for all compact simple Lie groups. In addition, all possible Dirac monopoles are classified.

As shown by 't Hooft, ' magnetic monopoles arise
as fundamental solutions of non-Abelian gauge
theories without imposing Dirac strings. In 0,
the magnetic charge is not quantized in single
Dirac units; in general, magnetic charge quantiza-
tion depends on the underlying gauge group as seen
from explicit evaluation in SU, (see Ref. 3) and

SU, (see Ref. 4). In the present payer we shall ob-
tain the quantization conditions for 't Hooft mono-
poles in all compact simple Lie Groups and for the
related topologically conserved charges: The lat-
ter will be identified with the quantized magnetic
charges or with a subset of these depending on the
nature of the unbroken subgroup. For those groups
which admit a nontrivial first homotopy group (e.g.
O„SU,/Z„.. . ), one may in addition introduce
monopoles with genuine Dirac strings; their quan-
tized magnetic charges will also be given.

I. GENERAL CHARACTERIZATION OF 't HOOFT
MONOPO LES

Here D„is the covariant derivative operator; the
matter field P' belongs to the adjoint representa-
tion of G and V(p ) is a potential. A point-singular
solution to (1) can be obtained from

D t."""=0
D p'=0,
s I'(4')

0

(3)

(4)

(5)

as follows. A nontrivial solution of (5), P'(x), de-
fines a direction in the space of the adjoint repre-
sentation. Performing a, (possibly singular) gauge
transformation it is always possible to rotate Q'(x)
for kllx into a given maximal Abe1. ian subgroup T of

Let us review the construction of a 't Hooft
monopole for a compact simple Lie group G using
the "Abelian gauge" approach of Arafune, Freund,
and Goebela (AFG). As a simple example we first
consider the following Lagrangian invariant under
G:

g ~pa gaaa ~D ~aDaya y(ya)

A'(r~) =g
0
dsxV

~

(acT', T'cH).
Ir —rpI

Here the integral is taken along an arbitrary Dirac
string terminating at the origin 0, where the mono-
pole is located; g' (a c T'} are the monopole charg-
es. If the string can be removed in (6) by a gauge
transformation in G, one obtains in this way a
point-singular solution to (1) (singular 't Hooft
monopole). As (3}, (4), and (5) must necessarily
be satisfied asymptotically for all finite-energy
solutions, one may take the point-singular solution
as a boundary condition of a possible regular solu-
tion in which the energy at 0 is smeared out (regu-
lar 't Hooft monopole); by construction, this regu
lar monopole still has the string in the original
Abelian gauge T'.

The matter field in (1) is an important ingredient
in the construction of a regular solution and pro-
vides a mechanism for spontaneous symmetry
breaking. It is the latter that leads to topological
stability. " However, the detailed form of the mat-
ter Lagrangian is not relevant: We shall only need
to specify the unbroken subgroup H. We consider
only the cases where H is large enough to contain
a mminial Abelian subgroup T from which all Abe-
lian gauges T' are obtained by conjugation in H; in
other cases the monopole problem may be different

order I, where I is the rank of the group [e.g. in
SU, /Z, we may rotate Q'(x) into the 3-8 plane]. From
(4) we learn that P'(x) is x independent and that
A', (x) =0 (bd T) if the little group of P'(x) is iso-
morphic with T. However, if the unbroken sub-
group H is larger than T [as is generally the case
in the above model (1}(see Ref. 6)], we may still
impose A",(x) = 0 (b 4 T), but this is not the only
solution: In particular, solutions exist for which
the nonvanishing A;(x) are in a subgroup T' con-
jugate to T under H and we shall consider
these solutions. Equation (3) then reduces to

A'„=0 (a c T'), where the further allowable gauge
transformation S„A'"= 0 (a c T') has been used.
These linear equations admit monopole solutions as
line-singular solutions:
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owing to flux line formation. ' When H& T (includ-
ing the case H= T)-the singular solution (6) can al-
ways be constructed when all matter fields do not
vary in space; indeed, all A'„(5Q H) then acquire
a mass and may consistently be set equal to zero,
while the others satisfy the free field equation (3).
From now on we therefore generalize 2 to include
all possible matter Lagrangians. However, it is
necessary to specify whether all matter fields in
Z occur only in representations of the adjoint group
or whether other representations are present. In
the first case we have G =—G„,where G„=Ge/Ze;
G~ is the universal covering group of the adjoint
group G„andZ~ is its discrete center; in the second
case one has generally G = Gc but for some groups
intermediate cases may exist. ' (For the exception-
al groups G„E„andE„Z~=1 and one has always
G =- G„-=Ge. )

II. QUANTIZATION CONDITION FOR 't HOOFT
i".4ONOPOLES

To construct a point-singular 't Hooft monopole
we must now determine g in (6) so that the string
can be gauged out. To obtain this condition we
shall follow %u and Yang. " According to their
prescription one replaces (6) by an equivalent de-
scription in terms of two potentials A, and A, , ob-
tained from two strings I and II taken respectively
from - to 0 and from + to 0 along the z axis.
Af is defined in the polar angle range 0 & 8 &w/2+ 6

and A;z in m/2 —6&8 ~ m, 6&0. In the overlap re-
gion one easily evaluates

A; —A»=2eg Vp (ac:T'), (7)

where y is the azimuthal angle. To this difference
corresponds a phase factor exp(2iecpg'I') for ea,ch
matter field coupled to A.'„and belonging to the rep-
resentation generated by t'. The string will be un-
observable if and only if this phase factor is sin-
gle-valued so that (7) corresponds to a gauge
transformation. Thus we must have

m ~ n. =—Z& 'n .(n integer) .
5 2 5 (10)

(a.)
h~

C8

where t"~~' is a faithful representation of the uni-
versal covering group of G; indeed the closed
curves in G which are homotopic to zero are those
which correspond to closed curves in G~.

Let m', m', . . . be a set of / eigenvalues belonging
to a common eigenvector of the t" c', these are the
Cartesian components of a weight vector m in an
l-dimensional Euclidean space E, (E, may be
viewed as the space of the universal covering
group of T'). The totality of weights of all repre-
sentations of Ge (including of course those of G) is
contained in a weight lattice in E„which is related
to the root lattice by Eq. (10). We recall that the
root lattice is generated from l linearly indepen-
dent simple roots and that the root lattice is con-
tained in the weight lattice as a sublattice; the
simple roots and the vectors obtained from them
by a Weyl reflection (reflection in the hyperplanes
perpendicular to those roots) are the elementary
roots which are the weights of the adjoint repre-
sentation; thus the elementary roots are formed
out of the f'~' connecting T' to the other group gen-
erators. ' As an example the weight lattice of SU,
and SU, is depicted in Fig. 1. For all m and all
simple roots Z,. we have

exp(i4meg i"e') =1 (ac T'), (8)

where t"~ generates a faithful representation of
G. The condition (8) implies that a closed curve
in space within the overlapping region (w/2 —6 &8
&m/2+ 6) is mapped onto a closed curve in the
group space of G starting and ending at the unit
element. If this curve can be continuously shrunk
to zero, 6 will be reduced to 0 by a gauge trans-
formation in G; in this case the Dirac string is
removed. W'e see that if G is simply connected
(8) already implies that the string can be gauged
out; however, in general we must have the more
stringent condition

exp(i4meg't" ee ') = 1 (a & T'),

FIG. 1. (a) Weight lattice of SU2. —represents ele-
mentary roots, 0 represents 't Hooft monopoles in SU2
and 03, represents Dirac monopoles in 03. (b) Weight
lattice of SU3. represents elementary roots, 0 't
Hooft monopoles in SU& and SU3/Z3, CI first-class Dirac
monopoles in SU3/Z3, ~ second-class Dirae monopoles
in SU3/Z3 elementary root-lattice cell, III elemen-
tary weight-lattice cell, and S "soliton charge" axis
when H= U2.
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Let g. be a vector', in E, with Cartesian compo-
nents g'. From (9) we must have for all m

n
eg ~ m =— (n integer) .

2

Comparing (11) with (10) we see that

l

eg = n,.c7*,. n,- intege, r, (12)

n*. = (7 /n .~ n. (13)

where the sum is over the l simple roots.
From (13) we have n*,. n,*=(n' ./2)n,*, Z,*. , where

n' is some integer and thus the n*,. 's form a system
of simple roots. ' In fact for all-simple groups ex-
cept B, and C„the n* lattice is isomorphic to the
initial root lattice n; for B, (C,), the n lattice is
isomorphic to the n lattice of C, (B,). Note that it
follows from (10) that if the smallest simple root
is normalized to unity, the n lattice falls always on
a sublattice of the n* lattice and inparticular, for
4, (SU„,),D„E„E„E„the n and o.* lattices coin
cide. The fact that the lattice n*, which is recip-
rocal to the weight lattice of a group, is sometimes
different from the initial root lattice o. was pointed
out to us by Nuyts and Olive, who explicitly solved
Eq. (8) for all simple groups G in a different physi-
cal context. "

The quantization condition (12) is valid for point-
singular 't Hooft monopoles and thus for regular
ones if the latter can be constructed. Note that
(12) depends only on the I.ie algebra and not on

global properties; e is always defined from the
coupling (2).

III. TOPOLOGICAL STABILITY AND "SOLITON

CHARGE" QUANTIZATION

B. H contains T as a subgroup

Any T' conjugate to a fixed T under H is an ac-
ceptable Abelian gauge in which (12) is valid. Thus
the previous argument applies only to those com-
ponents of g which are common to all T'. This
common subgroup is the Lie subgroup t of T which
is an invariant subgroup of H. The "soliton

A. H isomorphic to T

In this case the Abelian gauge T' is uniquely de-
termined to coincide with H. Thus each g satisfy-
ing (12) determines entirely a singular 't Hooft
monopole and hence can be assigned uniquely to a
corresponding regular one. As all components of

g are discrete they cannot be changed by continuous
motions of matter. Thus g is strictly conserved for
finite-energy solutions and may be identified to a
"soliton charge" quantized according to (12).

charge" is thus the orthogonal projection of g in
the subspace of E, which is the image of t. [For
instance, if SU, has U, as an unbroken subgroup
the "soliton charge" is quantized along the 8-di-
rection, or any equivalent charge direction; see
Fig. 1(b). ] In particular, if the symmetry is not
broken (H —= G), f is the unit element and topological
stability is lost. '

IV. CLASSIFICATION OF DIRAC MONOPOLES

We now examine the significance of (6) if the
string cannot be gauged away. Such a solution can
be obtained only by adding to Z a Dirac string
term. The acceptable Dirac monopoles are given
by the solution of (8), which is not a solution of
(9).

Let us consider the extreme cases G -=G~ and
G =-G„,the latter containing the largest set of
available Dirac monopoles. If G -=G~ no Dirac
monopole can be introduced. When G =-G„,a faith-
ful representation of t,'~&' is generated by the sim-
ple roots o. , and (8) yields egD n,. =n/2, where g~
is the magnetic charge of the Dirac monopole. This
result may a.iso be written as egn 8*,. =(n/2)
&& (n*, n,*. ), .and thus it follows from (10) that

egD —— B.m

egD 4 g,.n*, n, integer,

where m*, are the t primitive translations of the
weight lattice m* corresponding to the root lattice

Thus the Dirac monopoles in G„aregiven by
the points of no* which do not belong to the sublat-
tice n*.

We may decompose the weight lattice I* in p
root sublattices obtained from the original n*
sublattice by (p —1) translations; these transla-
tions are the (p —1) weight vectors I*with lie
within an elementary cell of the a* lattice. These
(p 1) points represent the nontrivial elements of
the center of Gc and thus the (p —1) nontrivial ele-
ments of the first homotopy group of G„.While
the original root sublattice a* corresponds to 't
Hooft monopoles, each of the remaining (p —1) sub-
lattices defines a class of Dirac monopoles [see
for example Fig. 1(b)]. These p different classes
of monopoles are topologically inequivalent and
cannot be transformed one into another by continu-
ous motions of matter as way already pointed out
by Wu and Yang"; this fact is true even in the ab-
sence of symmetry breaking where no topological
stability condition is available for t Hooft mono-
poles.
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