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The nature of magnetic monopoles in an SO(3) gauge theory is explored by examining how they scatter
charged particles. Peripheral scattering, where the momentum transfer is much less than the mass of the
charged vector bosons, is just as it is in the earlier theory of Dirac. The scattering wave function is discussed
with some rigor since its behavior is not uniform in the forward direction. The correspondence between the
classical and quantum-mechanical scattering is displayed explicitly by relating scattering by the noncentral
monopole force to the central force scattering by an attractive 1/r? potential, for both the quantum-
mechanical and classical systems. For deep scattering, the non-Abelian monopole exhibits features absent in
the Dirac theory. The electromagnetic scattering departs from the result of the Dirac theory and charge-
exchange processes occur, exciting the monopole into an electrically charged state. This process, which
corresponds to the weak interaction of the unified SO(3) theory, is calculated in the distorted-wave Born
approximation. The relation between the monopole in the non-Abelian gauge theory and that in Dirac’s
theory is investigated by carefully regulating the gauge transformation which connects them. This resolves
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some seeming paradoxes in the connection between the two theories.

I. INTRODUCTION

The existence of magnetic monopoles has re-
mained one of the most intriguing and elusive
questions of particle physics. In the context of
ordinary electrodynamics the monopole, as en-
visaged by Dirac,' is essentially a bar magnet of
semi-infinite length and infinitesimal thickness.
The associated vector potential, magnetic field,
and electromagnetic current may be expressed as?®

- 7XZ
A= r+z '’ @
B=-g yiz+4nge(-z)c(x)5(y)] , (2)
7=VxB

=47g6(~2) [ 35’ (x)6(y) = x5(x)6’(y)] . (3)

The Dirac charge-quantization condition, eg=n
(integer or half-integer), ensures that only the
pole of the bar magnet is observable quantum
mechanically. The singular “string” of magnetic
flux along the negative z axis is not observable
because it gives rise only to a phase change of
4mn in a charged-particle wave function when it

is encircled. This phase would produce an Ahara-
nov-Bohm effect®® were itnot for the charge-quan-
tization condition which fixes the phase change to
be an integer multiple of 27.

If one considers gauge transformations defined
by multivalued gauge functions, new singularities
are introduced in the vector potentials. In this
way it is possible to change the location of the
singular “string.” To the extent that the string is
not observable, this is a legitimate transforma-

14

tion. However, as the “string” singularity also
appears in the magnetic field (2), it contributes
(infinitely) to the energy-momentum densities and
to the Maxwell stress tensor. Thus, in a more
fundamental sense, the singular string should be
observable, for example, by gravitational experi-
ments. This difficulty was recognized* by Dirac
and by Wentzel, who gave physical arguments for
defining the electromagnetic field as the sum of
the curl of the vector potential and an additional
term which removes the string singularity. Dirac
found that in order to incorporate this ad hoc de-
finition of the field in a Hamiltonian theory, the
charged particles could not cross the string sin-
gularity of the monopole. The same ad hoc defini-
tion was employed by Schwinger3® to construct a
Lorentz-invariant field theory of magnetic charge
in which the charged particles are not constrained
to avoid the string.

The properties of the recently discovered mono-
pole solution in certain spontaneously broken non-
Abelian gauge theories*'® are in sharp contrast to
those of the older theory. There is a scale in
this static classical solution set by the (very
short) Compton wavelength, x., of the (very mass-
ive) charged vector fields. At distances large on
this scale, this solution consists solely of a mag-
netic-monopole field and the Higgs scalar field
associated with the broken symmetry. At short
distances, the classical solution is nonsingular
and the total field energy, the monopole mass, is
finite. The solution is everywhere regular; it
does not contain a singular “string.” Charge
quantization is a direct consequence of the non-
Abelian group structure. The additional terms in
the electromagnetic field which Dirac required to
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eliminate the string singularity occur naturally
in the non-Abelian gauge theories. However,
there being no “string,” no condition on the path
of the charged particles analogous to that of Dirac
is required.

A characteristic feature of the new non-Abelian
monopole solution is that it locks together physical
space with the internal charge space. If the gen-
erators of the internal symmetry are T, with a
=1, 2, 3 [following Refs. 4 and 5 we take the intern-
al symmetry to be SO(3)], the charge operator is
#+T. The interlocking of the physical and isospin
spaces can be removed by a gauge transformation
which sends 7+ T into the more familiar charge
operator T,. This position-dependent gauge trans-
formation is singular. With careful definition the
transformation introduces no singularities in the
field tensor. However, the vector potential does
acquire a “string” singularity and becomes identi-
cal to the Dirac vector potential (1) in the asymp-
totic region.

Motivated by this development in non-Abelian
gauge theories, we have investigated those aspects
of the nature of magnetic charge which are re-
vealed in its scattering of electrically charged
particles. In particular, we study the scattering
of electrically charged, spin-zero particles by a
fixed, point magnetic charge. Our results apply
to the scattering in the region outside the Compton
wavelength, x., in the new gauge theory, as well
as to the scattering in the old theory. We shall
also briefly discuss deep scattering, where charge-
exchange reactions occur.

We first study the classical motion (Sec. II). It
is well known® that this motion lies on the surface
of a cone whose symmetry axis is parallel to the
total angular momentum. We show that this coni-
cal motion in the monopole field can be projected
onto the planar motion of a particle in a 1/7? at-
tractive potential. This projection relates the
time development of the two systems as well as
their orbit equations.

Section IIT comprises a review of the monopole
solution in a non-Abelian gauge theory that unifies
weak and electromagnetic interactions. These
monopoles are extremely massive with M, be-
ing of order mq/a, where m 4 is the already-
large mass of the charged weak vector boson.
Thus the monopole can be treated as a fixed scat-
tering center except for processes involving ex-
traordinarily large momentum transfers. The
structure of the fixed monopole is probed by cou-
pling it to a multiplet of spin-zero particles. This
problem is defined and solved in Sec. IV and its
connection with the Dirac theory is discussed.”

The correspondence between the quantum-mechani-
cal description and the classical motion is dem-

onstrated in Sec. V. We show that a quantum-
mechanical wave packet corresponding to a clas-
sical trajectory is concentrated on the cone of the
classical motion. Moreover, the quantum-mechani-
cal solution is shown to reproduce the classical
mapping between the monopole and the 1/3? poten-
tial problems in an appropriate approximation.

Section VI is devoted to a treatment of the quan-
tum-mechanical scattering of an electrically
charged particle by a fixed magnetic charge. This
involves the discussion of wave functions whose
behavior, as » goes to infinity for fixed polar an-
gle 6, is not uniform in 6 for small §. This prob-
lem is solved by separating a piece of the wave
function that contains the most singular behavior
and computing it explicitly in closed form (Appen-
dix A). Our results agree with the earlier work
of Banderet,® where, however, the separation of
the most singular part was not made, nor was a
well-behaved expression for the scattering ampli-
tude exhibited.

At distances small compared to x.,, the mono-
pole solution in the non-Abelian gauge theory ex-
hibits new characteristics which are not present
in the Dirac theory. Charged vector fields exist
at small distances and produce charge-exchange
scattering. Their interaction is treated approxi-
mately in Sec. VII using a distorted-wave Born
approximation. In this approximation both the re-
coil and the electrical excitation of the monopole®
are ignored. This is justified, except for extreme-
ly deep scattering, because the monopole is very
massive and its electrical effects are much small-
er than are its magnetic effects.

The nature of the singular gauge transformations
appearing in the Dirac theory and in the relation-
ship between the non-Abelian and Dirac theories
is discussed carefully in Appendix B.

II. CLASSICAL SCATTERING

We consider the classical motion of a particle
of charge e and mass m in the field of a fixed,
point magnetic charge —g. The Lorentz force
law is?

>

(4)

mr=-etrXx

ﬁNIVQ

The sum of the particle’s mechanical angular mo-
mentum and the angular momentum in the electro-
magnetic field, the total angular momentum, is
given by

:f=m'fx.?+eg17. (5)
The kinetic energy of the particle is
E=sm(¥p

=smv?. (6)
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It is easy to show that these quantities are con-
stants of the motion. It follows from Eq. (5) that
the angle between the position T and the angular
momentum J is a constant,

Tr=eg. (M

Hence the trajectory lies on a cone whose half
opening angle, 37— £, is given by
ing- &
sing= = (8)
The motion on the cone can be related to a simp-
ler, central-force problem. Let us define a posi-
tion vector R by

= —_[F-J(F-9)]. (92)

Except for the scale factor (cos&)™!, R is the pro-
jection of T onto the plane perpendicular to J.
This scale factor is chosen so that R and ¥ have
the same length, for it follows from Egs. (7), (8),
and (9a) that

R=7. (10)

Thus, the new vector R is obtained by rotating ¥
in the plane formed from ¥ and J onto the plane
perpendicular to J . The mapping (9a) is easily
inverted since according to Eqs. (7) and (8), #+J
=sin§, and so

T¥=Rcost+RJ siné. (9b)
The geometry of this mapping is illustrated in
Fig. 1.

Now as T moves on the cone, R moves on the
plane perpendicular to :f, tracing out a path de-

FIG. 1. A charged particle scattered by a fixed
monopole moves on a cone whose axis is along the
angular momentum, J. Its position vector T is related
by Eqs. (92) and (9b) to a vector ﬁ, of the same length
as r, but lying in the plane perpendicular to J.

termined by Eqgs. (4), (5), and (9a):
m:ﬁzjx(%xj)
cosé
_ eg Ix[(T —eg?)xJ]
mr3 coséE
2 2

m}i R. (11)

Q

Thus R describes the position of a particle of
mass m moving in the potential V = — ¢?g®/2mR?2.
From Eqgs. (5) and (9a) it is easy to show that the
mechanical angular momentum of the projected
motion is the same as the conserved total angular
momentum of the motion in the monopole field,

mRxR=F . (12)
Moreover, the conserved energy of the projected

motion is the same as the kinetic energy of the
motion in the monopole field,

. 2 2 2 2 2
1 PBye €8 1 20 S _e8
Zm(R) —szz_Zm +2mR2 szZ
= 3 mov?
=E. (13)

This follows immediately on comparing the con-
stant energies for the two problems in the region
where |R|=|F| is large.

If the distance of closest approach of the particle
to the monopole at the origin is b, then from Eq.

(5)
J? =m**b® + %52 . (14)

On the other hand, since |mTX7T|? and ¢* are con-
stants of the motion, we can also identify & as the
ordinary impact parameter of the motion in the
monopole field.

We can now exploit the simple motion on the
plane and the mapping (9b) to describe the more
complex motion on the cone in the monopole prob-
lem. The planar orbit is obtained in the familiar
manner by introducing a polar angle ¢ and using

_ 4R -
R—d¢¢

_drR J
- R (15)

Inserting this into the energy equation (13) we find

<é§¢;1>2=cos2£(b'2—12'2) (16)

and the integral

b

= sin(pcost)’ (17
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As R goes from +« to b and back to +«, ¥ changes
by an amount

_m
cos§

~ ezgz >1/2

=T <1 + m-z—l)zbz . (18)
With cos¢ < 3, the orbit circles the origin. As
cos¢ decreases further, more and more loops
about the origin are made. A planar orbit and its
mapping on the cone giving the orbit in the mono-
pole field are shown in Fig. 2.

If the initial and final velocities in the plane are

V,- and V,, then the corresponding velocities on the
cone are given by

Ay

¥;=V,;cos¢ - vJ sink (19a)
and
¥,=V,cost+vd sing, (19b)

where v =|%,;|=|¥,|=|V,/=|V,. Thus the scattering
angle 6 for the monopole problem is determined
by

cosf=7; v

=—cos?tcos <Cos£>—sinzg (20)
or
cos2£=cos2§sin2< L >, (21)
2 2cosé&
where we have used
‘7,-174 =—cosAy. (22)

The scattering angle 6 is shown as a function of &
in Fig. 3. Scattering angles near =7 are achieved

P

\/
/\

FIG. 2. While the position vector, ;, of the charged
partic_:.le traces out its path on a cone, the related vec-
tor, R, follows the path of a particle in an attractive
inverse-square-law potential as shown.
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FIG. 3. The classical scattering angle, 6, for a
charged particle in a pure monopole field as a function
of &£, defined by Eq. (8). As the cone becomes narrower,
g—'évr and the scattering angle oscillates about the
backward direction.

for several values of £, corresponding to one en-
circlement of the origin, two encirclements, etc.
As a result, the classical differential scattering
cross section varies rapidly with many peaks near
the backward direction. For small 6, however,
we have from Eq. (19)

0=2¢

~ 2eg
" mob” (23)

At small angles an area of the incident beam
27bdb =21(2eg/6mv)?(d6/6) will be scattered into
a solid angle dQ =276d6, giving a differential
cross. section

do [2eg\* 1
<< 1: E:<me—f> e (24)

IIIl. NON-ABELIAN GAUGE THEORY

Spontaneously broken non-Abelian gauge theories
may support a classical solution which is asymp-
totically equivalent to a monopole magnetic field.
In particular, ’t Hooft* and Polyakov® have dem-
onstrated this behavior for the system described
by the Lagrange function

A
==3GY Gy~ 3(Dyh) 2 - 7 =777 (25)
Here a=1,2,3 is an isotopic spin index, and
G";U=3qu—3"A#+e€abcA#Az, (26)
(Dyh)g=08,hy + €€ 5 Ay b - 27



2712 BOULWARE, BROWN, CAHN, ELLIS, AND LEE 14

In the solutions of interest the O(3) symmetry of
the Lagrange function is spontaneously broken.'®

In the lowest mode (and in the tree approximation)
some component of the scalar triplet, say #,, has
a constant, nonvanishing vacuum expectation val-
ue (ky)=f. The translated field i} =h, — f describes
a neutral scalar field of mass

wE=202. (28)

The remaining components 4, , are absorbed into
the longitudinal components of the charged vector
fields A{, which have charge ¢ and mass

ma®=€f?. (29)

The neutral vector field A} remains massless
and may be identified with the photon.

The field equations which follow from (25)
also admit a static classical solution with a
structure that locks together the isotopic and
physical spaces. In contrast to the earlier (Abe-
lian) monopole structure of Dirac, this new solu-
tion appears to be a natural starting point for a
true quantum-mechanical theory of monopoles.
In particular, it is a classical (tree-approxima-
tion) solution to a well-defined dynamical system;
the programrequired tofind the quantum-mechani-
cal corrections to this solution is well defined,
if somewhat difficult technically.!!'*?> Moreover,
the stability of this solution under quantum fluctua-
tions appears to be guaranteed by its topological
character.!®* (This result, of course, assumes
the nonexistence of any lower-energy, less-sym-
metrical static monopole solutions.) The study
of such monopoles is closely related to the study
of various topologically stable, special solutions
(“lumps” or “solitary waves”) in theories of one
spatial dimension.

The electrically neutral monopole solution was
extended by Julia and Zee® to the case of an elec-
trically charged magnetic monopole. In this gen-
eral case one has a static field structure, cou-
pling physical and internal spaces, of the form

-~

AG=€uy = 1=K, (30)

A3=7,N(), (31)
and

he=7,f[1=S(r)]. (32)

The insertion of these forms into Egs. (26) and
(27) yields

€ .
Gk = % {(éam ~P ) K'(r)

V¥
r

+

2[K2(r) -1] }, (33)

K@)N@r) o

G’;o = (Gak —;a’;‘k) r

T N'(r), (34)

(th)a = (6:112 _;a;k)w[_;ﬂ

7RSS’ (7), (35)
and

(D°h),=0. (36)

Here the prime denotes a derivative with respect
to r. Utilizing the orthogonality of the projection
tensors (64, —7,7,) and 7,7,, it is a simple matter
to compute the action and derive the field equa-
tions,

K" =%2K(K2 - 1) +K[ma?*(1 - S)? - N?e?], (37)

N7+ NI = —2—2NK2, (38)
e v

and

o, 2o _ 2K° BE e
S +;S ——;2—'(3—1)+ 3 S(b—l)(S—z). (39)

The coupled, nonlinear differential equations
(37)-(39) admit regular solutions that are every-
where finite. Near the origin the equations are
compatible with the limits K~1+0(?), N=0(r),
S=1+0(r) which ensure that the fields are analyt-
ic at » =0. These equations also guarantee that,
for finite-energy solutions with u, m#0, the func
tions K(r) and S(») vanish exponentially at large
distances. To study these solutions in somewhat
more detail consider the simplest case of an elec-
trically neutral monopole where N =0 and the only
parameters appearing in Egs. (37) and (39) are
the masses p and m.,. There are two extreme
possibilities with respect to the two mass scales
set by the mass of the Higgs scalar, p, and by
the mass of the charged vector meson, m.,. The
limit pu/m ., ~ 0 can be solved exactly'® with the
result that K =m,»/sinhm.,» and S=1+1/m,»

- cothm,,7», which have the asymptotic forms K
~2myre~"" and S ~1/(m,r). In the opposite lim-
it, u>my, it is straightforward to show that for
r>1/mg, K~Ae ™" and S ~Be=2"™"/(m,r)?. For
intermediate values of the ratio u/m.,, the struc-
ture of the solutions is more complex but corre-
sponds to a smooth variation between these two
limits. In particular, it is clear that the scale

of the distribution of the charged vector fields is
given by m,,.
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Using the stress-energy tensor
TH =G GY\ +(D*n), (D'h), +g* £, (40)

the monopole mass
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M e = f a%y 7% (41)

can be written in terms of the functions introduced
above as

1
2%t

. ‘, 1
M :4”f rhdr [7—5 K”+ (K*=1)2+3N"?
0 er

2 2
ﬁ My

+
8¢?

32(2-5)2]

For the neutral case where N vanishes, the mass
is of the general form (a =e?/47)

).

In the limit'® y =0, f(0)=1. More complete stud-

mgy,
Mpu]c =
a

"
S <m (43)

2
1 m,

2

+ —121{2N2 +
%

fd3r T, = fd"r T"8,7,

== fd%’r,&k T

=0. (47)

ies for nonzero values of u/ma yield® the not-sur-

prising result that f (1 /m,) is quite generally of
order 1 as is appropriate for an essentially geo-
metrical factor. When the monopole carries elec-
trical charge, N(r) behaves at large » (r > 1/m,)
as

Ner)~C - 47y

+0(e™2menT) (44)
where, as indicated in Eq. (50) below, @ is the
electrical charge of the monopole. The change in
the mass of the monopole due to the presence of
the electrical charge is easily estimated to be of
the form a(Q/e)m,, 7(u/m.), where again 7 is
simply a geometrical factor of order 1. Hence
the relative change in the mass of the monopole
owing to adding the electrical charge is of order
a® and can be safely ignored in our discussion of
the charge-exchange process in Sec. VII.

[As a parenthetical remark, we should like to
point out an interesting alternative expression for
the monopole mass. Consider the new stress-en-
ergy tensor'®

1'““"=T"”+%(g““92_a“a”)hf, (45)
which yields the same Poincaré generators
(P*#,J"") as those obtained from Eq. (40) and
which is also conserved. It will, of course, give
the same value for the monopole mass, but it has
the additional virtue that its trace directly mea-
sures the dimensional quantities in the Lagrange
function,

TH, =02 (k2 = 17). (46)
Since 7%’ is divergenceless and time independent,
we have (the integration by parts yields no surface
terms if A>0)

It follows then that

Alpnlcz de.r TUO
== fd ST,

= [asrarrst -n)

2
— ma

2

fwar E-(2s-s). (48)
This expresses the monopole mass in terms of
the only fundamental constant which carries a
dimension, f, and thus in terms of the deviation
of the Higgs field /,, from its asymptotic limit.]

In order to elucidate more fully the character
of the classical solution introduced above and, in
particular, to indicate why it is to be identified
with a magnetic monopole, we note that the direc-
tion of the field 7, in isotopic spin space specifies
the electromagnetic charge direction. Since 4, is
proportional to #,, the charge axis in isotopic spin
space is dependent on the position in physical
space, always pointing in the local radial direc-
tion. Although one is not generally accustomed
to thinking in terms of a spatially dependent
charge direction, one can still define a field
which asymptotically corresponds to the electro-
magnetic field. This may be identified simply as
the component of G.¥ along the direction of #,,
G¥h,/(hyhy)/?. To see how this is related to the
more familiar case of a fixed charge direction,
one can uncouple the link between the physical
and internal spaces by performing an appropriate
coordinate-dependent local gauge transformation.!®
For example, one may choose the transformation
which rotates #, at each point in space into &,
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thereby transforming the fields G/ into the new
fields G/¥. In this case both i, and the charge di-
rection will be along the 3-direction. How-
ever, care must be taken in performing such a
gauge rotation since the azimuthal angle ¢,

which plays an important role in the rotation,

is undefined along the 3-axis. This can lead

to the appearance of new singularities (related to
the “strings” of the Dirac monopole) which we
shall discuss further in Sec. IV and in Appendix B.
Here it is sufficient to note that with proper care
these rotations can be performed without intro-
ducing any singularities in the fields G!" (although
the vector field A} will necessarily acquire sin-
gularities). However, as far as the neutral com-
ponent of the field is concerned, the rotation need
not be performed explicitly since G ’h,/(hyhy)"?

is a scalar. Thus the electromagnetic components
of G¥ are, using Egs. (26), (30), and (31) and the
previously discussed asymptotic forms of K(r)
and N(7),

LI ha k1l
GS (hbhb)l 2Ga

2
. -1
klmrmK (7’)
er

=€

1 ~
- ___€klm_2m (49)

e (50)

For » > 1/m,, the fields exponentially approach
those of an electrically charged magnetic mono-
pole with electric charge ¢ and magnetic charge
—1/e. At distances comparable to 1/m,, these
neutral fields deviate from their asymptotic forms
and the charged fields simultaneously begin to
play a significant role. Note that the field-
strength tensor (49) cannot be expressed as the
curl of a vector potential in any connected region
of coordinate space which separates the origin
from infinity. This is clear at short distances
where the fields deviate significantly from the
simple monopole forms. It is also true at large
distances where such a representation would re-
quire the presence of singular strings which are
not present in these solutions.

In this regard we note that 't Hooft* defined the
gauge-invariant quantity

1
FHY = o) hGE

1 1
-3 Weabcha(l) *h)y(D"h), (51)

to represent the “physically observable electro-
magnetic fields.” Although the asymptotic limit

of this expression is identical to that of Eq. (49),
the two expressions differ markedly for small dis-
tance. Using the explicit expressions for AY and
h, in Egs. (30) and (32) one finds that

ri_ _kij Vi

F* = <€ pvec (52)
in all spatial regions. This result, which is di-
vergenceless except at the origin, indicates the
utility of the expression (51) as an indicator of
the topological structure of the theory.!* However,
in the context of a unified theory of weak and elec-
tromagnetic interactions, the scattering of parti-
cles which are coupled to the monopole in a fully
gauge-invariant fashion exhibits much richer phys-
ics at small impact parameter than indicated by
(52). In particular, the charged vector fields play
an essential role in the scattering process for par-
ticles whose distance of closest approach to the
monopole is of the order of or less than the
charged vector meson’s Compton wavelength.
The charged fields not only produce charge-ex-
change processes, they also modify the short-dis-
tance behavior of the noncharge-exchange reac-
tions. Because of the unified nature of the under-
lying theory, a “purely electromagnetic” piece of
the short-distance interaction cannot be isolated.
Any attempt to separate the effects of the charged
vector fields from those of the neutral vector
field will not respect gauge invariance. Hence
one must differentiate between the topological
structure of the monopole solution and the dynam-
ics arising from interactions with the monopole.

IV. PROBING MONOPOLE STRUCTURE WITH
SPINLESS PARTICLES

The nature of the classical monopole solution is
clarified by investigating the scattering of charged
particles by the monopole.’” In the simplest situa-
tion, the monopole is coupled gauge invariantly to
a charged multiplet of scalar fields {¢,} with a
Lagrange function

£,==-30")'Dyp-sm* 9"
- o"ART,+B(h, T +Chi] $ . (53)

Here T, are the Hermitian generators of isospin
rotations on ¢, and

D, p=(8,~ieT, A0 (54)
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is the gauge-covariant derivative of ¢. We shall
treat the field ¢ as a small perturbation; thus
self-interaction terms such as (¢*$)* are omitted
in £4. Since the monopole mass is very large
(Mo =mo,/a), we can treat the monopole as a
fixed scattering center providing an external field
Al even for large momentum transfers on the
order of m,,. At large distances, the Higgs field
h, behaves as a constant times #,, and its interac-
tions in (53) split the masses of the members of
the multiplet according to their electrical charge
(which is defined by 7, 7,). We shall take account
of this by tacitly assigning different mass values
to the different members of the multiplet. Near
the monopole, the Higgs field departs from its
asymptotic form, and it will contribute to the
deep scattering. In this section, however, we
shall focus attention on the long-range forces,
which are purely electromagnetic. Thus, we
shall neglect all direct interactions with the Higgs
field. Furthermore, we shall assume that the
monopole carries no electrical charge so that A9
=0. In any case, the effects of the electrical
charge of a monopole would be of order ¢?/(v/c)
(A%« e) which are very small in comparison to
the magnetic effects of order 1 (Kaml/e).

Within the approximations we have just dis-
cussed, the wave equation for the scalar field is
given by

[(:—."ﬁ-e&,T“) —k2]¢=o, (55)
where k? = w? =m? is the appropriate channel mo-
mentum involving the appropriate mass value. We
now specialize further to the case of peripheral
scattering (| AK|<my,), where the use of the as-
ymptotic form

~ 1
eAﬁ=€k,a1’, 7 (56)

suffices. (The nature of the deep scattering will
be discussed later in Sec. VII.) The wave equa-
tion (55) is easily solved by introducing a total
angular momentum operator which is the sum of
the orbital angular momentum and the isotopic
spin,

| =

T=Tx=V+T. (57)

.

Using this operator and the vector potential (56),
the wave equation (55) can be written in the form
1 92 1 . =
{—;‘ 5‘7—21’+72[J2—(7”T)2]—k2}¢)=0. (58)
(There is some similarity between the following

analysis of the non-Abelian theory in terms of
the operator T and the earlier work on the Abelian

theory by Goldhaber,'® who introduced a formal
spin variable §.) We can define a simultaneous
eigenfunction ¢J7(#) of the commuting operators
J2, J,, T, and#-T:

J? I(1+1)

J “ m magAN

2 W)= ). (59)
T? t(t+1)

7T n

This function depends only upon the angular vari-
ables specified by 7. A solution of the wave equa-
tion, ¢(T), can now be written as the product of
the angular function $j7(#) and a radial function.
Inserting this form into Eq. (58) we may identify
the radial function as a spherical Bessel function,
and conclude that the partial-wave solutions are
given by

(X)) =7 @) jpller), (60)
where the index I’ is the positive root of
U +1)=Ul+1)=n?. (61)

The construction of the angular eigenfunctions is
facilitated by the use of a spatially dependent unit-
ary matrix which rotates # + T into T,:

U(— ¢’ - 9’ (P) =e-i¢T3e_ieTZei¢T3 . (62)
Thus
7 TU(=p, =0, p)=U(=p, -6, $)T, . (63)

Moreover, a little calculation using the rotation-
group property of T verifies that

JU(=¢,~6,9)=U(-9,-6, )7, (64)
where
- . [1ls = .
g=rX<z—.V—eaT3> +7T,, (65)
with
eG =125 (66)
Y+z

We see that Eqgs. (59) will be satisfied with

@) =U(~ ¢, - 6, p)xi D) (87)
if ¥} is a charge eigenvector,
Tyt =nyy, (68)

and if the function D(#) obeys

g2 R I(l+1)
D) = D7), (69)
9, m

where T, in Eq. (65) is now replaced by its eigen-
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value, n. Equations (69), when written in terms
of the angular variables 6, ¢, are the differential
equations which define the representation functions
of the rotation group. Thus we have!®

D) =25 (- ¢, 6, 9)
=(l,nle"%3e'0 21 3| [ ), (70)
In summary, a specific partial wave is given by
H(F)=U(- 9, = 6, )xi D= ¢, 6, §)jp(kr).
(1)

The unitary matrix U(- ¢, - 6, ¢) is not well de-
fined along the negative z axis. This is reflected
in the “string” singularity along the negative z
axis in the function @ (¥) [Eq. (66)]. It is also re-
flected in the function D(#) which is not analytic
along the negative z axis. However, the wave
equation (58) is regular along the negative z axis
and so are its solutions. There are compensating
singularities in U(- ¢, =6, ¢) and D(#). This lack
of singularity is explicitly exhibited by writing
Eq. (67) in the form

PIE) = 2o X D=6, - 6, H)DIR(- 8,6, 9)

= 2 X1 D) (= 9,6, )

X ‘szfn)(‘ ‘;bs o, ¢) (72)

and reducing the direct product by the Clebsch-
Gordan series to obtain

PIG)= 2 X (-1

x D (t, =n, 1,nlj0)

X:Dg];r)n-n’(— ¢; 9) ':P)

X{j,m=n'lt,-n', L,m). (73)

The single representation function that appears in
Eq. (73), D§),_.(- ¢, 6, ¢), is proportional to the
ordinary spherical harmonic Y7-"'(6, $), which is
a finite polynomial in x/7, y/7, z/7, and is there-
fore analytic everywhere. (The amplitudes here,
which are eigenfunctions of # - T, are akin to the
usual helicity amplitudes which are eigenfunctions
of £+S.)

The unitary matrix U(- ¢, — 6, $) may be viewed
as a spatially dependent gauge rotation which
transforms the original spatially dependent charge
direction in isotopic spin space #, into the constant
direction 6,,. It is instructive to consider the
effect of this gauge transformation

o(T)=U(- 9, -6, 9) y(T) (74)

in more detail. Using Egs. (63) and (64), the
gauge transformation of the wave equation in the
version of Eq. (58) is immediate,

1 82 1 2 2 2 —

[—; 5;’—21’-}-?(5 —Ts)—k Y=0. (75)
Inserting the explicit form of the operator 3 [Eqs.
(65) and (66)], reverting to Cartesian coordinates,
and assuming that y diagonalizes T, with eigen-
value n gives

[(l.ﬁ_”;'X§>z-k2] W(F)=0. (76)

1 v +z

This is the wave equation for a charged particle
in the magnetic field of a monopole of the kind en-
visaged by Dirac.! Moreover, we now see that
the angular momentum operator § [Eq. (65)] is
the sum of the particle’s mechanical angular mo-
mentum and the angular momentum in the electro-
magnetic field. We should emphasize, however,
that this correspondence holds only in the asymp-
totic region » > m,~* where Eq. (56) is valid.

In deriving the wave equation (76), we have used
a singular gauge transformation, Eq. (62). It is
the singular structure of this transformation
which has introduced the “string” singularity into
the vector potential of Eq. (76). The character of
such singular gauge transformations is explored
in some detail in Appendix B.

V. CLASSICAL LIMIT

Here we briefly discuss the manner in which
the quantum-mechanical motion is connected with
the classical motion outlined in Sec. II. For this
purpose, we shall consider the simplest case of
the nonrelativistic limit of the wave equation
which, in the gauge where i, < 5,;, is the ordin-
ary Schrodinger equation with a monopole poten-
tial. Thus, we shall consider time-dependent
wave functions of the form

WF, 1) Zf dk FJ(k) e~ 02/2m
i,m Y0

Xs}'('l.')"(_‘p!'ea ) jy(kr). (7)

Suppose that the quantum wave packet (77) cor-
responds to the motion of a classical particle
whose total angular momentum lies along the
positive z axis. This wave packet will have d,
eigenvalues in a small range about m =1. It will
involve essentially the angular function

sin'*"6

) i(1-n)e _
Dn.l( ¢s 61 ;p)oce (l—COSG)n .

(78)

The modulus of this function is at a maximum on
the cone where 6=6,, with
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cosb,, = lﬁ (79)
Remembering that / denotes the total angular mo-
mentum, we see that 6,,= (37— £) is precisely the
half-angle of the cone of the classical motion, Eq.
(8). Thus the quantum wave packet is indeed con-
centrated on the surface of the cone of the classi-
cal motion. For large [ we have

1>1: D)= 9, 6, p)xel(t-mOe-10-0m7/2
(80)

[With » =0 the familiar description of the planar
motion of a particle in a central force is recovered
with an angular function Y4(6, ¢).]

We can make further contact with the classical
limit. Let us define

1/2 :
w7, 9= (222 ) o= 9,6, 6) (81)

so that the angular function Y7(6, ¢) has the same
normalization as does the spherical harmonic
Y70, 9) of central force problems,*®

Jangpio, or76, 9)= [anvrie, o1 v7ee, o)
=6™'"5,, . (82)
The matrix element
Janyprype
vanishes unless [, =1, or [, =1,+1. We write T in
terms of the spherical harmonics Y73 and com-

pute the angular integrals interms of 3- j symbols
to establish the relationship

fdszy;"lx*?fyrzz = fdsz Y;"lx*(? Ciy, +ird,1,2)Y,"'22 ,

(83)
where
¢11,=0, L#hxl (84a)
w? 1/2
Cr41,1=Cr g4 = \:1"' (l+1)2} , (84b)
d; =0, L#l, (84c)
n

b= 1y (84d)

This relationship is the quantum-mechanical ana-
log of the classical projection (9b). The motion
in the monopole field described by a wave packet
constructed from the functions j, Y7 can be pro-
jected onto the central-»?/7? potential problem by
replacing the Y7 functions with the ordinary
spherical harmonics Y]'. Then, assuming that the

! values are sufficiently large so that the noncom-
mutativity of the angular momentum operator T
and T can be neglected and that  can be replaced
by (+1, we have the following relationship between
the expectation values in the two wave packets:

-

R . n2 1/2 L.
< r(t»monopolc = <r(t) ( - F) +7l7’(t) _Ijé >"" 2772 potential
(85)

This is indeed the quantum-mechanical analog of
the projection (9b).

VL. QUANTUM-MECHANICAL SCATTERING

From the partial-wave solutions to the wave
equation [Egs. (58) and (75)] we can construct
scattering solutions, solutions which at large dis-
tances from the origin consist of a plane wave
plus an outgoing spherical wave. If the particle
enters from z = -, the 2z component of its total
angular momentum is given by J;=T;=— (_’I" 7))
=—n. The appropriate angular eigenfunctions are
$77"(r). We shall take n = eg to be positive to
make the notation simple since the reflection »

- —n corresponds to a spatial inversion and just
produces an overall phase change [cf. Eq. (A2)].
Guided by this angular momentum information
and by the familiar expansion of e**# in spherical
Bessel functions, we consider the partial-wave
sum

0

¢(+)(§):e-£1rn E(2l+1)e“” e-iwl’/z]-l’(k,’.)

1=n
x[U(- 9, -6, 9)xi]
X D (= 9,6, 9). (88)

The factor in square brackets represents the
charge eigenstate which is not altered in the peri-
pheral, elastic scattering described by this wave
function. The remaining factor is the physically
significant wave function

¢(+)(})=e—iwn (2l+1)eime_i7rl'/z

X jp(kr)e2"%d") (6). (87)

[The matrix U(- ¢, 6, ¢) transforms J, into -
(1/i)(8/0¢) +n. Since J, takes on the value —n,
this accounts for the factor ¢~2""? in Eq. (87).]
The wave function in Eq. (87) is not mathemati-
cally well-behaved near the forward direction 6
=0: The limits » -~ and 6~ 0 are not uniform
and cannot be interchanged. The wave function
vanishes in the exact forward direction 6=0, for
all distances 7, but it is sharply peaked near the
forward direction at large distances. It is con-
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venient to decompose the wave function into two parts

l[J(+)( 'f) — e-zinda[

where

P (T)+y (D], (88)

y (F)=e-'"" E(2l+1) T2y (e )ag! L (6)

i=n

(89a)
contains the most singular behavior while the sum

=e~in" Z (21+1)e!

=n

x[e=m2(lor )= €% (for )]
x dit),(8) (89b)

converges faster and is better behaved. We show
in Appendix A that y,(T) can be written in closed
form [Eq. (A19)],

‘p[(-f) =e—i""/zeik('+z)/2%,%(1’ -2)

X[Gn-iz klr = 2))=ijsklr =2))].  (90)

In the limit when k(r —z) =7 (1 — cosf) becomes
large, this function describes an incident plane
wave plus an outgoing spherical wave [Eq. (A21)],

kr(1 —cosg)—wo:
ine”"" 1 4.,

k(1 —cosh) » € (91)

KP[(F): eikz_

This proves that the wave function y®(#) is indeed

the correct scattering wave function since the

¢,(7) piece contains only outgoing waves. Note

that the absolute square of the outgoing wave amplitude

in Eq. (91), [#n/k(1 —cos®) P, is just the classical cross

section [Eq. (24)] in the small- scattering-angle limit.
When 7 is an integer, the closed form (90) for

¢l('f) involves a finite sum of elementary functions.

In particular, whenz=1 we have

[ ()], = €™ [1 —~ (;‘_ZJ .

This result exhibits clearly the nonuniform be-
havior of the wave function as k7 becomes large
and 6 becomes small. We see that the asymp-
totic scattering description is valid near the for-
ward direction only for distances that are large
compared to (k6%)™!

The asymptotic value of the J; piece of the wave

ie:kr

k(r —z) °

92)

J

2 _—1___._. ! l+n l=n
T U T2 )t f_ d(cosh)[(1 - cosh)"*"(1 + cosh)'™
- 1 (- 2u)
22 ) T —2v)

function follows immediately from the asymptotic
limit of the spherical Bessel function,

k7(1 — cosf) -

o1
=)~ -3TNn
(@)= o

ikr
X 2 (20+ D[e =D _ ]df,,’.’n(e)
i=n

(93)

Combining the asymptotic values of ¢, () and
¥g () gives

PO (F) = e-zinw[eikz+f(9) 6:71 , (94)

with the scattering amplitude f(9) identified as
e-imr n
0= 5[

2ik | sin®*(36)
+ Z (204 1) (7 mD _ 1)df‘f_)n(9)] .
I=n

(95)

The sum appearing here, which is the contribu-
tion from Y, is not uniformly convergent as 6
approaches 0. It produces a singularity in the for-
ward direction which is weaker than that of the
1/sin?(36) term which was isolated in the function
P;(F). The convergence of the I sum can be further
improved by using the completeness of the d{}),(6)
to write
] [1 —cos@}”/2

v o
sin 2 3

Z a,df,,’_),, (96)
We use the orthogonality relation'®

1
[ dlcoso)a} O 0) =501, OT)
-1

and the generalized Rodriguez formulalg
(1) (=1 -
dn (9) —’(—T(l —COSB) n
x <_d_> M[(l —c0s6)""(1+ cos6)'")
dcosf ’
(98)

and then integrate by parts [ —» times to obtain

l=n
- =(n=-v/2)
dcosG> (1 - cosf)

f d(cos8)(1 —cos)™/2(1+cosh)’". (99)
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The trivial variable change 1+ cos6=2¢ puts the integral in the form of the standard integral representa-

tion for the beta function, and we find that

Tn+sv+1) T -3v)
I'n-3v) Tl+zv+2)"

a,;=(2l+1)

(100)

Setting v=-1,0,1 and using Eqgs. (96) and (100) gives the sums

.
1 A
L e
sin(z0) . i
= )
1 = (2+1) 1(+1) dy,2n(6) .
sin(36) 1
(I+2)(° 1)
~ J

(101)

We now use Eqgs. (101) to remove the first three terms in the %»?/(2]+ 1) expansion of the exponential of the
phase shift —37(l’= 1) = = 7{[(I+ 3)? =n?]'/2 = (1 + 3)} in the partial-wave sum (95) and secure

| ~ | e
O {“@Sif‘%)ﬁ(%sm?) +

% sin®(36)

0

™t 21+1

1<i1m 'n9>3 1_71“-”2 /ms'nE-)Sl
2 52 T -1 2 M)

1 < -
Z [(2l+ 1) (e ™D _1) —im?+ 3

+—2—1:—1-€ i=n

(If n=3% we can subtract only the first two terms
and not the first three terms as we have done.)
The factor in square brackets now behaves as n®/
1® for large I. This ensures that the sum conver-
ges rapidly if # is small. For n=1 the sum is in
fact negligible. The situation when # is large re-
quires a different treatment. When » is large we
have essentially a classical limit and the partial -
wave sum can be evaluated by a stationary phase
method.”® (While completing this work, we re-
ceived a report by Schwinger et al.?* which con-
tains extensive evaluations of the scattering cross
section, to which we refer the reader.)

In the following section, we shall require the
scattering solution for a wave incident along an
arbitrary direction. This is most easily obtained
by rotating our previous scattering solution which
has the wave incident along the negative z axis.
Such a rotation must not alter the wave equation
which couples the physical and isospin spaces.
Hence, the appropriate infinitesimal rotation oper-
ators are the total angular momentum operators
of Eq. (57), and a finite rotation characterized by

the Euler angles (a, 8, v) is given by
R(a, B,y)=e'?73e®20% 75 (103)

Under this rotation, the angular eigenfunction
o77(?) becomes

1(1+1) ~ 4

(102)

im* (1 —tn?r?)
O

r

R(a, 8,7) 977=2 o1 (D, 8,7)

= Z [U(—(Z), _9’ ¢)X:]Dfnln)'(_¢> 9’ (;b)
xDl (a, B, 7)

=Z[U(-¢: —9’ ¢)X¥]&)r(nzn)(\1” 6, q’) ’

(104)

where (¥, ©, ®) denote the Euler angles of the com-
bined rotations (-¢, 6, ¢) and (a, B,). In order to
rotate the wave vector k2 into an arbitrary direc-
tion

k2 ~Kk=F(2 cosb,+ £ 8inb, cos ¢, + § sinb, sing,)
(105)

we set (o, 8,v)=(=0,, —6,, ¢,), choosing o =~y so
that the rotation continuously approaches the iden-
tity when the polar angle 6, vanishes. The Euler-
ian angles for the combined rotation may be read
off from the explicit spin-3 representation of the
rotation group with the result that

c0s© = cos6 cosb, + cos(p — ¢,) sind sing,

=7k, (106a)
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iw-0)_ € *Prcos(30) sin(36,) — 7' sin(36) cos(36,)
e ”’kcos(z())sm(z 6,) —e*® sin(0) cos(z6,)
(106b)
and

iws)  COS(36) cos(36,)+ e ®x®) sin(36) sin(36,)
" cos(z6) cos(36,) + e " °+ P sin(36) sin(36,)

(106¢)

e

The scattering solution, Eq. (86), is now rotated
into

¢£+)(;)= gmimn Z 20+ l)eifrle-iv 1’/2j1,(k7)
i=n

x[U(=¢, =8, d)x%]
x Z DD (=, 0, D)D) (= s =By D) -

(107)

It is instructive to examine the manner in which
this rotation acts in the Dirac monopole theory.
We recall that the gauge transformation which
sends 7, into §,;,

d(F)=U(-9, -6, O)¥(), (74)

transforms ¢(¥) into the function #(¥) which is,
except for the isospinor factor y}, the wave func-
tion for the Dirac monopole. We have effectively
made this transformation in passing from the
wave function ¢’ (¥) of Eq. (86) to the wave func-
tion $*(¥) of Eq. (87). Thus, the rotated Dirac
monopole scattering wave function is given by
(+)(r) e-nm Z (21+ l)eiﬂe-iwl'/zjl’(ky)

I=n

x D! (¥, 0, d)

- ein(\!/-@) |:e-i1rn i (2l+ 1)ei1rle-i1r /2
I=n
xjulen)dsi2,(0)] . (108)

Aside from a phase factor, the quantity which ap-
pears here in the square brackets is just the wave
function () of Eq. (87) with the angle 6 defined
by cosf=2*T replaced with the angle © defined by
cos®©=k-F. This part corresponds to the result of
a simple geometrical rotation zZ —%. The phase
factor e2i"® representing the total angular mom-
entum g4 =-n is now replaced by ¢"(¥"®), By
rotatmg the wave function in the gauge with 7,

OC’V and then extracting the wave function in the
gauge where i, 5, we have obtained a solution
which is equivalent in the Dirac picture to rotating
the wave function and the vector potential by a re-

definition of variables, and then returning the
“string” singularity in the vector potential to its
original orientation by a gauge transformation.
This is exhibited explicitly by decomposing the
phase factor in Eq. (108) into two pieces

em(\lf—@)_e-Zinae-inQ. (109)

The angle « is the azimuthal angle defined relative
to the rotated incident wave direction K. Thus,

the phase factor e “2in® pepresents the angular
momentum (k §)" =—n appropriate to the altered
incident wave direction. The second phase factor
e "? is a gauge transformation which moves the
“string” singularity along the line » =F+% in the
factor e™2i"* back to its original position along the
negative z axis. (The gauge function  is the solid
angle subtended by the planar surface bordered by
the two singularity lines as viewed from the posi-
tion ¥.??) Since this overall phase has no physical
significance, we have demonstrated explicitly that
the orientation of the Dirac string is not observ-
able in scattering experiments.

VII. DEEP SCATTERING

So far we have concentrated on the peripheral
scattering of a charged particle, where the po-
tential is just that of a pure magnetic monopole.
However, in non-Abelian gauge theory, the exact
classical solution for the vector potential deviates
from that of a pure magnetic monopole at short
distances characterized by the Compton wavelength
of the heavy charged vector bosons. In fact, the
vector potential approaches zeroatthe origin, thus
providing a finite total energy for the monopole
system in the tree approximation. Hence, if the
patticles of the charged field ¢ scatter deeply on
the non-Abelian monopole, we must use the
complete vector potential

A"—eak, [1— K(r)|. (30)
This vector potential describes charged as well as
neutral fields, and the particle’s charge is no
longer conserved in the scattering process. Since
charge is conserved inthe total system, deep
scattering will induce charge-exchange reactions
between the monopole system and the scattered
particle. The perturbation of the monopole system
by the charge exchange gives rise to two small
effects: The mass of a charged monopole state is
larger than that of the uncharged state by an
amount of relative order o 2. This alters the
energy balance of the scattered particle, but by a
negligible amount. The electrical charge of the
final monopole state also gives rise to a Coulomb
final-state interaction which alters the scattering
amplitude, but again by a negligible amount of
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order a/(v/c) relative to the magnetic final-state
interaction. We note that deep scattering, where
the momentum transfer Ak is on the order of m,
but where Ak <M, ~m,/«, is consistent with the
approximation of a fixed scattering center (the
neglect of recoil and retardation effects). Thus

we can describe the deep charge-exchange scatter-
ing by the wave equation (55) which, with the full
vector potential (30), can be expressed in the form

{—13—2w+j—2[32- TP+ v, - k2}¢<f> =0

v or
(110)
with
V,= ;,17{—2K[T-3- (#D2]+ K272 - T2}
(111)

We are interested in the term —(ZK/TZ)[T'E

— (#*T)?] in Eq. (111) that induces charge-ex-
change reactions. (The other term in V, will mod-
ify the deep-scattering amplitude for the charge
preserving processes.) These processes are also
modified by effects from self-coupling of the
charged scalar field and by its interactions with
the Higgs field %,. Since the direct-coupling
strength of this latter process is not fixed a priori,
we shall concentrate on the charge-exchange pro-
cess whose structure is fixed by the original non-
Abelian theory.

We can use the distorted-wave Born approxi-
mation to find the charge-exchange amplitude by
the deviation term, —(2K/72)[T+J - (7 T)?].

In this approximation, the charge-exchange amp-
litude is given by

f(kf b TLf ’ k yny )cha:ge exchange

1
== -
4n (d)lzf”‘f { ﬁ
where K, 15y and n;,, are the initial (final) mo-
mentum and charge. Since the mass of the scat-

(7T }¢§*> > . (112)

—

tered particle may depend upon its electrical

charge (through its coupling to the asymptotic

Higgs field k,~f#,), the initial and final momenta
may have different magnitude. The wave function
¢+ asymptotically approaches a plane wave plus
an outgoing spherical wave, while the wave func-
tion ¢ asymptotically approaches a plane wave
plus an incoming spherical wave. Taking Ei =k,z,

we have
¢k.z,n enim; Z (21 +1)e ity /2)J (kﬂ’)
i=ln;l
X ¢7"i(7) (113)
where the index I} is the positive root of
(l+ 1) =11 +1) —n,2. (114)

A wave function asymptotically describing a plane
wave traveling up the z axis plus an incoming
spherical wave is easily constructed using the
methods of the previous section. We transform
this wave function by a rotation that sends 2 into
k to obtain the final-state wave function ¢‘ >
With kot

Ef =k,(cosb,z +sinb, cospx +sinb, sing,§) (115)

we have
5—) =g i0;T3,"10, 730103
kping
’ ~
X D @1+ D% ) GP)
1= lnfl

= Z 21+ l)e”’}/zj,}(kfr)

Iym

><-‘D‘”( bpy =05 D) OTTH(T) (116)

where the index I; satisfies an equation analogous
to Eq. (114) with z; replaced by #,. In Eq. (116),
the phase factor ¢!"#/2 has been chosen to ensure
the proper asymptotic behavior, the plane wave
plus an incoming spherical wave. Since the total
angular momentum Jis conserved, the charge-
exchange scattering amplitude is now given by

- N 1 ’
f(kf’nf;kiz’ni)charge exchange 411 im; Z 2l+1)2 inCi-g/2- 1/2)[ d’I’K )];l(k 'V)]p (kf'l’)j'

XD, (=06, ) f asley, " ()]te[T-J -

-

FTrIlerm @) -

(117)

The angular integral in Eq. (117) can be evaluated with the aid of the two operators

X, =T+ J— (#TP+iT xJ.

(118)

They are raising (X,) and lowering (X_.) operators for the charge #+T since

[7T,x,]=2x, .

(119)
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(Note that the X, are essentially the same as helicity-raising and -lowering operators.) The Txp-J
term in Eq. (118) is Hermitian because J, commutes with (T x¥),. Hence

Xt=x

A rather lengthy calculation yields the normalization

XX, =[J2=7 T@-T2)|[T2- 7 T(r-Tx1)] .

(120)

(121)

Therefore, with the spinor factors y} of unit norm, and with the D‘” normalization given in Eqgs. (81) and
(82), we conclude that, with an appropriate choice of phase,

f AQLe7m (A2 T+ T = (7 TR o7 (7)) = f Ao (7

170G + X ) p75imi(2) ]

214”1{[1(“1) ning = D0+ 1) < nng - D]V,
[+ 1) =yl DIE[8E+ 1) =y + 1D]H20, 0
(122)
The charge-exchange scattering amplitude thus has the form
SRy 115 e 1 e == €77 3 (20 + 1>ef"”-lé/2-’}/2>[ f dVK(V)jzlg(kiV)]'z'f(kf”ﬂ
X100 1 Pat)en, (= Ops = 05, OLLE+ 1) =yl + 1) ]2

x[H(t+1) = ny(n; +1)]4/2

+ énf,"l_lﬂ)(”_" (=, — 05, DI+ 1) = my(n; - 1)]2/2

x [tE+1) = n;(n; -1)]*/3. (123)

The factor in curly brackets indicates the single-
charge-exchange behavior of this approximate
amplitude. As explained in Sec. III, the function
K(7) behaves essentially as Ae™™en" with the con-
stant A being, in general, of order 1. The use of
this approximation is clearly sensible for k<<m,
and, moreover, in this limit only the lowest (al-
lowed) ! term need be retained in the sum. The
overlap integral in Eq. (123) now behaves as (k,/
M) 5 (k;/m )%, and we obtain the following con-
clusions: Let N be the larger of In,[ or fnfl .
Then, ignoring the mass splittings so that &;=k;
=k, we have

dc) ( A >2[(N+1/4)1/2+(3N-3/4)1/2_1]
== oc
<dQ charge exchange m ch

X sin®0,(1 - cosg,2¥2.  (124)

From Eq. (124) it is clear that for small but non-
zero incident charge, the reaction occurs predom-
inantly in the direction of decreasing the magni-
tude of the particle’s charge.

APPENDIX A

We shall obtain a closed form for the sum

T, (F) =i Z (21+1)e'tt/2j (k’r)df,fl,,(e),
l=lnl

(A1)

where [ and » are both either integers or half-
integers. Here j,(kr) is a spherical Bessel func-
tion and d,, (” ‘.(0) a representation function of the
rotation group * We shall assume that the index
n is positive since the result for negative » is
obvious from the symmetry

d'®.(8)=(=17"d}.(6). (a2)
We shall prove that

T'(n+1)
T'(2rn+1)

X ®(n+1;2n+1; —ikr(l - cos)), (A3)

U(F) = eimn/2 e*kr(1 - cos0)]"

where ®(a;c; z) is the regular, confluent hyper-
geometric function.?*
First we note that the Bessel and rotation func-
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tions obey the ordinary differential equations

1 dz 1(I1+1 .
(5 are - o e =0 (a4)

and®

1 d ., d 2n? ] a4y (o
[ 51n9—+l(l+1)——1—_—c‘6§-é d (9)-0.

sin6 d6 do e
(A5)
Hence, any function of the form
F(r,0)= Y cyj(kr)d $2,(0) (A6)
l=n

is a regular solution of the partial-differential
equation

21
72(1 - cosb)

[V2+k2— ]F('V,G):O. (A7)
On the other hand, since the functions d ('}, (6) are
complete, any regular solution of Eq. (A7) can be
expressed in the form (A6) with constant coeffic-
ients ¢;. The confluent hypergeometric function
in Eq. (A3) obeys the differential equation®

d? d
[ga—g—2+(2n+1—§)az-—n—1}

X ®(n+1;2n+1;¢)=0. (A8)

Therefore it follows that ¥;(T), as defined in Eq.
(A3), satisfies the partial-differential equation
(AT). Since this definition of ,(F) is regular at
the origin, it can be expressed in the form of the
sum (A6). All that remains to be shown now is
that the coefficients ¢, have the values (27
+1)e~t™e /2 gigplayed in Eq. (Al).

The regular, confluent hypergeometric function
in Eq. (A3) may be written as an infinite sum?*

Tn+1) ) .S Te+p+1) ¢*
T@ns1) d(n+1;2rn+1;¢) = ; TCnipil) ol
(A9)

This enables us to identify easily the coefficient
of the term in Eq. (A3) involving the particular
power of (£r) and (1 - cos6), [e=*"/2kr(1 - cosb)]::

I(L+1) 1
I'L+n+1) T(L-n+1) °

(A10)

To compare this with the sum (A6), we note that?®

aw (9):<1—cos(9 " T(n+l+1)
T = 2 r(-n+1)I'(2n+1)

XFn-1,l+n+1;2n+1;3(1 - cosb)),
(A11)

where F(a,b;c;z) is the ordinary hypergeometric
function which, with a negative first index —(I

—-n), is a finite polynomial in its argument. Thus

4% (6)= (=1)n  T(@2I+1) [1-cosb\’
ny -1 T'l-n+1) T(@+n+1) 2
+[lower powers of (1 - cosf)]. (A12)
Moreover,
. r'il+2
j(kr)=2 _“r(;us)) (2k7)?
+ [higher powers of (k7)]. (A13)

Accordingly, the term involving the particular
power [e~"/2ky(1 - cos6)]* in the general sum (A6)
arises only from the /=L term and has the coeffi-
cient

1 I'(L+1)
2L+1 TL+n+1)I'(L -n+1) °

(A14)

Comparing (A10) with (A14), we see that the func-
tion defined by Eq. (A3) has the expansion (A6)
with the coefficient

cp=ein2L +1)eiTE/2, (A15)

cLeﬁrL/Z(_l)L-n

This proves our assertion that Eqs. (A1) and (A3)
define the same function.

It is convenient to express ¥;(T) in terms of the
familiar spherical Bessel functions. The conflu-
ent hypergeometric function appearing in Eq. (A3)
may be written as®

<I>(n+1;2n+i;§)=2%@(n;Zn;g), (A16)
where®*

®(n;2n; —2ix) = FI%’Z)) e (2x) (). (ALT)
Using

x Ed)-c- K (x) = =2 (%), (A18)
we obtain

wl(f.) ___e-irm/ze(i/2)kr(1+cose)%k,y.(1 _ COSG)
X [ Gy (L = cosd))
- ij{zkr(1 - cosb))]. (A19)

Note that this expression is especially simple for
integer » where the spherical Bessel functions
contain a finite sum of trigonometric functions.
We note that, in the general case, the limit x -,

j,(x)z;—];sin< —f2-1>
+ l(l+1)cos< —%Z>, (A20)

2x 2
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yields the asymptotic evaluation » —~«:

i p=iTn
ne iBr

kr(1 - cosb) e (a21)

zpl(?) ~ eikrcos@ -

APPENDIX B

Here we shall discuss carefully the properties of
various singular transformations which arise in
the context of theories with magnetic monopoles.
There are two cases of interest: the familiar
Abelian gauge transformations of ordinary electro-
dynamics and the non-Abelian gauge transforma-
tions of the more recently studied unified theories
of weak and electromagnetic interactions. In both
cases singular-valued and multivalued functions
arise which must be regulated in some way with the
final results being obtained as limits.

In the Abelian case the vector potential for the
magnetic monopole is given by

K:
g7(1f+z)
yx—x9

rir+z) (B1)

=8

Since this potential is singular on the negative z
axis and at the origin, it is necessary to study a
regulated form, for example,

x yE -9

A, =gm, (B2)
where
R=(r2+¢?)t/?
={(x2+y2+e?)+22 /2, (B3)

The regulated magnetic field ER is easily found
to have the form

B,=V xA,
¥ €2 €z
=—g|=3 + . B4
8RR +2) RZ(R+Z)2J (®B4)

In the limit €*—~ 0, the regulated magnetic field
approaches

ER er“\J—>0 ”g[ +

r 72(x2+y2+52)

4€226(-2)
(x2+y2+€2)2' .

T 26°26(-z)
3

(B5)

Clearly, in this limit, the second and third terms
vanish except on the negative z axis. Moreover, if
we integrate Eq. (B5) over a vanishingly small
surface element which intersects the negative z
axis, we find that while the third term yields a
finite result, the second term gives a vanishing con-
tribution. Hence the second term can be dropped
while the third term produces a “string” singular-

ity, and we obtain the limit

-~

§=_g[%+24n5(x)a(y)e(_zﬂ . (B6)
Note that the magnetic flux in the “string” singu-
larity precisely cancels that in the 1/#2 field,

fd§-§=—4ng+4ng=0. (BT)

Thus, the magnetic field is that of a semi-infinitely
long bar magnet of infinitesimal thickness rather
than that of an isolated magnetic pole.

The vector potential not only defines the magnetic
field through its curl but, together with the gradi-
ent, it forms the gauge-covariant derivative

Dy(F) = [V~ ie AF)Ju(F) . (B8)

By means of the wave equation, D determines the
electromagnetic interaction of the particle de-
scribed by the wave function (¥) with the potential
A. Under a gauge transformation defined by the
gauge function A(F) the vector potential and wave
function transform as

A@) =A@ + I\, (B9a)

¥ (F) =e MOy(F) . (B9b)
As a result of Eq. (B9a), the gauge-covariant de-
rivative D of ¢ will transform like  |Eq. (B9b)].
The gauge function \(¥) is usually taken to be
single-valued. However, we may also consider gauge
transformations e *F) which are single-valued
almost everywhere but with a multivalued gauge
function A(f). In this case, although VA(F) is
single-valued almost everywhere, it will be sing-
ular along a line that joins together the various
sheets of the multivalued function . Such a gauge
function will introduce singularities in the gauge-
transformed Vvector potential A’. This singularity
structure in A’ is exactly matched by the milti-
valued behavior of Vi’ induced by the transforma-
tion ei*®), The magnetic field B’ defined by A’

is also altered by such transformations. This can
be seen easily by considering the change in the
magnetic flux through a surface S induced by the
function X:

A<175=f as-(® - B)
=f 5% x (%)
=f al-on. (B10)

Clearly, the necessary and sufficient condition for
AP to vanish is that A be single-valued around
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the edge of the surface S. For a multivalued A,
Ad will, in general, not vanish.

As an explicit example consider the Dirac vector
potential (B2) and magnetic field (B6). As already
noted, these fields initially contain a singular
string which is, however, not observable in a
purely quantum-mechanical context for the case
where eg is an integer or a half-integer. The mul-
tivalued function

A(F) = 2g tan"<—3—c)~>

=2g¢ (B11)
has the gradient
9, XY =YX
VA=2g pErve: (B12)
and changes the vector potential into
A= XY= yx (B13)

8rir-z)"

Thus the “string” has moved from the negative

z axis to the positive z axis, and the flux line in
the magnetic field now runs along the positive z
axis,

Ps

B= -g[—:—z— 47r6(x)5(y)0(z)§:! )

(B14)
The question remains as to whether or not these
manipulations involving multivalued gauge functions
are truly legitimate. If the starting point involved

a purely regular magnetic field, the introduction
of unphysical “strings” would certainly not be ac-
ceptable. The situation for the Dirac monopole is
more ambiguous since the theory contains a
“string” initially. Although the “string” is not
observable from the standpoint of quantum-me-
chanical scattering processes (with eg=n), the
magnetic field is itself a physical quantity. It
contributes to the energy and momentum densities,
to the Maxwell stress, and, thereby, to the gravi-
tational field. Hence a change in the magnetic field
corresponding to moving the “string” is, in princi-
ple, observable, and multivalued gauge functions
are not truly legitimate. We may, of course,
choose a definition such that the gauge function
(B11) is single-valued,

xs(f)=2gtan-l<%>, OStan-l@ <2r. (B15)

The gradient will now exhibit a surface djscontin-
uity in the y =0, x>0 plane along with the previous
“string,”

= e 200 —y2 )
)= =D snggonow. (16

Thus the transformed vector potential, K’, will
not only have a relocated “string” but also a sur-
face § function. This latter contribution guarantees
that the curl of the vector potential is unchanged by
the transformation (VX V¢ =0) and the “string”
in the magnetic field is unchanged. However,
once we have admitted that the string in B con-
tributes to the energy density, a contribution that
is infinite not only at the origin but along the
semi-infinite string as well, we conclude that the
Dirac monopole is not a fully acceptable construct.
This feature makes the monopole of the non-
Abelian theory appealing, for it is a solution of the
field equations without singular “strings.” We
turn now to the question of gauge transformations
in such theories.

In non-Abelian theories, gauge transformations
have the form

(B17)

T,= U[%%-e AaTa]U'l . (B18)
Here the matrices U act in the internal isospin
space and are generally taken to be single-valued
everywhere. However, as mentioned briefly in
Sec. IV, the transformation which connects the
fully regular monopole solution in the gauge with
IZ,;“—*?G to the more familiar gauge where % ,= 6,
is singular along the negative z axis. Note that in
this discussion we are explicitly referring only to
the region outside of the complicated central mono-
pole core (r>1/mch) since the interior region poses
no further conceptual difficulties. The specific
rotation in question is
U(F)=e-iT3oeiTzaeioT3’ (Blg)
where #=Z cosf+sinf(% cos¢+7y sing). In this case
we could again require ¢ to be single-valued and
ensure that the magnetic field is unchanged by the
transformation. However, in the non-Abelian the-
ory, one has the simpler option of regulating 6.
Wedefine a regulated polar angle by

_ 1+cosf
9(9)—91+coso+€2. (B20)
The monopole vector potential
- Fx T
AT, =" (B21)

becomes after the transformation (B19), with ©
replacing 6,

-~

_’R NP _ . . _
AR ppmpr oy [cos® - 1 +siné sin(6 - 9)] (B22)
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e Trp_e?® siné\ |, .2
Af+iAf= o [¢<cos(e 6) — 'n6’> +16(0'- l)jl ,
(B23)

where ©’=(d/d0)©. Since this regulated gauge
transformation is well defined, the field

GHv=BHAY - VA% +ee,, ALAY (B24)

is simply rotated by the transformation. In more
detail, the “magnetic field”
Bk= _12_ €IzlmGlm
a a
74
=— 6—;24 (B25)

in the initial gauge becomes

R’ ?k
B =_€—1’E [6a3 cos(© - 6)

a

-sin(0 - 6)(6,, cos + 5, sing)]
(B26)

after the transformation. In the limit € 2~ 0, this
goes smoothly into the expected monopole field

7 #843

B =——% (B27)

a er
with no “string” (recall again this is only for
7r>1/my). It is instructive to compare this re-
sult with the result of calculating the magnetic
field directly from Eqs. (B24) and (B25) using the
regulated potentials (B22) and (B23) and then taking
the limit €2 ~0. In this limit © -6, and we have

TR qg(cose—1)=yfc—x§ 8

As ev sing ev(r+z) (B28)
and

AR+iAR-Q, (B29)

However, the limit (B29) is a subtle one for the
vector potential is a distribution that must be de-
fined relative to the measure sin6d6. Clearly

the limit is zero for 6 # 7. Furthermore, while ©’
is singular, the integral of ©’ —~ 1 with the weight
sinfd6 vanishes. Thus ©’ — 1 approaches zero

(as € = 0) in the sense of a distribution for the
angular measure sinfd6do.

One might naively expect that the magnetic
field in the new gauge will arise solely from the
Vx &, term in Eq. (B24) and thus possess a
“string” singularity. This, however, is incorrect.
We must calculate ﬁa directly from the regulated
fields and then take the limit. In particular, the
contribution to §3 from the second term in Eq.
(B24) has the form

AB —hm eARx

€ —’0
= glm?e(Aﬁin)x(Kf_ng)
€0
Sin©
= Eh_r: ——(e -1) [cos(e— 0) - Sme}
(B30)

which vanishes for 6 <7. Now because of the sinf
factor in the denominator, we have

L4 2r
hm lim » f sinGde do AES
=5 0

02 o

——&TE lim lim

€ 0-0 2,0 Jrs

dGe’sme

—-ghm lim cos[6 (9)]]:_6
G -0

_4nZ
e

(B31)

Thus, although Kl and Kz separately vanish as
distributions, their product yields a 5-function
distribution and

aB ——c(x)a(y) (-2), (B32)

which exactly cancels the “string” in the V x A,
contribution to §3. In this gauge then, the vector
potential (B28) is just as in the Dirac theory. How-
ever, when care is taken to treat the vector poten-
tial properly as a limiting distribution resulting
from a single-valued transformation, the physical
fields are given by Eq. (B27) and they exhibit no
unphysical “string” singularities.
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