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The high-energy behavior of the fermion-fermion and fermion-antifermion scattering amplitudes of a class of
field theories, containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field, are investigated.
These theories consist of a supersymmetric model, the Yukawa model, and the linear a. model. In the leading-
logarithm approximation, ladders with fermions running along the sides iri the t channel and mesons as rungs
dominate in each order of two classes of diagrams. The sums of the dominant series give rise to fixed Regge
cuts for all the three theories; the amplitude of the supersymmetric theory possesses a definite signature, while
those of the other two lack it, A comparison of the result of the supersymmetric theory with the results of an
asymptotically free theory and the spontaneously broken non-Abelian gauge theory is made.

I. INTRODUCTION

In the last decade and a half, we have witnessed
the important role that quantum field theory has
played in particle physics. Examples are numer-
ous, such as the construction of algebra of cur-
rents, ' the discovery of canonical anomalies, the
calculation of high-energy behavior of scattering
amplitudes, Reggeization and eikonalization, the
construction of a unified renormalizable theory of
weak and electromagnetic interactions, 4 the es-
tablishment of asymptotic freedom' in non-Abelian
gauge theory, and, more recently, the construc-
tion of supersymmetric theory. ' All of these con-
tribute to our understanding of elementary-particle
interactions. Especially, renormalizable non-
Abelian gauge theories together with asymptotic
freedom provide us with a theoretical basis for the
understanding of Bjorken scaling' and possibly
quark confinement, ' and supersymmetry could be
profoundly significant.

In the study of the high-energy behavior of scat-
tering amplitudes the problem is centered on spon-
taneously broken non-Abelian gauge theory
(SBNGT). McCoy and Wu, ' ¹ehand Yao,"and
Tyburski" independently calculated, in the leading-
logarithm approximation, the fermion-fermion
scattering amplitude to sixth order. Despite the
complicated structure of this type of theories,
which makes an all-orders calculation extremely
difficult, a very interesting cancellation of the
transverse-momentum (P~) integration occurs
among the various diagrams of the same order.
As a result, instead of being a ln's series, as one
mould expect for a renormalizable theory, the
series is one of lns and the amplitude seems to

Reggeize, giving rise to a vector-meson trajec-
tory. This agrees with the general result of
Qrisaru, Schnitzer, and Tsao. ' The surviving
powers of lns come from the longitudinal-momen-
tum (P~) integrations alone. The origin of this
cancellation seems to be mysterious; its relation
to gauge symmetry is not clear. Physically, the
presence of P, integration lns signifies that the
theory lacks P, damping in particle-production
amplitudes, contrary to experimental data of had-
ron productions. Hence the absence of lns from
P~ integration lends further credibility to SBNGT
as a candidate for a theory of hadron interactions.

Another asymptotically free theory, P' in six
dimensions [(Q'),], has been studied by Brown,
Gordon, Kong, and Young, "and by Muzinich and
Tsao." They found that for the on-shell scattering
amplitude, the leading-logarithm approximation
gives rise to a ln's series, seemingly not affected
by asymptotic freedom. Nevertheless, in the
deep-inelastic Regge region„asymptotic freedom
does play an important role. As found by Love-
lace" and Cardy" independently, the constraint
of asymptotic freedom softens the kernel of the
Bethe-Salpeter equation in (Q'), and consequently
modifies the asymptotic behavior of the amplitude.
Lovelace" also proposed a program to treat the
class of asymptotically free theories, with the
hope that the program may eventually be applied
to non-Abelian gauge theory.

In order to gain further understanding of the
general roles that symmetries may play in the
asymptotic behavior of scattering amplitudes, we
have investigated a supersymmetric theory. Com-
mon features of this type of theory and non-Abelian
gauge theories are their high symmetries and the
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effects of the symmetries on their renormaliza-
tion." The particular version of the theory we
shall study contains a Majorana spinor, a scalar,
and a pseudoscalar. This theory is simple enough
that no other symmetries will mask the issue,
yet it possesses a sufficiently rich structure to
provide a meaningful ground for the investigation.

In this paper, we shall concern ourselves with
the questions of Reggeization and P~-integration
cancellations in the supersymmetric model (s
model) as mentioned above. We also compare the
results with those of similar models without the
supersymmetry —the Yukawa model (Y model) and
the neutral version of the linear v model. We find
that two classes of diagrams, which can be summed
up to all orders in the leading-logarithm approxi-
mation, dominate respectively the fermion-fermion
and fermion-antifermion elastic scatterings. How-
ever, both classes contribute and dominate the
fermion-fermion scattering in the s model, owing
to the lack of fermion number conservation. The
Aeo class es, which have the same strength in each
order and potentially could cancel each other in the
leading term, ax'e in Phase. We find no P~-inte-
gration canc ellations.

The plan of this paper is as follows: We begin
in Sec. II by introducing a simple super symmetric
theory. Then we summarize briefly the Feynman
diagram rules of the three models mentioned
above. We also list all the final results in this
section. Fourth-order diagrams are discussed in
Sec. III, and sixth-order diagrams are discussed
in Sec. IV. From the results of these two sections
we determine the dominant classes of diagrams.
Section V deals with the summation of these dia-
grams to all orders in the leading-logarithm ap-
proximation. Conclusions and discussion make up
Sec. VI. Several relevant properties of the Majo-
rana spinors are given in Appendix A. Appendixes
B and C contain some of the essential formulas
needed in Sec. V.

gr =)t)(i p —m))j)+-,'[(s„v)' —g' ))'] +gT)i)y, )j)))

and

(2.2)

2, = )I) (if' —m))I) +-,'[(s „m)' —p'v'] +-,' [(s„o)' —i), 'o']
—gT))(o+ iy, ))'))j) —4&Go(o'+))'} —AG'(o'+w')'

—4&o'+-,' p, ,'(2G 'o+ o'+ m'), (2.3}

where 0 and m are respectively the scalar and
pseudoscalar fields, and G =g/m. The last two
terms in Eq. (2.3) are needed for renormalization;
they do not concern us here. The Feynm3n rules
for the three theories are summarized in the dia-
grams of Fig. 1. We use a dashed line for the prop-
agator of B(g), a wavy line for A(o), and a solid
line for )i). Only diagrams (a), (b), (c), and (e)
are relevant to Rr. Diagrams (a)-(i) apply to both
2, and 2, . Diagram (j) applies to 2, only. When
rules of the two models are associated with dif-
ferent factors, the ones in the brackets are appli-
cable to 2, .

It is worth pointing out that the real difference
between the s model and the 0 model at high energy

(a) i /{gf-m}

i/(P-n))) ) i/(p*-P)

dependent. Note that all the masses are degenerate
and that there is only one coupling constant. Ex-
cept for these differences, the structure of this
Lagrangian is similar to the neutral version of the
linear 0 model. '0

To define our notation, the Lagrangians of the ~
model and the 0 model are

II. THE MODEL

We consider the simplest nontrivial model in-
variant under a supergauge transformation. " It
consists of a Majorana, spinor field g,"a scalar
field A, and a pseudoscalar field B. The Lagran-
gian density is

2 =-'[(s A)' —m'A']+-'[(s B) m B ]

+ 2

(i'd@

™$)j} 2g)I)(A —iy, B})I)——,'mgA (/i' ~B~}

)

-Bing —24i XG

—img -BiXG

(&) S,e( -dig -2%i)).G

—ig' -SiXG
~

g 2 (A2 ~B2)2 (2.1)

where g=—y"8„. The factor —,
' in front of the kinetic

energy and mass terms of the spinor is due to the
fact that )I) is self-conjugate; g and )i) are not in-

Feynman rules for the s, Y, and tx models
(see text).
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is the lack of fermion number in the former, since
the mass difference will not enter (except as a
scale factor) and only the coupling for g-g-A. (o)
and P f -B(-v) enters the leading-logarithm approxi-
mation.

Before presenting the details of the calculation in
the next three sections, let us list all the final
results of the spin-averaged scattering amplitudes
in the three models. They will also appear at the
end of Sec. V.

(a) The s mode/. The leading-logarithmic ap-
proximations of the u diagrams and s diagrams
(see Sec. DI for definition) are

FIG. 2. Momentum assignments for the general two-
body scattering amplitudes.

and

1'„=-ig', , ,
g' ln's "

n! !n+I !
jg2 s2g

~4m (glns)~' (2.4)

T, = ig'g-,
&

[g'(lns —iw)'j"„,n! (n 1+)!

i ~2 s2g—j2'Fg

44w (glns)~2 '

where

g2 g2/Sx'

The scattering amplitude is

(2.5)

2 2g—2g 2mg S

~4. "+' ) (gine)~ . (2.6)

(bj The o model. The fermion-fermion and
fermion-antifermion scattering amplitudes are re-
spectively given by T„and T„ i.e. , Eqs. (2.4) and

(2.5).
(cj The I'mode/. The amplitudes are similar to

the corresponding amplitudes of the o model with,
however, g' and g' replaced by g'/2 and g'/2.

III. THE FOURTH-ORDER DIAGRAMS

We consider the fermion-fermion scattering.
The notation is defined in Fig. 2. There the four-
momenta are given by

to as the t diagrams and the u diagrams (see Fig.
3). In the former mesons are exchanged in the
t channel and in the latter mesons are exchanged
in the u channel. Because of the lack of fermion
number conservation, another class of diagrams,
corresponding to annihilation in the ~ and o mod-
els, contribute to the s model. This third class,
with mesons exchanged in the s channel, will be
called the s diagrams. The three types of dia-
grams are obtainable from each other in the usual
way: u diagrams can be obtained from t diagrams
by crossing the two outgoing fermions; crossing
one initial and one final fermion, say labeled by
2 and 4 (see Fig. 2), of a u diagram gives an s
diagram. This also determines their relative
signs: the s and t diagrams have the same sign,
and tI2e u diagrams I2ave the opposite sign. All
the calculations will be done in the s model; the
final results for the fermion-fermion and fermion-
antifermion scatterings in the ~ and o models can

{o)

P, = (E, O, O, P),

P, = (E, 0, 0, -P ),
r = (0, r„,~„0).

(3.1)
(b)

As usual, we define s = (P, +P,)', t =4r', and
u =(P, P~)2. We are inter—ested in the asymptotic
behavior of the scattering amplitude s —~ with t
fixed and finite.

In the ~ model and the 0 model, there are two
classes of diagrams in each order which we refer

(c)
FIG. 3. Born diagrams: (a) u diagrams, (b) s dia-

grams, (c) t diagrams.



2690 BING-LIN YOUNG, T. F. WONG, AND J, W. OPOIEN 14

be obtained straightforwardly with simple modifi-
cation, which we shall discuss later.

Because of the lack of fermion number, either
M or v spinors can be used, as they are related
by the charge conjugation matrix. For definite-
ness, we shall use u spinors in the t and u dia-
grams, but both spinors in the s diagram (see
Appendix A). The arrows associated with the ex-
ternal fermion lines denote conventionally the use
of u or v spinors. The external momentum flows
are always from the left to the right as depicted
in Fig. 2.

I.et us mention in passing that there are six
diagrams in the second order as shown in Fig. 3.
They all go like a constant for s —~. Using the
obvious notation T("', T„'"', and T,'"' to denote
amplitudes of the three classes of diagrams of
order 2n, we have

Pb+r Pb-r
(a.l)

a
P-k-0 Pb'"'r

a-r Q-y, a,

k"r

idiom,

0+&&k+r

Q+k, aa
(e.l)

Pa-r Pa-k, o! P!g &r

k-r "aq ag k+r
-Pb~kpg

(a.2)

(c.2)

(a.3)

(c.5)

(a.4)

(c.4)

with

A., WA., and A.~CA, ,

where ~~ is the belie ity of particle ) = 1, 2, 3, and
4. T,"' is rather complicated and unilluminating;
we shall not give it here. Examples of the spinor
wave functions in the infinite-momentum frame,
needed for obtaining the above expressions, are
given in Appendix A.

Fourth order contains 24 box diagrams and

many second-order radiative corrections to the
Born terms. As will be shown in the following,
the leading terms behave like ln's„hence the ra-
diative correction diagrams (of order lns) are

FIG. 4. Fourth-order box diagrams: (a) and (b) u dia-
grams, (c) and (d} s diagrams, (e) and (f) t diagrams.
The arrows associated with the external fermion lines
indicate the use of u or v spinors. The external mo-
menta flows are always from the left to the right.

obviously nondominant; they will not be discussed
further. The box diagrams are given in Fig. 4.
We shall evaluate their asymptotic behavior by
means of the Feynman parameter technique. "

Diagrams 4|'a.l)-4(a.4). First we evaluate 4(a.1) and 4(a.2),"
f ~t ~)Dt & (3.3)

iV,"' =u(p, +r)(tt+r'+m) u(p, +r) u(p, —r)(p —r'+m)u(p, —r)

+u(P, +r)i y, (tt y' +m)+iy, u(p~+r) u(P, —r)i y, (g — '
y+m)i ,y(uP, —r)

= 2t„,T I"'+2m'X. ,

t„,=u(P, +r)y„u(p, +r) u(P, —r)y, u(P, —r),
T"' = (k+r)" (k —r)",
N, =u(p, yr)u(p~+r)u(P~ —r)u(p, —r) .

The denominator is (see Fig 4for not.ation)

D,"' = [(P, —k)' —m'] [(P, —k)' —m'] [ (k + r)2 —m ] [ (k —r) —m ]
1 4 1= 3! a&~ dlX2 dA~ dCk4~ 1 —Q lXg

0 ) =1 Da

(3.4a)

(3.4b)

(3.4c)

(3.5)

(3.6)
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where

D, = u, [(P, —k}2 —m2] + n, [(P~ —k)' —m'] + n, [(k —r)' —m'] + u, [(k +r)' —m']

= (k —G, )' —6, ,

= m [1 —(n~ + n2) + (n~ —n2) ] + r [u~ + Q —n~ —n2 + (u~ —n~) —(n~ n4) ] + noun s

G~ = n~P, + n2pq + (ns —u4}r .
The contribution of the first term of (3.4a} is

T"" im'

a a

Using the standard notation, y, = y + y' and y~ = (y', y'), we have

g&"f„,=u(p, +r)y„u(P, +r}u(P~ —r)y"u(P, —r}
=2u(p, +r)y, u(p~+r)u(p, —r)y u(p, —r)+2u(p, +r)y u(p, +r) u(p, —r)y, u(p, —r)

—u(p, +r)y~u(P, +r) u(P~ —r)y~u(p, —r)
=-2s&~ ~ &q x &~ q +O(1).

(3.7a)

(3.71)

(3.7c)

(3.8)

(3.9)

The leading term comes from the y components. The second term in (3.8) gives

~„(G+r) (G —r) =O(s) ~

Substituting (3.9) and (3.10) into (3.8), we obtain its leading term

ln s'/(2 )4 — 6 „6 6~

(3.10)

Equation (3.9}dominates, while (3.10) gives a lns contribution. The term proportional to X„Eq (3.4a).,
also gives rise to a lns term. Collecting the above results, we have

2

T,'"'=-ig' ln's&„„&), ), &), „.4g I 3 2 4 1 2
(3.11)

Diagrams 4(a.3) and 4(a.4) can be evaluated similarly. We write

1 = —(-Eg)'i' I Ã"'/a"'

where D,"' is given by (3.6) and

~,'&" =u(p, +r)(g y++m)iy, u(p, +r)u(p, —r}iy,(y-f'+m}u(p, —r)

pu(p, +r)iy, (4'i+1'ym)u(p~+r)u(p~ —r)(f —y'+m)iy, u(P, —r).

(3.12)

(3.13)

Mgcing a similar decomposition as (3.4a) and following the same procedure, we find that the term cor-
responding to (3.9) dominates:

g~'u(p, +r)y, yu(P, +r)u(p, —r)y„y u(P, —r) =-2s&~, z,&z, ~,&~,~, + O(1), (3.14)

which is identical to (3.9) and also arises from the y~ terms. Now the total contribution to diagrams
(a.1}-(a.4) is

2
y&» -y"&» +y'&» — 2 jg2ggg4gy]$3 (3.15)

Despite the fact that particles 1 and 3, 2 and 4 are not directly connected with each other, helicities are
still conserved from 1 to 3 and 2 to 4. Further, helicities of all the particles are the same for the leading
term.

Diagrams 4(b.l)-4(b.2). These can be treated similarly. The Feynman parametrization of the denomi-
nators is of the form

(& —[(n,+ n, )P, —(n, + n, )P, —(n, y n, )r]]' —a, ,

3 ~=m'[1 —n, —n, —4n, +(n, +n, +2n, )'] —r'(4n, u4)+s[n, —(u, +n, )(n, ~u, )] —ie .
(3.16)
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Since the y~ components dominate as stated before, the numerators are proportional to s. We note that
diagrams 4(a.1)—4(a.4) are planar and that 4(b.1) and 4(b.2) are nonplanar, as their figures suggest. Fol-
lowing Tiktopoulos, "we find that these latter diagrams behave at most like lns.

The amplitude of the u diagrams is given by T,"',
Tu = —z2 —g'g' ln's & (3.17)

where

g' =g'/8m'. (3.18)

Diagrams 4(c.l) —4(c.4) and 4(d.l) 4(d.-4). The calculation here is parallel to that of 4(a.1)-4(a.4). We
shall mention the steps briefly. Diagrams 4(c.l) and 4(c.2) give

) —
( )g) (j) j )))) )/))) (3.19)

i(i,(z' —= u(p, +r)(ti+y'+m)v (P, —r)v (p, +r)(g —y'+ m)u(P, —r)
+ u(p, yr)iy, (ti+y'+m)iy, v(Pz —r)v(P~+r)iy, ()i —}('+m)iy, u(p, —r}

+2m2 (3.20)

i'„, =—u (p, +r)y„v (P, —r) v (p, +r)y „u (p, —r),
T'""=—(k +r)& (k —r)",
N, u(p, +=—r) v (p, —r) v (pz +r)u(P —r) .

The denominator is

(3.21a)

(3.21b)

(3.21c)

Dc $1 d&zdn2dn3do'~ ~ ~ 1 — nj P

1

DC

D, = (k —[a,P, —n, P, +(n, —n, )r]j' —&„
L,-=m'[1 —(n, + n, ) + (n, + n, )'] —r '[n, + n, —n, —n, —(a, + n, )'+ (n, —n, )'] —s n, n, —z e .

(3.22a)

(3.22b)

(3.22c)

After the & integration, we find that the dominant
term is given by

g 't(', =-2sd„~ &~ ~ &~ ~ + O(1),

which again comes from the y~ components. Then

T'"' = -ig'(g/4zz)'(Ins —i (z)'

(3.23}x5
X, X, X2X4 ), , -X2 ~

Diagrams 4(c.3) and 4(c.4) give exactly the same
result.

Diagrams 4(d.1)—4(d.4) are nonleading and be-
have like lns. Summarizing the above result, we
have

T("=T(2) =2TI(2)
C C

2
= —i2

(
gz(lns —izz) 5~ ~z5~ ~ 5~

(3.24)

Notice that T„"' and T(2', Eqs. (3.1'I} and (3.24),
have different helicity structure. Recall that their
Feynman amplitudes have opposite signs. How-

I

ever, a negative sign results in T,"' because of thQ

sign of the s term in 4, . This compensation of the
sign in the s and u diagrams holds also in all
higher orders, so that their leading terms are
always in phase.

Diagrams 4(e.l) -4(e.4) and 4(f.l) 4(f.4) It-.
turns out that thes sets of diagrams behave like
lns. What happens can be described briefly as
follows. The dominant contributions to the nu-
merators are from y, . Then both of the terms,
which are similar to the two terms in Eq. (3.8),
behave like ln's; they cancel each othe~, so that
T,"'-lns. This result can easily be obtained if one
considers the forward spin-averaged amplitude.

Let us summarize the corresponding results of
the ~ and cr models. The u diagrams dominate the
fermion-fermion scattering and the s diagrams
dominate the fermion-antifermion scattering. The
asymptotic amplitudes are given respectively by
—'T"' and 4T"' in the F model and by T"' and T,'2'

in the 0 model. The mass differences in these
models do not show up in the leading behavior of
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the amplitudes.
%'e conclude this section by comparing our re-

sults with the similar amplitude of quantum elec-
trodynamics. There, the diagram like 4(e.l }
dominates, while the diagram like 4(a.1) is sup-
pressed by a factor 1/s. This fact, which holds
true in higher orders, agrees with the conjecture
made by Chang and Ma,"based on their quantum-
electrodynamics calculation in the infinite-mo-
mentum frame, that amplitudes are dominated by
the highest-spin exchanges in the crossed channel.

+ 7 more

IV. SIXTH-ORDER DIAGRAMS

Pg- r

k-r
I ki- kg

+2
"P~ va&kz-r

Pg+r

ki+ r

k&+r

(a)

In this section, we study the high-energy be-
havior of the sixth-order diagrams. The planar
diagrams, eight each in the s and u classes and
16 in the t class, are shown in Figs. 5 and 6,
respectively. In addition, there are many more:
nonplanar diagrams, diagrams involving quartic
vertices, radiative corrections of the lower-
order diagrams (containing many meson triple

+ 7 more

FIG. 6. Sixth-order t diagrams.

vertices), etc. We shall concern ourselves pri-
marily with the planar diagrams given in Fig. 5.
All the other diagrams will be discussed briefly
at the end of this section.

The evaluation of these diagrams is rather
tedious owing to the presence of the spinors and
the y matrices. In the following, we present the
essential steps, using the standard parameter
space method. "

Consider the first four u diagrams in Fig. 5(a},
which we write as

T""= —(-&&,} &' J, J N&" /a
1 n2

After simplification, the numerator is

(4.1)

(b)

jy( = 4~(3 +4pyg2jy( +4ppg~yjr( )
C 0]. 02 Qs t

where

N&,"=u(p, +r)(t~, +g)(Itf, +1')u(p~+r)

x u(P, —r) (g, —f')(g, —g) u (P, —r),

&,",'=u(p, +r)(It', +1')u(p +r)uP' r)(F, 8)— —

xu(p, —r)+(k, —k, ),
~&~& =u(p, +r) u(p~+r)u p, —r) u(p, —r) .

(4.2)

o" Pg k))o ) Po'"
N,',"gives the dominant contribution. %e rewrite
it as

k) r P) yi ki+r

ki- ~op
~(3) =t Tp xp

gy puXp (4.3a)

kg r Pg ~ k~~r

Q+ kg, ap

+ 7more where

t„.~» =uP'. +r)v„&vugg'a+r)uP'a r)r&,r» u(p, ——r),
(4.3b)

FIG. 5. Sixth-order diagrams: (a) u diagrams,
(b) s diagrams.

T""~&'= (k, +r)}'(k, +r)'(k, —r)~(k, —r)}'. (4.3c)

The denominator in (4.1) is
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1
Da =6 ~ dQ1dN2dQ~dp1 d 2dy1 dy2 —

(3)D,

a& —,— y~

where

D,"' = 4'~A.K —2K~BP —0,

q, =n, +n, +p, +y„q, =n, +n, +p, +y, ,

&r =m'(1 —n, —n, )+r'(1 —2n, —2n, —n, ) —ae,

C=detA =g,q, —n,'.
Let us change the integration variables

k =RA'+ A.-'aP,

where K' =(",', ) and R=- („"", "„"). Then

D &» =Z "ft 'aft'' —(BP)'W-'(BP) —~

R is chosen to diagonalize A. so that

R'gR =

0 A,
2

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

f~ = C (1 —n, —n, ) + n, 'rl, + n, 'rl, —2n, n, n3

(4.9b)

f„=-C(1-2n, —2n, —n, )

+2n, (p, r,-)(p, r-,)+n. (P, r, )-'

+q, (P, —y, )' —n, 'q, —n, 'q, +2n, n, n, . (4.9c)

It is not necessary to know the elements R, etc.
of R; they enter the calculation always in the fol-
lowing combinations:

R„R22 —R,2 R2

11 2 ' 12 1 02'

22 I 21 2 tl &

~2R11 &21 + ~1 R12&22 —0'2.

%e have performed the calculation in the full
complication indicated above. However, the mat-
ter can be simplified, if we put e, = n2 = o,, = 0 in
the numerator, i.e., N(,". This is permissible,
since n, = n2 = e, =0 is part of the domain contri-
buting to the leading logarithm. In this approxi-
mation, A is diagonalized and R reduces to the
unit matrix. I et us emphasize that this approxi-
mation is only applied to the nnnzexatcn „e.g. , in

Bearing this in mind, we substitute K with
K'+6 in T"' ~, where G is obtained from A 'BP
by setting n, =~2=~3=0:

Qne can show that

&,C = Co'+C(BP) A '(BP)

=I fin —r fr + n~npn~S (4.9a) Then

(P..r, )(p, —r, )r
C

(p, +r, )(p, y, )r — G,
(4.10)

&"' ~ = (&'+G +r)"(02+6, +r)'(&,'+6, —r)~(k,'+G, —r)~ .
Substituting (4.3), (4.4), and (4.7)-(4.10) into (4.1), we get

T!"'=-~g'4w'(
) f&~de, dn, &P, &P, , &r, dr, &(&-gn, gd, -gr)-

x —~g" g' —(P +y )g" (G yr) (Q —r)
2CA

(P. +y. )—g" (G. +.)"(G, r)'—
a

+(G, +r)&(G, r)~(G, +r)"(G, - r-)' -, t„.„. (4.11)

The first term in the bracket [ ] gives the dominant contribution, and

g" g' t„„~p =4s &)„~3&)2~,&~~ ~2+0(1),

which comes from the y~y~ components. The procedure for the evaluation of the integral

(4.12)

do'-2d&, d 1dP2dy, dy2& 1 — e~ —,. — y C' a,C

has been discussed in detail in Ref. 12; we give only the result:

(4.13a)
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2 1—,—In4s.4t (4.13b)

Now the evaluation of (4.1) is completed:

g' 1
~o ~ 27' 3 (

n RID. x x4 x, -x ~ (4.14)

The last four diagrams in Fig. 5(a) have the same denominator. The dominant numerator is similar to
(4.3a) with t&„),z replaced by

tq,~p u(P,——+r)iy, yqy, u(P»+r)u(P» —4")y~y iy u(P, —r)

Following the same procedure as illustrated above, we obtain an expression similar to (4.11)with i„,„„
replaced by &„'„~~, (4.15). The leading contribution is the same as (4.14). Adding the two results we have

g(3) 2g (3)
a

2
=-i2 g4ln4s&), q ~) ), &),2l3t I 3 2 4 1. ' 2

where g is defined in (3.18). We see that the helicity is again conserved.
But 1'„'" has different helicity structure from T„"'; it has the same helicities as the fourth-order s dia-

grams. Let us remark that in the case of the spin-averaged amplitude, this distinction between the two
orders disappears. This remark also applies to the 8 diagrams to be discussed next.

Next we consider the s diagrams which are given in Fig. 5(b). The first four diagrams are denoted by

y,""= (-ig) (i)'()!f n, du, da,d, dd, dd, dy, dy( !!Q)ag -Q g-dQ )JyJ yy("/(iy(")'. (4.1 i)

Here the denominator is related to that of the u diagrams by the substitution P,—-I', , and the equation
corresponding to (4.9a) becomes

6»C =m2 f —r 2f„—oi o( o! s, (4.18)

where f„and f„are given in (4.9b) and (4.9c). The numerator N»") is similar to (4.2}, with u(P, +&) and
u(P» —r) replaced by u(P» —r) and v(P»+r), respectively Followin. g the same procedure as before, we find
that

where

g "'g '"&„"., =g "'g "u(P, +~)y„y.U (P, &)I)(P,-+&)y y, u(P. - &)

(4.20)=4s&, , &), &, ) +0(1).

The helicity structure is different from that of the
corresponding fourth-order diagrams, but is simi-
lar to that of the fourth-order u diagrams. The
ca,lculation of the t diagrams, Fig. 6, follows the
same procedure. Let us only mention the results:
The diagrams of 6(a) behave at most like ln's,
and 6(b} behave like lns. The additional planar
t diagrams such as that shown in Fig. 7 go like

Except for the sign difference of the coefficient
of s in the denominator, the evaluation of (4.19)
is identical to that of (4.13a}. We have

2

T,"'= -i g'(lns —i )))4b 2I 3

x5), q6

The last four diagrams of Fig. 5(b) give identical
contributions. Then

IF

I)

I

(

I

)

I

IF
I)

I)

T(3) 2T i(3)
5

2
= —i2, —, g'(lns —in)46~ ~ 6~ ~ 6~ ~I 3 2 4 I 2

FIG. 7. Sixth-order t diagram with mesons all in the
t channel.(4.21)

CR

7,'"' = (-!g)'i'(i y')* — dn, dadaddd(), , d ,d , yyl!,(1 -g a,. -g!),-Qy) g "g yt „,y, '''„
(4.19)
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1/s, up to powers of lns.
Let us remark that the behavior of the sixth-

order diagrams we found above confirmed again
the conjecture of Chang and Ma as mentioned in
Sec. III.

For the nonplanar diagrams, the general analysis
of Tiktopoulos" shows that they cannot compete
with their planar counterparts, and thus can be
neglected unless cancellations occur among the
planar ones, so that the maximum allowed powers
of lns cannot be attained. In the present case, the
leading terms do attain their maximum powers of
lns. This result which we have shown for the
fourth and sixth orders will be demonstrated for
the higher orders in the next section. Hence non-
planar diagrams can be neglected. We have
checked diagrams such as those shown in Fig. 8.
The two diagrams go like lns and ln's, respective-
ly.

Similarly, diagrams which contain radiative
corrections do not contribute to the leading loga-
rithms. The diagrams with quartic vertices, for
example Fig. 9, are asymptotically of order 1/s.

V. LEADING LOGARITHMS IN ALL ORDERS

%'e found in the last two sections that the u- and
s-ladder diagrams dominate the fourth and sixth
orders. In this section, we shall calculate these
ladders as shown in Fig. 10, to all orders, as-
suming that they dominate. There are several
reasons for assuming this: the trend suggested
by the low-order diagrams as mentioned above,
the similarity of the present cases and the t-chan-
nel ladders of the (y')„and the Chang-Ma conjec-
ture.

In order to simplify the calculation, we shall
work with the forward spin-averaged amplitude
only. Doing this, we lose the helicity information,
The method used in this section follows closely that
of Blaha, Ref. 24.

Consider the 2(n+1)-order u diagrams of the
ladder form, as shown in Fig. 10(a}. They all
have the same denominator,

n-1

[(k, —k„,)' —m'] [(P, —0, )' —m']

FIG. 9. Sixth-order diagram with a quartic vertex.

where

hq =——(k~' —m2) . (5.1h)

—'Tr[(P', +m)r, (g, +m)r, (f, +m) ~ ~ (g„+m)

xr„,, (p, +m)I'„,, (g„+m) (lf, +m)I;] (5.2b)

Let us denote the sum of all contributions such as
(5.2h) hy

N„=——,
' Tr[(P' +n")P„];.

then

Po-kf, op Po

+ Combinations of scolar ond
pseudoscolor contributions

kn, ,~n Pn kn'
Pj,-knion

(b)

The numerator of each individual diagram can be
wr. itten as

u(p, )I;(g, +m)r, (g, +m) ~ ~ r„(g„+m)r„„u(p,)
xu(p, )r„„(y„+m)r„r,gf, +m)r, u(p. ), (5.2a)

where

I'z =1 or -iy,
for scalar and pseudoscalar rungs, respectively.
By spin averaging, the above expression becomes

x [(P, —0„}'—m'], (5.1a)

+ Combinotions of scolor ond
pseudoscolor contributions

FIG. 8. Sixth-order nonplanar 8 diagrams.

FfG. 10. N-loop ladder diagrams: (a) The u dia-
grams. Note that the momentum and Feynman parameter
assignments have been displayed. (b) The s diagrams.
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T«+Z& ( Z
2(n+Z)Z2n+) . . . nN

~n& &nn Dn

From a recursion formula, which we shall derive in Appendix 8, Pn can be expanded in the form

(5.4)

2-(""'P„=a„j,+pa„'g, , (5.5)

where
n

J=l

B~ = g L~1L~2' ''L ", g (g
n i" i 0 X1 )2 1' J

~'=J'~'-1 ~=1 1 —Xl& X2 --& X.g=)
n

gn

L'i =2

1~X &X ~ 'X =nI 2

n

~ k)
k=k+1

LX1L) 2 ~ ~ ~ Ln
0 kl kq

j& 1+1

(5.8)

L', ' =2k, ~ k, +, .
Substituting (5.5) into (5.3)i we have

n

N„=2n+' A„P, 'P~+ Bn~P~' k')
j=l

(5.7)

To proceed further, we find it more convenient to parametrize the propagators in the exponential form in
order to use the Mellin transformation. The following identities are needed:

()!'—m'vie) '= —. i I d()e'~"

t 82
k k (k' —m'+is) '= — dp (2p) ' —g e'()"'"'

v 2 80 800 +=0

(5.8)

Let us first evaluate the contribution of the first term of Eq. (5.7). By leaving constant factors aside
for the time being, we write

'( =J I —.An

kl k Dn

I' -== n-l
= (-1)" [ [

(k& —I'+(a) i [(0, —0, )' —I'+ ie]I
k' k E —.;=1

1 n

)-1
x [(P, —k, )2 —m'+ is] [(PZ —k„)' —m'+ is]

~

(5.9)

oo n

=(-1)"(-i)2"+' ]jdnz dp ' ' exp n()[(P, —k,)™~~E]+g [(kz k)+z)™+is]n&
~)0 g. 0 J-1 kl kn l =-1

n

4. [(P —k„)' —m'+is] n„+g (k,.' —m2+ze)p,

where E(ls. (5.8) and (5.8) are used. The k, inte-
grations can be performed to give

( 1 )ii ( Z
)2n+I ( Z ~ 2)ii(2S)-4n

we list them below:

C = C„' =d, „+(n, + P, )C„'+Q d, , P„,C„'"
l--1

n n

~)P eiD /Cl. ...
0 &=0 J=l

(5.10) ..-n)(+.n+. P:)- +zQ )..zPzC)-
The homogeneous functions, D and C, can be ob-
tained by means of the graphical cutting rules"; D =-sd n

—~C+ie,p, n

(5.11)
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where
Po

Po kl scP a&

p

C, =d,. s-, +(o., +P, )C, , + g d, r-. ,P, C'.,-,

l-&

=d~ i ~+(o" +p~'i)Ci '+ 2 d~+i, p+iCi",
i=i+1

C' =1

and

n

Jc = (m' —ie) C Q (n, + P, ) —n„

(5.12) k) +4( )( P(

Og- OI
0 0 4 0 0) ~ ~ 0 0 ~ 0

ka+4a i~ Pa

-op
) I ~ ~ ~ ~

k( -Qa(

k2-k3, cg

p( i~ ki+ 8

og Q~
res ~ ego ~ ~ o ~ ~

Pa ~i ka+4a

oy op
~ o) o ~ ~ ~ ~ ~

Take the Mellin transform of l„(s),

M„((u)—= ( ds I„(s)s
0

(4&)-2n( i)n+2e& &a/2&(u

&a n n

xr(-&)f ap;",aa, n "C " 'e
(5.1s)

s ~ ~ ~ o)

kn+4n "&n

kp-~- Q, ap-~

-Pb+ k~, aq

kn+ 4n

This expression has appeared in the discussion of
high-energy behavior of the truss bridge diagrams
of the y'+y' theory in four dimensions" and of the
ladder diagrams in (q'), ." We shall refer to Ref.
26 for the details and give here the final result:

2n

-~g ~ —ln s,n! (n+ 1)! (5.15)

l„(s)- (- i)""(4n) '" — —(lns)'" . (5.14)n! (n+1)! s

This contributes to T„'""'a term

FIG. 11. N-loop ladder u diagrams with spurious mo-
menta a,. and Feynman parameters o.', and P, .

The evaluation of the contributions of the rest
of the terms of (5.7) is very tedious. Fortunately,
they are all nonleading. In the following, we give
a brief description of this result. More details
can be found in Appendix C.

A typical term of B'„which enters T„'""'has the
form

D '" 6; Lo 'Lx ' 'L), '
~ 'P~

f k ok"'k 'k" 2 ~ ~ 0 '-'k"'
Xl Xl X2 X2

' '
Xl Xl

"n

x
~ (k~ ' —m'+ ie)(k~ ' —m'+ ie) . (k~ ' —m'+ ie)

l

n n- I -1
x ])[(k,' —m'+ie)

q [(k, —k,.„)'—m'+ ie] [(P, —k, )' —m'+is j[(P,—k„)' —m'+is]
~

-a.'= 1

(5.16)

where 1&&,&X,«&,&n. For A. , =n, p", z „r, is replaced by 1. Following Blaha, 24 we shall introduce
n spurious momenta and replace the loop momenta which appear in the numerator by differentiations with
respect to the spurious momenta.

Let us denote the spurious momenta by a„a„.. . , an. They enter or leave the vertices of a diagram as
shown in Fig. 11. Using identities listed in (5.8), we write
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Pp Vl

nial Sppvpgplvl gal vl 0

4p

f n- I

xjl ' ' exp i+[(k, +a~)2 —m'+is] p~ +i+[(k, —k...)' —m'+is] o(,
ill

~ A' n j=-1 j=l

+ i[(P, —k, )' —m'+ i~] o., + i[(P, —k„)' —m'+ ie]o„
a =a = ~ =a =pl 2 n

where

8Sg
P-

BQy~

Performing the loop-momentum integrations, we obtain

(5.17)

GO l
, ~, ~+ ~ ~ . .~~ gvj &] j 2~ ~

-l~ j-lg" j efD(a)/C
0 J.

where C is given in (5.11) and

~l n

(5.18)

n n n

B(a)=-d, „s+E[(+Pa)' G(+Pa, HP( + E (a, —a )'I, , —(m' —(e) c Ea,. +P ()) —4d, (,5 „19)
l I (:=0 f 1

j&l

G~ =do.s-i[ sC

II~ ——d) „P)CO), ,

I[, ——d, , r ).P&AC&-)C„'.

Clearly,

D(0) =D,

(5.20)

which is given in (5.11). Equation (5.19) can again be obtained by the graphic cutting rules" generalized
to graphs containing 2n + 6 external lines.

The differentiations with respect to a, in the integrand of (5.18) result in many terms. We keep only
those, called the P terms, which can potentially contribute to an order of ln'" 's. After factorizing powers
of dp „P, P„, the remaining part of a P term must be nonvanishing for aj =0, p =0, 1, 2, . . . , n. For exam-
ple, corsider a term in the integrand of (5.18),

e

( 1)+g g . ..g P"OP e [(2iP )-)~ i-)~&s] eiD(a)/c
PpVp plvg @eve + b „... Xjj—I g ~ ~ ~ g pn

(5.21)

We shall demonstrate in Appendix C that the P terms of (5.21) are of the form
e e-l

(-1)', e'D~c(P, P,) I, , &~, g „;(-1)'S," (2),d,„P, P,)' ', (5.22)

where S,'j' is the Stirling number of the second kind" and

~g=-Cg gPgCn ~

Let us change the variables

ej =pnj, g =0, 1, . . . , n

Pl =PP, , & =1, 2, . .. , n

(5.28)

(5.24)
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e -1 e-j
(-1)'p '"

C, e""'(P P~) „., ~~, , (-1)'p' '
C.. . S."'(2d. ,.P. P&)' ',

&=0

where D, C, etc. are obtained from D, C, etc. by replacing n, and P, by n, and P, . Substituting (5.25)
into (5.18) and performing the p integration, we see that (5.25) is

(5.25)

Recall that D, C, Cz „C„,and d, „are respectivel. y homogeneous functions of degree n+1, n, A. —1, ~
and n+ l. Equation (5.22) becomes

i(-I)' '—.' [~x, g —.. . (e-i)' S." = (2d, „P. P, )' '

P

=i(—()' '=—~ I —' g (-()'(8 —')(st ', (5.26)CD, i, C

where we have used
Cl()

C z+
~

~
j p (D/C) ~ &+1) )

D
(5.27)

and have made the approximation

2do„P, 'P, jD= —l.
We can prove from probability theory that"

e 1

e g t S(2)
2=0

Equation (5.26) becomes

(5.28)

(5.29)

Now it is easy to see that

f 1

Z„, =(- i)" (4w) '"
Jl do. , do. „dP, ~ dP„
0

The high-energy behavior of the s diagrams can
be obtained in exactly the same way. We shall
mention quickly where they differ from the u dia-
grams. The numerator of an s diagram is sim-
ilar to that of the corresponding u diagram, i.e. ,
Eq. (5.2a), except that the factor u(P~) u(P, ) is
replaced by v(P, ) v(P, ). Consequently, the sum
of all the numerators is given by (5.3) if g, +m
is replaced by g „—m. However, this will not
change the final result; both (5.5) and (5.7) are
stil. l valid. For the denominator, we need on1y
to replace the factor [(P(,—k„)' —m'] in (5.1a) by

[(P(, +k„)' —m']. This results in changing s into
—s in D and D(0) given by Eqs. (5.11) and (5.19).
Except for these straightforward modifications,
all the other expressions remain valid. Following
the same procedure, we again find that the
A„P, P, term [see Eq. (5.5)] gives the leading
term, and finally we arrive at the result

0&5 1 — n, —

We shall show in Appendix C that

C —Z) -—(n), + g)Cog, C„

+terms quadratic in g's.

(5.30)

(5.31)

Now we can sum to al. l orders the leading log-
arithms of the two classes of diagrams:

T - Y T(~+~~
8 ~ Q

n=Q

This clearl. y shows that J„, does not give rise
to a in2"s term.

Since the contributions of B'„, i = 1, 2, . . . , n are
all of the form of 4„, , they are all nonleading.
Consequentl. y, the leading term of T("+' is given
by that of I„(s):

, f,(2g lns)
g lns

ig' s'g

v 4w ( g ins)'T2 (5.34)

7'& "+'& = —ig' — (g' ln's)" .n! (n+1)! (5.32) , &,(2g(ins —iw))
S

In the special cases n =0, 1, and 2, Eq. (5.32)
agrees with the spin-averaged amplitudes of the
second, fourth, and sixth orders. [See Eqs.
(3.26), (3.17), and (4.16).]

2g

eZg -q~7r S
u4w (glns)')' '

For the s model, the amplitude is

(5.35)
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FIG. 12. Eighth-order diagram containing a meson-
meson scattering subdiagram.

ig2 — s2g
] e $2gg

~4m (g lns)3~~
' (5.35)

VI. CONCLUSION

We have studied the fermion-fermion and fer-
mion-antifermion scatterings in a class of field
theor ies containing fermions and spin less mes ons.
In the high-energy limit, the diagrams with fer-
mions exchanged in the t channel dominate in all
orders of the perturbation expansion. They are
ladder diagrams with scalars or pseudoscalars
as rungs and fermions running along the sides.
This result agrees with the conjecture made by
Chang and Ma in a QED calculation. It is remin-
iscent of the basic rule of Reggeology that an
amplitude is dominated by the highest 4-plane
trajectory allowed in the t channel, although there
is no eonneetion whatsoever between the masses

This is a fixed cut and is similar to the results
of (y'), and the truss bridge diagrams of y'+y'
theory in four dimensions, except that the sig-
nature is opposite.

In the a model the fermion-fermion and fermion-
antifermion scattering amplitudes are given re-
spectively by T„and T, , Eqs. (5.34) and (5.35).
Similar results hold in the Y model if we replace
g and g by g/0 2 and g/W2 in the two equations,
since only the pseudoscalar is exchanged here.
If a scalar meson replaces the pseudoscalar in
the Y model, we obtain the same result. The
above result of the fermion-antif er mion s catter-
ing in the Y model agrees with that of Swift and
Lee,"obtained by means of the Bethe-Salpeter
equation.

To conclude this section, let us mention that
a new class of diagrams which contain meson-
meson scattering as subdiagrams appear in eighth
or higher orders. An example of such diagrams
in eighth order is shown in Fig. 12. The meson-
meson scattering subdiagrams require renormal-
ization. We have examined this diagram in some
detail and have found that it is nonl. eading.

and spins of particles in a field theory. A similar
class of diagrams have in fact been used by Drell,
Levy, and Yan' some time ago as the dominant
diagrams in the deep-inelastic electron-proton
scattering in a P& cutoff Yukawa theory.

The results of Secs. III and IV show that the
dominant helicity amplitudes are different in the
fourth and sixth orders. We have not investigated
whether this pattern of change will. be repeated
regularly in higher orders, nor have we addressed
ourselves to the question of summing the helicity
amplitudes (perhaps of alternating orders).

Despite the fact that the supersymmetry alters
some aspects of the renormalization, it has the
basic features of the high-energy behavior of the
Y and 0 models. The high-energy ampl. itude is
a ln s series and lacks P~ damping. This is in
contrast with the SBNGT where a Reggeized am-
plitude corresponding to the exchange of vector-
meson Regge trajectory results after cancellations
among diagrams. Based on our results, it is
interesting to compare the high-energy behavior
of a supersymmetric theory and an SBNGT. The
similarity is that they have high symmetries which
dictate that in each theory the coupling constant
is degenerate. There are important differences.
In the SBNGT, the vector meson. since it is the
highest-spin particle, crucially determines the
leading logarithms of the amplitude. Therefore,
the vector-meson self-coupling, e.g. , the triple
vertices, can play an important role. (They in-
deed do. ) However, in the supersymmetric theory,
the spinless mesons seem to play only a supporting
role; they provide momentum transfer for the
fermions so that the latter can run along the t
channel and then emerge again in the final state,
or be annihilated. Hence, the meson-meson
coupling does not have any effect in the determin-
ation of the leading terms.

Despite its passiveness as described above, the
supersymmetry may play a more active role in
the fermion-meson and meson-meson seatterings.
The following areas are especially pertinent:
(a) the relationship among the fermion-fermion,
fermion-meson, and meson-meson amplitudes,
(b) the possibility of cancellation of large-trans-
verse-momentum contributions in the fermion-
meson and meson-meson channels in which the
mesonic seLf-interactions may be more important.
These interesting questions, which are beyond
the scope of the present paper, will be address ed
in a future work.

As a final remark, in an ordinary SBNGT, the
asymptotic freedom could in general be destroy-
ed." However, a theory which is both super-
symmetrie and non-Abelian gauge invariant is
an exception. " Our calculation may be useful
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in the study of the high-energy behavior of this
interesting theory.
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v(P) s) =(Z+rn)'i'

where X, is a nonrelativistic spinor wave function
satisfying

x =~xp
S S & (A6)

statement in the third paragraph of Sec. III con-
cerning the use of u and v spinors.

The explicit forms of the spinor wave functions, "
with helicity +-,', are

XS

u(P, s) =(Z+m)'~' ~
g ~ ~p

(z.
(A5)

APPENDIX A

In this appendix, we collect several results
which are relevant to our calculation. A Majorana
spinor g is defined by

(A1)

(, -=- f~.(X.')' (A7)

If we choose the reaction plane to coincide with
the gx plane so that r = (o,r, 0, 0), then in the limit
r/z-o

where" c =iy, y, is the charge conjugation matrix.
Properties of P can be read off directly from those
of a Dirac spinor X, if g is identified with (1/v 2) [X
+ (Xc)r]." We note that there is no fermion num-
ber associated with the quanta of a Majorana spinor
field. Because of (Al), g and g are not independent
fields:

(~) (3)
Xk )% ~s 9$t Xk

Xk lv ~s lk& Xk 1T

~(2) ~ X(2) ~(4 q X(4Xy ~ ~ X~ ~

(A8)

-1
(&z =gaea~ ~ (A2)

This is the reason why a factor —,
' is needed in front

of the kinetic energy and mass terms of Z„Eq.
(2.1). Bearing this in mind, we can derive the
Feynman rules as given in Fig. 1.

Next we list formulas of spinor wave functions
needed to calculate the helicity amplitudes of Secs.
III and IV. The u and v spinors are related by

v„(P, s) =us (P, s)c ()„,
v „(P,s) = c„a 'u8 (P, s), —

u„(P, s) =vs(P, s)c()„,
us(Pq s) = —c08 v()(Pq s) ~

(A3)

The following relations follow straightforwardly:

v(P„s,) rv(P, s, ) =-u(P, s, ) crrc 'u(P, s,),
u(P„s,) 1'v(P„s, ) = u(P„s, ) cI' c '-v(P„s,),
v(P„s,) ru(P„s, ) = —v(P„s, ) cl" c 'u(P„s,),

(11 ('01

kli
where y,', etc. apply to particle 1, etc. Equations
(A5) and (A8) enable us to calculate the helicity
amplitudes of Secs. III and IV.

APPENDIX 8

To prove (5.5) and (5.6), let us fix our attention
on the last fermion propagator carrying the mo-
mentum k„on each side of the ladder [see Fig.
11(a)]. We can divide all the diagrams with u+1
rungs into two groups. One group has the last
rungs of the ladders (with momentum P~ -k„) as
scalars, the other as pseudoscalars. The numer-
ator of each group is given by P„,. Then

(g„+m)P„,(P'„+m)
1 1

1
y, (P'„+m) P„,(g„+m) y,

where

CypC = -yp ~

The relations in (A4) are needed to verify our

(A4)

We give the results of two simple cases:

2PO=P', (B2a,)



14 HIGH-ENERGY BEHAVIOR OF FERMION-FERMION. . . 2703

for the Born diagrams and

(l)*p, =-', (N;+m) ( ')(4, +m)

Let us define

——,
' y, ((ti, +rn) ' (t((i+m) y, (jj)-=—[~, ,c'„(c,', —n, ,c,', ) (C1)

=-(u'-m')P. +2(P. u, )I(I,

for the box diagrams. Let us now write

(-,')""P„=A„P.+Pa„/P', .
j=l

Substituting it into (Bl), we have

(B2b)

(B3)

(j,) = —di . .C/, C„', j(l
where d&, and C', are given in (5.11) and (5.12).
Keeping terms with lowest power in nj's and high-
est power in I', P» we have for j,&j,

n-1

(—')"+ P„=A„b,„P„+Q /(). „B/
jV;

n-].

+ I.",++2(r „u,.)B„' „g„, (B4)
j=l

where b, „and 1.0 are defined in (5.1b) and (5.6).
The solutions of (B4) with the boundary conditions
(B2b) are just (5.6).

These results hold also for the 0 model as long
as a degenerate mass for the scalar and pseudo-
scalar is used in the perturbation expansion. In
the F model there is no scalar; the effect is that
the terms which contribute to the leading loga-
rithm are reduced by a factor (—,')" for the nth-
order ladders. This amounts to replacing the cou-
pling constantg in the s or o model by (1/v 2)g.

(C2)(p j) =pg j)-&-—d '/, C'„(p;p, ),

(P. jl)(P5 j2)=d, , / iC/ lC!'[do.(P'Pb)')

(P. A)(Paj, )=d, /
'c,' lc". [do.(P. Pa)'],

(p, j,)(p, j, ) = c,'. ,c'„l[d, „(p, p, )'].

e n«e the following formulas.

1 i sD(~) 2i

p, C sa, , 0 C

(C3)
1 i O'D(a) 2i

(j, ~.) = (j,)„(j-,)~= d„/...-'C'„'C,', [ d„„( p, p, )],

(j, j,) =-(j,)„(j,)"=~.. .c'. [2d. .(P. P.}l,

(p, j)=p,"(j-)„=d,. „C,' ,(p;.p, ),

APPENDIX C

In this appendix we shall present some details on
our assertion that the terms proportional to 8'„ in
(5.7) do not contribute to the leading logarithms.
Our main task is to prove (5.22) and (5.32). Al-
though the method used here is close to that of Ref.
24, there are enough differences, especially in the
latter part of our proof, that a discussion of some
of the crucial steps is warranted.

Consider now the integrand of (5.18)

[gal l& (2iP )
l &/- ) al ]ei (a)D/C

~I 4 a 4

j =l j j a=o

(C4)
where I)", is defined in (5.17). To get a feeling
about the terms involved in this expression, we
consider in detail a simple case,

2i 2i'
(p p )- '~'u" e"""'i. ,= —g (Xp,) + —(X,) (X,)" e"/', (C5)

P (p )- 4Oa/e D( )/e i.
'

)tj
2 2

= e'D/e —[gal%&"0'4{X,X,)(X,)(4) +g "l"0Z"204(XP,)(X,X4) +g"i"4ga2 "0(X+4)(X,X,) ]C

~ 3

+ —
[g"i'2(X,X,) (X,) 3(A4) 04+ g"l"a(X,X,)(X,) 2(X4) '4

+g'l 4(XP4)(X,)+P.,)"+g++(X,X,){X,)'i{@,)a4

+ g"2"4(X,X4)(X,)al(X,) 0+ g"0"4(X,X4)(X,) i(X,) 2]

~ 4

(~,) ~(~,) m(~, )~(~,)"I.
C

(C6)
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If we relate g g „(XP,)(X,X4) withthepermutation(12)(34), g& "g(X,X,)(X,)+(&4)~4 with(12)(3) (4), and

(X,)"}(&,)+(&,)+(&,)~4 with (l)(2)(3)(4), the coefficients of (2i/C)", n = 2, 3, 4 can be identified with
the collections of elements (2'], (2 1'), and (1 J of the symmetry group of four objects. Using this result
we can write

2j
a l ~ ) iD(a)/Ce

~ el }

j=0
(c7)

To illustrate the essential points, we consider a special case of (5.18) and show that it does not contribute
to the leading logarithm:

4 0

"(g"o"-( ~. ) '&&&:~]Y' -(2fP. ) '&l'~~ ] —.e"'"'
a =0

The integrand is

(C8)

—pg}} g „}ig}~„op[}g}o g —( xP}} ) g Q}}Qg~ —( SPY ) g o g)g Q}}

+(2xP ) '(2xp ) 'S"OI)"xg)"ig)&]e' "~
)Ll X2 )tl Al X2 X2

a =0

1,.D~ . 1 ' 2i
P, P, (2iP ) —. —(X,X,)(P, P,)+ —(P, X,)(p, 'X, )

2i '

1' 22 2' '
—(2iPq ) —. —(X,X~)(P, ' P~) + —(P; X~)(P„X~)

14
+ (2iP )(2iP ) —. —(X,X,)(X X,) + 5(X,}}.,)')(P, 'P )

2j '
+ — ((&,&,)(P:l}.,)(P, ~ ~,) + 6(~,X,)(p, ~ X,)(P, ~ X,)

+(X,X,)(X,~ X,)p. P„y(X,X,)(p, X,)(P„Z„))
2i 4

+ —(X, ~,)(P, l,)(P, X,) (~9)

From (B1) and (B2), we note that all the terms in this expression can be put in the form

f(a, P) 'C, e'+~(d, „P, P})', I =0, 1, 2.

The leading contributions arise from the part of f (a, p) which does not vanish for o,, =0, j =0, 1, . . . , n By.
means of this criterion, we can write (C9) as

4 2 ~ 3 2i 4

+(Ri}iz }(Rif&,} &.
—(},l,}(l, z}PI' + —}1,, ,}..,}}Pl,}(J' i,}I,

—i ' ' C,C 'C}, ,C„&(2P, ~ P, d, „)t

(C10)

Substituting this into (C8), we arrive at the result
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Ig g~ =i(P, ~ Pi, ) dad,a ~ ~ da dP ~ ~ dP it(l —Qn -Q j)
Px,Cx,-i C„' 2P, Pi,d, „Pi,C),-i V„"i

Pi,C&,-iC„"i Px,Ck, -iC„' 2P, ~ Pi, d, „

2P»

Prado

„
D

2P, ~ Pq do

D

1—$(P~ ' Pii) AXO ' ' dll„dpi' ' 'dpq 5 1 —Q Qi —Q pi
0

Pi,Cg, -i C„'
1 P), ~Ci ~-i C„~ (c»)

where the variable change (5.24) and the identity (5.27) have been used. Equation (C11) agrees with the
general expression (5.31). To show (5.32) let us rewrite C, We define the following matrices:

+0 +1 Pl

o'i+ &z +0 ~

o'~+ &3+P3

@0 (C12)

&n-i+ &n +Pn

Q&, =a matrix similar to Q„'except that all the Lmth elements are replaced by 5,„for L,m &j —1,

Q'„=a matrix similar to Q„' except that all the Lmth elements are replaced by 5,„for I,m ~j,
Q; = a matrix which differs from the unit matrix only by replacing the jth diagonal element by P, .

We note that

C =detQ'„, C,', =detQ,', ,

C'„=detQ'„, P&
= detQ„.

Then found in the following way. We rewrite (5.21) in
the form

It is easy to see that the matrix Q,',Q, Q'„ is sim-
ilar to Q„' except that the element of the jth col-
umn is replaced by P,.5 „m=1,2, . . . , n This.
clearly shows that

+quadratic in ~'s,

which is (5.31). We conclude that Iz,q, does not
contribute to a ln'"s term.

Next we turn to the general case of (5.18). Its
integrand contains typical terms such as (5.21).
Our problem is to find the number of P terms in
it. By (Cl) and (C2), we see that a P term does
not contain the following products: (a) (A.,X,.),
(b) (j,j,)(j,j,) [but (j,j,)(j,j,) is allowed]. Using
these rules and examining a few cases, one real-
izes that the number of P terms in (5.21) can be

S,' = —,'l(L+ 1).

For j =2, the number of two pairs

(C14)

is equal to

For j =0, there is only 1 P term. For j =1, the
number of P terms is equal to the number of single
pairs constructed as follows. Consider two sets
of L objects, ~„X2& ~ ~ ~

& ~l and ~1&~2~ ~ ~ ~
& ~i A

pair, denoted by (Az, A, i), is formed with A.; from
the set A.„.. . , A. , and A.I', from the set A,'„.. . , X,'
and j &k. The number of these pairs is
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S,"= ~ l (l —1)(l —2) (3l —5). (c»)

It is straightforward, though tedious, to general-

ize to j =3, . . . . If we denote the number of P
terms for the case j by S t~), j & l —1, then (5.22)
follows. We remark that S7' is the Stirling num-
ber of the second kind. "
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