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The temperature dependence of a many-body theory with the dynamics defined by the relativistic linear o
model is studied. The model has SU(2) X SU(2) chiral symmetry with fermions belonging to a (1/2,0) + (0,1/2)
representation interacting with the o and 7 mesons belonging to the (1/2,1/2) representation of the chiral
symmetry group. The dimensional-regularization technique together with the renormalization procedure of ’t
Hooft is used to reproduce the well-known result that the counterterms of the symmetric theory remove the
divergences of the theory with spontaneous symmetry breaking, without however the need for invoking
auxiliary fermion fields. Renormalizability is maintained at finite temperatures by the cancellation of
temperature-dependent infinities which appear at the two-loop level. This is shown explicitly for the ground-
state expectation value of the scalar o field at the two-loop level. When the symmetry is explicitly broken by
the term f, m,’c the symmetry of the original Lagrangian is never restored. In the absence of such a term a
symmetry change with temperature is realized and the persistence of the Goldstone mode up to a critical
temperature T,, above which the original symmetry is restored, is verified. Thus below T = T, the low-energy
theorems of current algebra associated with the existence of the Goldstone pions would be valid except that all
parameters of the theory develop finite, temperature-dependent, corrections. A parallel discussion for density
dependence of the symmetry is included. All calculations are done in the real-time formalism for the

thermodynamic Green’s functions.

I. INTRODUCTION

The temperature dependence of symmetries of
physical systems has been the subject of interest
in many areas of physics because of abrupt changes
in symmetries that accompany phase transitions.
Most of the models used to describe these phe-
nomena are based in some way or the other on
Landau’s theory of phase transitions® in which the
free energy of the system, expressed in terms of
an order parameter, develops a minimum at a non-
zero value of the order parameter. This gives rise
to ground states which do not have the full sym-
metry of the original interaction. These ideas
have been used in context of field theory to gener-
ate particle mass spectra closely resembling the
actually observed particle spectra by requiring the
vacuum state, which is the ground state of ele-
mentary particle physics, to exhibit spontaneous
symmetry breaking.?”® The order parameter now
is the vacuum expectation value of the field.

Recently it has been suggested that the broken
symmetries of particle physics could be restored
by raising the temperature of a many-body system
of particles whose mutual interactions are gov-
erned by relativistic field theory.®*” Another pos-
sibility is that the symmetry of such a relativistic
many-body system could be altered by a change of
density. Both aspects of the problem of symmetry
changes arise directly as a consequence of the
statistical mechanics of the many-body system
and are of particular interest because of their
astrophysical implications. The derivation of an
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equation of state for a relativistic system of nu-
cleons, for example, must necessarily include the
effect of the density dependence of symmetries.®

Weinberg” has given a general theory of gauge
symmetries at high temperature in which all quan-
tities of interest may be calculated by the usual
techniques of field theory using a perturbation ex-
pansion. The minima of the effective potential are
determined in order to see whether a given sym-
metry is spontaneously broken or not and also to
define the perturbation expansion in terms of the
appropriate excitation spectrum. It is found that
at very high temperatures the effective potential
changes its shape. The leading terms which signal
the breakdown of the perturbation expansion can be
used to roughly estimate the critical temperature
at which there is a change of symmetry. Dolan
and Jackiw® have used functional techniques to
show the same results.

In the present paper the temperature dependence
of the ¢ model with chiral SU(2) xSU(2) symmetry
is studied. The model'® has two nucleons belonging
to the (3,0)+(0,3) representation interacting with
a scalar o meson and an isotriplet of 7 mesons
belonging to the (3,3) quartet representation of the
symmetry group. The ¢ model incorporates all
the basic ideas of spontaneous symmetry breaking
and reproduces the results of current algebra.!
The model has been used as a testing ground for
many new ideas in strong-interaction physics over
the past two decades. It has the additional feature
of being a renormalizable field theory.!® It is
shown that this renormalizability is maintained at
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finite temperatures and that there is a critical
temperature below which the symmetry is spon-
taneously broken. This spontaneous symmetry
breaking signals the appearance of a Nambu-Gold-
stone®* mode of excitation which persists at finite
temperature up to the critical temperature. This
is true for the theory with no explicit symmetry
breaking. When a term fm 2o, linear in the o
field, is added to the Lagrangian the pion picks up
a mass. If the parameters determined at zero
temperature by the physical masses are used to
study the temperature behavior it is found that
symmetry is not restored and the vacuum expecta-
tion value of the o field remains nonzero. This is
understandable if one uses an analogy based on
ferromagnetism. If an external magnetic field is
applied then the rotational symmetry in a ferro-
magnet is not restored even after the Curie tem-
perature is exceeded since the external field in-
troduces a special directionality. This paper in-
cludes a parallel discussion of the density depen-
dence of the symmetry,® for the sake of complete-
ness.

Particular attention is paid to the details of re-
normalization, and the real-time formalism!?-*3
is used for the temperature Green’s functions,
which has the feature of isolating the many-body
effects right from the beginning. Products of these
Green’s functions cause no difficulty when they ap-
pear in the evaluation of Feynman diagrams which
contain more than one loop. These features are
shown while demonstrating that there are no tem-
perature-dependent infinities at the two-loop lev-
el. Recently Kislinger and Morley'* have shown
that for a scalar ¢* field theory the temperature-
dependent infinities are absent at the two-loop lev-
el for self-energy corrections by using the imagi-
nary-time formalism which employs frequency
sums in Green’s functions.

In discussing renormalizability use is made of
the dimensional regularization of Feynman inte-
grals at the intermediate stages of the calcula-
tion.!®**® The integrals are analytically continued
in , the number of dimensions, and their diver-
gences as n—4 are realized as poles in the com-
plex »n plane. The advantages of dimensional regu-
larization are well appreciated by now. The fact
that it does not introduce additional mass param-
eters or cutoff parameters in integrals has been
of crucial importance in gauge theories, where
gauge invariance is maintained at all stages of the
calculation by this procedure.'” This is also use-
ful in the context of chiral symmetries in the
presence of fermions, and it allows us to renor-
malize the ¢ model without introducing auxiliary
fermion regulator fields.

It is convenient to use the ’t Hooft'® prescription

for renormalization when using dimensional regu-
larization. Counterterms are introduced into the
Lagrangian order by order to cancel the pole
terms in »n appearing in the regulated Feynman
integrals. The pole terms at » =4 have residues
which are always polynomials in external mo-
menta. This means that if subtractions have been
made to a given order in perturbation theory, the
new pole terms in the next higher order are poly-
nomials in the external momenta. The residues
can also be shown to be polynomials of a degree
given by power-counting rules. For this renor-
malization scheme to work the residues of the pole
terms must remain polynomials in momenta and
no other functional dependence must be present.

It has been shown by ’t Hooft and Veltman'® that
poles with residues which are logarithmic func-
tions of momenta which arise at the /-loop level
are canceled by counterterms of the (I - 1)-loop
diagrams. In the case of many-body theory, again
a similar cancellation should occur among the
pole terms which have temperature-dependent, or
density-dependent, residues in order that the re-
normalizability of the theory be maintained. It

is shown that this nontrivial cancellation indeed
occurs by actually evaluating the 2-loop diagram
for the vacuum expectation value of the o field,
i.e., for the o-tadpole terms. Such a result is of
interest in the case of spontaneously broken sym-
metries with massless excitations for the following
reason: Dimensional regularization has its own set
of self-consistent rules. For massless particles
the integrals of (k%) and (k%)* (@ =~1) over the

n momenta %, are set equal to zero. This has been
shown to be necessary'® by properly defining the
limits m? -0 and n — 4 so that ambiguities associ-
ated with the infrared divergences are removed.
These rules are applied to the o-model calcula-
tions.

In Sec. II the ¢ model for the many-body prob-
lem of N nucleons interacting with ¢ and 7 mesons
in the tree-diagram approximation is described.
It is shown that the change in the phase space due
to the presence of many particles affects the usual
results in this approximation. In Sec. III the de-
tails of the renormalization procedure at the one-
loop level are presented and it is shown that the
pions remain massless at finite temperatures in
the absence of explicit symmetry breaking.

In Sec. IV it is shown that the divergences of the
o-tadpole diagrams have no log (m?) residues and
that the temperature-dependent inifinites also can-
cel. In Sec. V the relation of the present paper to
other problems is discussed. For the sake of com
pleteness abrief review of the temperature Green’s
functions is included in Appendix A, and in Appen-
dix B some useful relations for the dimensional-
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regularization scheme are given. The tempera-
ture- and density-dependent corrections to the re-
normalized meson coupling constant are given in
Appendix C.

II. THE 0o MODEL

Consider a system of N nucleons whose inter-
actions with ¢ and 7 mesons are given by

L£=Tiy"s ,b— gWo - iysT * T)¥
+3(8,00%0+08 7 * 847)

2
- A -
~ B (0478 (02472

+Co. 1

Apart from the term Co the Lagrangian (1) is in-
variant under the isospin transformations

6a0=0! Ga;=ax%5 (2)
- 7T - T -
8,0 =—ia '5\1/, 6a\1/=2\1112-° a

and under the axial transformations

.
b,0=BT, o847=—p0,
-

> T \F
6B\I/=—1B'75§\I!, 850 =—1 ¥

which are generated by the vector and axial-vector
currents

“ (4)
-, _0L = T . -
b= = By, — By ©
A =50.8 ¥y y52\11+718 o—0d4T.

The term Co in the Lagrangian breaks axial sym-
metry and gives rise to the relation

24 A, (x) = %fg#c;(x) =f,m ), (5)
where f, is the pion decay constant.

We shall assume that even in the absence of the
symmetry-breaking term Co and also at zero den-
sity and temperature we have spontaneous sym-
metry breaking and that

0|o|0y=0,#0, (6)

where [0> is the vacuum state. The relation (6)
implies that the ¢ field-develops classical parts
besides the usual second-quantized parts, and
gives rise to finite nucleon masses at zero temp-
erature. This may be compared with the Bogol-
iubov?® picture of a condensate in which the non-
zero ground-state expectation value of a boson
field arises because of the very large number of
particles in one particular mode, the condensate
mode. All particles interacting with the boson
species which forms a condensate have contribu-
tions to their masses because of interactions with
the condensate background.

It should be noted that it is possible to generate
spontaneous symmetry breaking by changing the
density of the nucleons. This would give rise to
pair correlations among nucleons leading to Cooper
pairing of nucleons and holes as in the case of elec-
tronic superconductivity.?***® The attractive forces
would be those arising from ¢ and 7 exchanges.
The present paper concerns only the temperature
dependence and the density dependence of the usual
o model with ¢,#0 as defined by (6), rather than
by (G|0,|G)# 0 for a many-body ground state [G).

In order to proceed with the quantization of the o
fields we separate out the “condensate” part or the
classical part ¢, and substitute ¢ =0, +0 in (1) to
obtain

L=U(iy"d, - g0~ g0 = iys T+ DIU+3(0,00+3 (8,77 = 5(1o” +310,2)0 % = H(1g’ + § N0 )7 2

A > - - ;
~ar [0 +4000(0% +72) + 2027 + (72| - 0log(ke2 + £A0,2) = Cl =% “02002_L004+ Ca,. (7

In Eq. (7) all parameters are unrenormalized.

The relevant perturbation expansion in the pres-
ence of spontaneous symmetry breaking may be
shown to be in terms of the number of loops in
Feynman diagrams,'® and it corresponds to an ex~
pansion to a given power in X and in g, but to all
orders in \o,’ and go,, with the true minimum of
the effective potential being used to define the
ground state. For such a ground state the expecta-
tion value of the o field appearing in (7) should be
zero. This would be ensured by the absence of the
terms linear in the ¢ field to all orders of pertur-

4!

bation theory. These terms give rise to the tad-
pole graphs. In the tree-diagram approximation
we have

To=~iloy(ue’ +5105°) = CJ, (8)
and o, is defined by T,=0 to be

0o " + X023 =C . (9)
The masses of the particles are given by

2., 2 )‘002=_9=____f"m”2 10
M= o 6 o, R ’ ( )
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which shows that o,=f,, and

2=
a

M= U2+ 3 N0, (11)

My=go,. (12)

The parameters of the theory may be expressed in
terms of the masses:

3
A =72- (mvz - myrz) 3 (133.)
Mo? ==%(m,* = 3m,?), (13b)
and
g=MN/f1r' (130)

For a positive coupling constant A, the mass m,
will be larger than m,. Also, pg? is negative if the
symmetry-breaking term Co is absent. (A parallel
situation obtains in Landau’s theory of phase
transitions.?®) The Goldberger-Treiman relation
in this model is given by (13c).

Using the notation explained in Appendix A the
propagators for these excitations are given by

24

i(p+M)

iSp(p)= TF-meic}’ (14)
iD (k) =i/[[k? = m 2 +ie]l, (15)
iD,(R) =i/[[k? = m 2 +ic], (16)

where the double brackets on the denominators
denote the presence of temperature-dependent
terms in addition to the usual Feynman poles in
these propagators. These propagators are used to
evaluate higher-order effects in Sec. III, and tem-
perature-dependent corrections tothe parameters
of the theory are obtained.

The scattering amplitudes are also modified in
the Born approximation since the presence of many
particles now affects the phase space available in
scattering. As a first example consider 77— 77
scattering. With the above changes in the propaga-
tors the scattering amplitude for 7 m,— 7 7, is

i X N2
Tcd,ab=[6ac6bd<§+ 3(7)’!02 —”S .g.i()

278 8(s = m?)
ePPa_1

6, 8p,(S ~ ) + 8,545 ~ t)] . (17)

The additional terms proportional to § functions
in the (energy)? variable in each channel contribute

to the imaginary part of the amplitude, and this
corresponds to the thermal background of ¢ mesons
contributing to the scattering amplitude a finite
amount due to absorption and emission. However,
this does not affect the 77 scattering lengths as
long as m?+#4m,?. The expressions for cross
sections will now have temperature-dependent
factors.

As a second example consider o— 7. The decay
width for this process is
r= 20,2 (mg2— 4m 2/

3 167m 2

[2ngE ) +1]

_3(ms =m?)? (mp2—4m 2\ 2 2
C 167 : Gzl -

mU
(18)

The additional factor dependent on temperature
represents the thermal broadening of the ¢ width.

As a third example consider 7N — 7N where the
pions and the nucleons are the excitations in the
presence of many particles. The appearance of
nucleon and nucleon-hole quasiparticles requires us
to consider pions scattering off a specified quasi-
particle, and the initial conditions of the problem
select the appropriate term in the fermion prop-
agator:

i5,(p)= L) [G(E”— pir)

2E, Dpo—E ,*ie

+

e(ﬂ-F-Ep) _ 1 J
Do=E,—ie p,+tE,—ie

B 0(Es— r) 0(ur=E,)
—Z(j‘+M)[p02— (Ep"' ie)? (Po—iE)Z_EPZ:],

(19)

which appears in the Born-approximation ampli-
tude. The 6 functions in (19) take account of the
Pauli exclusion principle and the resultant changes
in the phase space. In Eq. (19) and in the rest of
this paper u, denotes the chemical potential of the
nucleons.

III. RENORMALIZATION AT THE ONE-LOOP LEVEL

A. The tadpole graphs for C+0

We begin by evaluating the one-loop corrections
to the tadpole term shown in Fig. 1. If the symme-
try-breaking term Co is present in the Lagrangian
(1) then m.,,2 is not zero. Using the dimensional
regularization described in Appendix B we obtain
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A X 4 i i 282 4 4
Tl"“"’[Z(zW)‘*fd k({[kz-mﬁieﬂ* l[kZ—m,2+i<J]>'(27r)4fdﬁ{[PZ-M“"GJ}]

. A 2, 2 _16g°M* }
=-10, [1&;2(72-4) ng*+my) =520, —ay *

_ig[lf dk_(na(&+m?) /%) ngl@+mV D) o o0 A np((132+M2—uF)‘/2)} (20)
2) @O \®eempprs | @EemprE ) e J = T
where the leading terms with poles at » =4 have been shown.

The meson-scattering graphs of Fig. 2 and the self-energy graphs of Figs. 3(a), 3(b), and 3(d) for the
symmetric theory (with o,=0) require the counterterms

B2 == (2A 2+ 822 1u2)/1672(n —4), Zo—1=8g%/1672(n—4), A=~ (422 - 96g%)/167%(n - 4), (21)

where Z, is the wave-function renormalization constant and 6u,” and 8X are the mass and coupling-constant
renormalization counterterms. These counterterms of the symmetric theory give rise to an additional
term to this order, for the ¢ tadpole:

. ox root - C, ., .
—100[6u02+ —6—~002+ %" (Zd,‘-l)-;o—(Zq,l—l)J . (22)

Using the relations (10)-(12) for the masses it is seen that these counterterms of the symmetric theory
cancel®® the pole terms of T, in (20).
The condition determing o,, viz., T,+ 7T, =0, is now given by

o (u02+moz c) mfd% [ns((k'2+m02)1/2) nB((E2+m,2)1/2)}+8g2fd3;b nl(B? + M2 = pp)'/?)

6 0 ) 2 )@l @ T T @ rm PR IS

=0.

(23)

The integrals appearing in (23) can be evaluated in various limits. At very low temperatures, where the
nucleon chemical potential plays an important role, consider the integral

a4’k 1 BURm2 /2 _ {1
L= 2 @77 (F2+m?)? i7zle -1

_am [ dxx® -
_—_4112 (x D) Ty Z e Bms(x2+1)} , s=1,2,3,.
(]

A T 1/2 = e-Bms
( ) > S (24)
=1
The sum over s in the last expression for I, is less than £(3)=2.612, and the integral is convergent. For

m =0 we return to the original expression in (24) to obtain

I,(m=0) =-24l82-. (25)

Similarly, in the case of fermions, consider

a’p ne((p*+M3?)' "% - up)
=8 f 2n)? (p2+M2)L7?

802 2 _ p72\L/2
=;1%{uF(qu—M2)1/2-M21n[“F+(“F M) 2r Tn b } (26)

M j, 332( M2)1/2 _6034(li Mz)s/z

In the limit of extremely high temperatures the chemical potential of the nucleons may be neglected. The
relevant energy scale in this theory is given by the o-meson mass, and this is very much higher than the
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degeneracy temperature defined by u, for any reasonable nucleon density. In this limit of very high tem-
peratures I, and I, have been evaluated by Dolan and Jackiw,® and

1 A[L m  m?

102128 Tanp T 4nt
and

8g2 ,”2 Mz

L 333’272{1232‘“ 8

(31nd7+5~3y— InBm) ++ ]

[21anB2—1+2(7—ln11)]+---} ,

(27

(28)

where y is Euler’s constant. It should be noted that the masses appearing in the expression for I, and I,

are all positive and real.

At zero temperature Eq. (23), which determines the value of o,, reduces to

2 2
o (“g+7\0‘o >_ C+ ‘{,;2(70{uF(qu_g2002)1/z_gzo.02 In [

6

For large values of u,, (29) takes the form
2 2 3
o (u02+%*2i>+% -c=0, (30)

and at high temperature o, is determined by the
relation

A+2g2 PV A
00<u02+ “I%)* 2% _c=q, (31)

where only the leading terms have been retained
in (30) and (31).

It is clear from Egs. (30) and (31) that the intro-
duction of many-body effects changes the nature
of the solutions for o,. At zero temperature and
density, o, is given by a cubic equation with three
real roots for

8 6
%—<0.

Recall that in order to have a ¢ meson heavier
than 2m, we required p,*<0, and since C is pro-
portional to m2,?, which is small, the above in-
equality is satisfied. As long as C #0 there is
always one positive root, so that o,+0 as the
temperature or the nucleon density is increased.
This means that chiral symmetry is never re-
stored with increasing temperature or density.
This is to be expected since the explicit-symme-
try-breaking term Co continues to pick out a spec-
ific direction in the internal-symmetry space.

Tia Tib Tic

FIG. 1. The one-loop tadpole diagrams in the o model.

u'F+ (qu - g20.02)1 /2 ]}- (29)

80,

As we are interested in symmetry changes
with increasing temperature or density, we shall
neglect the presence of such a term in the rest
of this paper.

B. The tadpole graphs for C=0

When the term Co is absent from the Lagrangian
(1) the pion mass is zero and the axial-vector
current is conserved. In the dimensional-regular -
ization scheme the zero-temperature terms of
the tadpole graphs at the one-loop level are zero
for massless particles in the sense that they re-
quire no counterterms.'®* However, the finite-
temperature terms survive as usual. Thus the
one-loop tadpole terms are

. am 2 16g2M,2 “.]
Ty =~ [16172(710— D)~ o=t

) P d3k (ng((&2+m 2)"2) nB(IEI))
-0, 2 (2,",)3< (E2+m02)‘/2 IEI

2 (A% np(@°+M® - pup)/?)
05" [ ot Mg

+ counterterms. (32)

X+ X

P >

+ cross-channel diagrams,

FIG. 2. Meson-meson scattering diagrams.
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——— S

(c)

(d)
FIG. 3. Self-energy graphs for pions at the one-loop
level.

Since
m_2= 2 §02=0
r Mo t g %o )
02 AG?
e R

we see that the counterterms of the symmetric
theory again eliminate the pole terms in (32).
Also, the conditions defining o, are of the form

(B + $20,2)0, =0, (33)
where
2, 2
Iloz = /J-o2 + gﬂ.’iF s (34)

in the high-density limit at zero temperature, and

A+2g2

ﬁoz=“oz+*—1§BT (35)
in the high-temperature limit.
Initially, at zero temperature and density
%= po == zm. (36)

As the density increases [i,? continues to increase
till, at a critical density p, and a corresponding
critical chemical potential pp . given by

LS 2m
Br,d == ﬂ02<g ) To\g7/47) 4ﬂ> (37)

the quantity o, vanishes. The number density cor-
responds to

ithD,r(pz)-l =Z¢(P2 - 7’”,,-,R2)
=[pP-m? - om? -2 (pP))Z,

=Z ot - [0 +1000 2 + (qu'l — 1R 2x0,.2]

4
e 2 m\3/2 8mm 2\3/2
raesls) (i)
or
m (2)1/2)3
pc— 12< (g. ) . (38)

Above this density the original symmetry is re-
stored and the nucleons are massless and the
mesons are degenerate. This is the abnormal-
nuclear-matter phase proposed first by Lee and
Wick.®

In the high-temperature limit 7 increases
with temperature until, at a critical temperature
given by

1 2. of 12\ _ 6m?
721 g e @)

the vacuum expectation value of the o field vanishes.
In the absence of fermions (39) reduces to the ex-
pression obtained by Weinberg” for the symmetry
group O(N) with N=4. Above this critical tem-
perature the system reverts to the normal, sym-
metric phase in which the mesons are degenerate.
Near the critical temperature the mesons and the
nucleons are massless, while much above the
critical temperature the particles have tempera-
ture-dependent masses. From (39) it is also seen
that increasing the number of species of particles
interacting with the 0 mesons lowers the critical
temperature.

The infrared divergences associated with the
massless particles may be expected to lead to
a breakdown of perturbation theory in the neigh-
borhood of the critical temperature” and the crit-
ical density, and the expressions for the critical
values of these two parameters are valid in the
lowest order.

C. Renormalization of meson masses

The self-energy corrections to the pion mass
are given by the Feynman diagrams of Fig. 3.
With the temperature-dependent propagators the
one-loop corrections to the inverse of the pion
propagator can be calculated and

6(27r)4fd4k<ﬂk2 mg2 +ie ]| m)

iA%o, 4
9(2w>4f TR

—my +ze]] [(p + R +ic]l

2p%

ng 4 4
e )Jd k({[kz—-M2+z'e]}_ {2

_M2+i<]}{[(p+k)2-M2+i€]}>'

(40)
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It is instructive to see how the Goldstone mode survives at finite temperature and density. Use is made of
Eq. (23) (with C =0) to rewrite the inverse pion propagator at p® =0 in the form

12 5D,(0)" = 3(2 il d4k<[k2-nt vie] ~ [[k21+ze]]> ?(zo:rf d4k([[k2—ma2+1i<11[[k"‘+idl)

- fd‘*k mg d®k (ng(E,, m,) "5(|k[)>
3(211)4 -m 2)(k2) 3 @7\ E, 3
202, L 2% ny(E,,m,) ng(1K1)
9@ )4f 4k T )(kZ) 9 (W[__LM BAlEEA) 2—E2k)}
=0. (41)
Thus the renormalized pion mass m, . is zero,
8.<8,
m 2@, p) =0 {Bc g (42)
Krp<Hp,c>

and the Goldstone mode persists as long as o, # 0, verifying Goldstone’s theorem for the present relativis-
tic many-body theory for u,#0 and 8~ #0.

The self-energy corrections to the ¢ mass are shown in Fig. 4, and the inverse propagator for the o is
given by

. - A+ 0 - Yo

T fd4k<|Ik2—7:L =i [[k21+ze]]>

_iX%0g? [ 4 3 1
21r)“fd k<[[k2 myE+ie] [(p+RP - m, +ze]] % +ie [( p+k)2+ze]]>

2ig? 4 (8M?2 - 2p?)
(2n)4fd4k< {{r% - M?+ie]} * {{r2-M2+i} {{(p+EF -~ M2 +ie} >

(43)

Using Eq. (23) it is easy to show that the counterterms of the symmetric theory remove the divergences in
(43). Since m,>2m, the ¢ meson can decay into 27 and the ¢ mass develops an imaginary part because of
the finite width of the ¢ meson. At finite temperature and density this imaginary part is modified, as we
have already seen in Sec. II [Eq. (18)].

It is worth mentioning that the coupling constants now acquire finite-temperature-dependent corrections.
If the renormalized coupling constant for y,=0=1/8 is defined at zero external momenta as g, the cou-
pling constant at finite temperature is given by contributions from diagrams of Fig. 2, together with “tri-
angle” and “box” diagrams which are generated by the presence of the cubic meson couplings in Eq. (7)
and which have finite Feynman integrals and constitute nonleading contributions. The complete expression
for rz(B, 1up) is somewhat lengthy and is given in Appendix C. Products of propagators appearing in the
diagrams can be simplified using Eqs. (A14) and (A15), or generalizations of these obtained by employing
Eq. (A13). At zero temperature n,=0 and n, =6(uy — p,) and only the fermion contribution leads to a change
in A, due to many body effects. By returning to the original expression for A in terms of Feynman inte-
grals over propagators and using Eq. (A15) with n, =6(up— p,) We derive

+ (‘U.Fz _M2)1/2 ]

6 4
A&(B™1 =0, uF>=AR——TfZ—ln[ Le

M
+12g4M2[_1_< U-FZ'M2>3/2+(U-F2-M2)1/Z+ 1 :|
- T2 M2 #Fz MFs #F(“Fz _Mz)1/§
_30154 ’:1(11172"21”2)3/2_1(“ 2_2M2>5/2 M4( 2)1/2]
L 3 KF 5 Kp bp
g‘*M"[ (ng® = p?)' 1 1 ]
__— 24 e -2 1 (2 — M) +2/~LF(V'F2 —MEYE | (44)

and for large pup
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4 2_ ar2)l/2
Aa(87 =0, up)mag - S 1] LW =M o), (45)

At finite temperature and density the o mass is shifted from its original value of Ac?/3 by a finite cor-
rection term which is obtained by evaluating (43) at p* =0. We obtain

/2
A20.2 n (R +m Z)I/Z)Bes(k2+m02)l ny (2 +m 2)1/2)
mo,RZ(Bs #F)':ma,nz— 4(2;)3fd3k|: & c,k2+moz + B(k2+mcg)3/2 :l

Nl [ s [naz(ll?l)ﬁeﬁm nB(IEI)]

~12@2n) fd k &2 kP
/

_4g%oy f dsp,: nP((P +M?) 2, ug) Be® P O (5P MY, uf)] (46)

(27)? pPPHM?2 (p? + M2y :

At zero temperature, using np=6(u,— p,) and Eq. (A15) we reevaluate m? from (43) and obtain

- 20402 + (2 —M?2 1/2
mo,nz(ﬁ 1=0, pp)=mg, 5t - gﬂzo ln[uF MFM ) .

The functional relation between mass and the parameters of the theory, which are all temperature and
density dependent, is no longer m 2 =§>\R002 because of the nonleading terms.

D. The mass spectrum in the symmetric phase

Let us first consider the abnormal-nuclear-matter phase at zero temperature, which is reached when
p>p.. Since o,=0, the nucleons remain massless as the density is raised beyond the critical value.! The
meson masses are now degenerate and

. .
~iZ gDy NP =0) = gt B fdsk"z(‘k',ﬂg)

(2m)® 21k|
802 1
=ug+ g [ T Rak
Ko 472 A
g2
=u°2+_7r—2 Le, bp2lp,e - 47

Thus the meson masses which are zero near the critical density continue to increase with 1, and
g2
mc, wz = _,”_5 (/“LFz - U'F.cz)e(“'F - “'F.c) . (48)
Thus above and below the critical density the mass spectrum is positive, as it should be. This is shown
in Fig. 5.

! ) MZW

(a) (b)

(c) (d) (e)

HE critical K

FIG. 4. The one-loop self-energy diagrams for the o FIG. 5. Schematic graph of the meson spectrum as a
meson. function of the nucleon chemical potential up.
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Now consider the mass spectrum above the critical temperature. Since ¢,=0 above the critical tempera-
ture the boson masses are degenerate and the nucleon mass is zero. The masses increase from zero as
the temperature increases above 7, and we have

-iZsDgy, o (PP =0)=m, .°

%k [ag(IK1) | 8g%n (|El)]
-y B{ £
Ho *f (2#)3,: Kl T 20k

_A+2g°

D (1% -T1,2)6(T - T,). (49)

The temperature dependence of the boson spectrum is shown in Fig. 6.

E. Renormalization of the nucleon mass

In the symmetric theory at =0 and 1/8 =0 the nucleons are massless and no counterterms for mass
renormalization are necessary. The nucleons do require wave-function renormalization. The self-energy
diagrams of Fig. 7 can be evaluated to obtain Z,, the wave-function renormalization constant for the nu-
cleons, and the leading terms are

4 2

-1y 8
Zy=1* 1520, = ) * (50)

The same result holds for o,+# 0, and no mass renormalization is necessary for the nucleons; also in this
renormalization scheme no auxiliary fermion fields are needed. In the presence of nuclear matter the in-
verse nucleon propagator including the one-loop self-energy corrections is given by

. “1(p) = /2187 4 k+M
iZySr (p)—Z\,,[jf—(g+6g)oqu, T (@) .[d k<{[k2—M2+ie]}[[(p+k)2—m02+ie]]>

i3g2 k-M >J ' (51)

4
(21r)4fd k({[kz—M2+z'e]}[[(p+k)2 +i€]|
The term &go, is canceled by goo(Zq,‘J‘/2 — 1), so that 6M =0. The infinite parts of the two integrals in (51)
are eliminated by Z .

IV. ABSENCE OF TEMPERATURE-DEPENDENT INFINITIES

For the ’t Hooft renormalization procedure’® to be applicable the higher-order Feynman diagrams should
contain no pole terms at » =4 with residues which are not polynomials in the external momenta or external
masses. At intermediate stages of the calculation, pole terms with residues which have log(p?) or temper-
ature-dependent factors do occur in any given Feynman diagram. However, the sum of such terms at any

T

FIG. 6. The temperature dependence of the meson FIG. 7. The nucleon self-energy diagrams with ¢ and
spectrum. T exchanges.
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order is canceled by terms arising from lower-order diagrams with counterterm insertions. Let us con-
sider the two-loop tadpoles of Fig. 8, together with the counterterms of Fig. 9. We now show that these
diagrams are free of nonpolynomial or temperature-dependent residues. This is best done by regrouping
the terms in each Feynman diagram into (i) the usual Feynman integrals at zero temperature and density,
(ii) the temperature- and density-dependent factors multiplying Feynman subintegrals having divergences,
and (iii) finite, temperature-dependent integrals. Such a separation of the terms is straightforward be-
cause the real-time Green’s functions whose use is advocated here have this separation of the usual Feyn-
man poles from the temperature- and density-dependent terms in them.

Consider first the zero-temperature calculation of the set (i) of the two-loop tadpole terms. The terms
arising from the diagrams of Figs. 8(h)-8(k) and a pion-mass counterterm in Fig. 9 are

1

i - s i A
Til 7,0+ T Em = giots [ a2 02+ m 2], 2

where =, (k) is the pion self-energy term appearing in Eq. (40). Now the terms proportional to #* in T (k)
give integrals of the form (B1) given in Appendix B, and these terms may be dropped in the dimensional-
regularization scheme. Using the mass counterterm, defined by the finiteness of (40), and the integral
(B6), we have

P i g2 1 m?
Ty (h,i,5,k)+ T (0m,®)= (—1672—)2—("%—3)' (-ﬁm—ﬁg—>. (53)

The terms of Figs. 8(a)-8(e) are given by the ¢ self-energy terms inserted in the one-loop tadpole, and
we have

. ~N 2 2/,2 2 2
Ti @, b, c.d,e)= iNogm g [ 3 3/2_ _3W(mg’/u?) 3 ln<m2° >_ 3 ln2<m2° >]

(16m@F | n-4 "n-42" n-4 2 M\ 2 %
—i2X0,82 [—12M2+4mg2 N -2M?%+2m j? . = 12M2 In(m ;2 /) + 4M 2 In(m ;2 /u?)
(1672)? (n— 4y n-4 n-4

2 2 )
+1';102+(6M2_47;/502)ln<7Zéj >+(_ 4M2+2m02)1n2<7Z; >—4len<{£2—>

2 2 2
vome w22 ) - mz (e )| (54)
u2 W
The diagrams of Figs. 8(f) and 8(g) give

; _ iNogm 2P [—4/3 243 mgt\ 2 <m 2\ _2 2<m02>]
T,(f,8)= T6r) (n—4)2+ o4 " n—d In i > 5+21In -—Luz 3 In )| (55)

and the corrections to the nucleon tadpole represented by diagrams of Figs. 8(1) and 8(m) are

—izgzM{—Zﬁlmcz 32M°%+28m > —24m 2 In(m 2 /p?) 0. [ M?
A6rF | moaf * -4 % w4 +32M7 1o\~

Tiz(l,m)=

2 2 2 2, 2
+4m ;2 In? <%> +28m % In (—”ﬁf—) - 8m 2 ln2<%z7—> -12m 2 - 2m ,* In? <MT§L—9—>1\ .

(56)

The terms in (53)—(56) with the coefficient In(m ,2/u®)/(n — 4) are canceled by corresponding terms arising
from the counterterm diagrams in Fig. 9. At zero temperature and density we have to this order

i_ogml[_2 m°
1= Slem) I:n—4 L+In{=3

1 ' :
- <—3-2—T-r5>{6mczhco+m02[ X0y +(Z47 = 1))‘00]}{"_2_‘1' -1 +1n< 7 >

iAo Om 2 n-4 n-4 m 2
- 351:20[1' 2 T2 I“( 20)] (57)



and the following term in (57)

i 27,2
—ll_né_?%i_)‘{ém AT+ m [ OATo+(Z 57 = 1Aa, ]}

- 1ln(m
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= LR (L 2y 220+ 2482 M 2A0, + 48g Ym 20, — 8Ag P J20,)

(167%)2(n — 4)

eliminates the poles with logarithmic residues
in the two-loop tadpole. The remaining infinities
in T, are canceled by terms to order (z - 4)™
arising as usual from the mass, coupling-con-
stant, and wave-function renormalization.

The temperature-dependent infinities arise
whenever some internal lines in any given Feyn~
man diagram are put on the mass shell by the
temperature-dependent terms in the propagators
while other lines form subdiagrams with loops
which have their associated infinities. At the
two-loop level this corresponds to applying the
“cutting” rule to any one internal line, as de-
scribed in Appendix A. When two internal lines
are cut the Feynman integrals are limited to
finite regions of momentum space and are finite,
These constitute the finite terms of set (iii). We
now show that the temperature-dependent in-
finities are absent. In order to make the expres-
sions compact let us define

a3 B2 2)1/2
Jl:f(zk ng((k2+m2)"?) (59)

”)3 (k2+m02)1/2 ’

_ (4% mp(kl)
2= (2m)° "%ﬁ'l'— s (60)

(58)
_ a3k [ n 2((k2+m;)1/2)3e8("2+m02)1/2
% j (2”)3[ ) 2(k% +m ;2)
ng((k2 +m ,2)?)
2kZ+m )2 j’: (61)
and
(@ [agA(E)se ™ ()
%) <2">3[B 2% 51&13}- (62)

The two-loop terms of Figs. 8(h)-8(k) together
with the pion-mass counterterm in the one-loop
tadpole have the temperature-dependent infinities

N =i
T3, 1,3, )+ T Oms) = Toe 2o G, +30)
o, g2
T 167%(n - 4) (47;).  (63)

The two-loop terms of Figs. 8(a)-8(e) together
with the o-mass counterterm in Fig. 9 give the
temperature-dependent infinity

T, @, b, c,d,e)+ T (Om,?)
g 2
- —iN Og 1 _ Mg g,
1672 (n — 4) [2(d,+J,) 1672(n - 4)
The diagrams of Figs. 8(f), 8(g) and 8(1), 8(m)

4J,. (64)

FIG. 8. The two-loop diagrams for the o tadpole.
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FIG. 9. The counterterm diagrams for the o tadpole at
the one-loop level.

have the terms

i — A%
T(f,8)= m (G, +3J,) (65)
and
; +ig*M
T;i(l,m)z—m (48, + 48,). (66)

The infinite terms (63)—(66) are canceled by the
coupling-constant counterterms

TH(ON, Z 4) = _-2? (600, +(Z4™" = DAay] (7, + ).

(67)

We have thus shown that there are no pole terms,
in Feynman integrals as n— 4, with log(m?) or
temperature-dependent residues. The finite,
temperature-dependent terms for the two-loop
tadpole are readily evaluated by the repeated

use of the cutting rule of Appendix A. Details
will be presented elsewhere.

V. CONCLUDING REMARKS

It has been shown that the statistical-mechan-
ical aspects modify the usual results of the field-
theoretic 0 model. The scattering amplitudes
develop contributions to their imaginary parts
appropriate to the emission and absorption process
in the presence of a thermal background of various
particles and resonances.

The renormalization of the mode! at the one-
loop level brings out the feature that the Goldstone
mode is maintained even at finite temperature
and density till a critical temperature or a critical
density is reached. The full symmetry of the
o model is restored above these critical values
for the temperature or density.

The ground-state energy of a system of nucleons
has been studied in the ¢ model.® The results
could be improved by going beyond perturbation-
theory arguments using renormalization-group
techniques. Since masses and couplings param-
eters become functions of temperature and den-
sity, the differential equations of the renormal-
ization group must now include terms which take
this into account. This has been independently
proposed by Kislinger and Morley.'*

MOHAN 14

In the presence of many-body effects the pre-
dictions for couplings based on current-algebra
sum rules would be modified. The effect this has
on the position and the width of the A(1236) reso-
nance, on the quenching of the axial-vector cur-
rent coupling,?® and on the current-algebra spec-
tral-function sum rules are problems for further
study.
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APPENDIX A

1. Temperature Green’s functions

In the zero-loop or tree-diagram approximation
the particle propagators are

iSp(p)= f d'x 7 %0| T (v), T(0))] 0)

=i/(f# - M +i€) (A1)

and
iDa(p)= [ d% 0| (o), (0)|0)

=i /(p? —m?+ic) (A2)

for fermions and for bosons, respectively. We
shall be interested in the statistical Green’s func-
tions defined as the expectation value of time-or-
dered products of fields averaged over ensembles
of particle distributions. We define

Tre -t =+ T(¥(x), T(0))

iSF(p’ “a3)=j d4x eiﬂ‘x

Tre-B'(H-u.N)
_7'(ﬂ/+M)< 1—71F + N
" 2E, \P,-E,+i€ p,-Ep—ic

1-7, Tip )
Do+ E,—i€  po+E,+i€/’

(A3)
where g =1/K,T, i is the chemical potential, N is
the number of fermions, E, is the energy (p?

+ M2 and

np=np(b,, K,B8)

= 1/(eB(po-u)+ 1) (A4)



14 RENORMALIZATION OF THE o MODEL AT FINITE TEMPERATURE 2683

is the Fermi distribution function for a system of
fermions. Kj is the Boltzmann constant, and it is
set equal to unity together with ¢ and 7% in this
paper. It should be noted that now the positions of
the poles in the propagator (A3) correspond to the
presence of particle, particle-hole, antiparticle,
and antiparticle-hole excitations. (This is shown
on the frequency plane in Fig. 10.) Correspond-
ingly, 7 (the Fermi distribution function) is a
function of — p, and of &, the chemical potential

for the antiparticle distribution. Consider the case

where there are only N fermions and no antifer-
mions, so that 7 is zero. The propagator (A3)
then reduces to the form

iSp(p, K,B8)

1 2ming(pq, ,8)3(Pq —E»)].

=i(1/+M)[p2—Mz+i€ * 2E,

(A5)

At zero temperature the fermions occupy energy
levels up to a maximum corresponding to the
Fermi-level energy u, and the Fermi distribution
function becomes nz= 6(u —p,).

For a system of noninteracting fermions at zero
temperature the number density is!®

Imw
_w°¢i€ ® ® w°+i€
> Re
: ) w
TW,tlEe @ ® Wi€

FIG. 10. The poles of the particle propagators on the

complex energy plane in many-body theory.

N/V=p
eir5*° | gito¥
- it [ E (T s, )
PF d3p
=2j0 (27r)3nF
_PE
=55, (A6)

If the number of species in a multiplet of fermions
is « the total number of fermions per unit volume
is kppY/3m®. Here pp is the Fermi momentum. For
nuclear matter k=2,

The energy density of this system of fermions
is

_ 2K ’F 2 21/
Eey ), TP
. 2 /:
=;~TI£2%—1;—-F(1)F2+M2)3/2—%pr(pFZ-FMz)I/Z—‘IW—ln _Lt%iw_ﬂi:}}' (A7)

In an analogous manner the propagator for the bosons is defined as

-B8H
iDp(k,p)= f dix ¢i#s 1€ g;ﬁg{wm»
: [1+n3(k°’6) np(ko,B) _ 1+7p(=k,,B) nB(—ko,B)} (A8)
2Ek k E + 1€ ko"Ek_ie k +E -—z( ku+Ek+i€ .

Here ng(k,,8) is the Bose-Einstein distribution function
ng(ky,8)=1/(eP0 - 1).

For the present problem it is assumed that the boson chemical potentials are zero. When there is no ex-
plicit symmetry breaking in the model considered here, the pions will be massless and their spectral dis-
tribution will be that given by Planck’s law. On the other hand, setting the chemical potential of the ¢
particle to zero is the correct procedure for our choice of spontaneous symmetry breaking [Eq. (6)], which
does not require a Bose-Einstein condensation of the ¢ particles in order to trigger off the symmetry
breaking. At zero temperature there are then no o mesons in the ground state.

For self-conjugate fields nz =7 and the boson propagator is

¢ +or ”Bz(gi’ﬁ)a(ko -E)+ 21r—n—8£2:E£;"—’-§—)5(k0+ Ek)] (A9)

iDp(,8)=| 32

—-m?+ie€

In this paper we designate the propagators by double brackets to denote the presence of temperature-
dependent terms in the propagators:



2684 L. R. RAM MOHAN 14
iSp(p)=i(d+ M) p? -M?+ie}, (A10)
iDgp(k)=i/[ p? - m>+ic]. (A11)

2. Products of Green’s functions

In Eqs. (A5) and (A9) the Green’s functions have been written as distributions using the well-known iden-
tity

1/(x +i€)=P(1/x)Fim 5(x). (A12)
Products of Green’s functions with coincident poles require the relation?
1 1 (=1 .
=P — 5 1) i
e ek R mae s M) (A13)

Thus, for example,

1 B 1 [ng(k,) «, ng(k)0(k, - E,)
[#® —m?+ie]® (P —mi+ie)k ' 27”[ 4E,e20 8" (ko ~ Ex)+ 2Ekg(k0+oEk) }
[7g(—Fky) 7ig(—ky)o(ky+ E,)
azﬂ{———wkz 2ot (hp £+ T go Rl ) J] (A14)
and
1 - 1 ] nF(p ’I“L) ’ nF(p ,#)G(P "'Ep)
[7-M+icP - (pz—M2+i€)2_2m[ age O o= B T g ot ) I (a15)

As a simple example, a loop diagram with two vertices having external legs with zero 4-momenta can be
calculated using (A14) or (A15) and the result can be compared with that obtained using the imaginary-time
formalism."®

When the poles in the product of » Green’s functions are not at the same value of %, the products can be
written as the usual Feynman term plus all terms with 1,2,3,...,n, d-function factors. These factors
select regions of momentum space in which the lines of virtual particles in the diagram correspond to real
on-mass-shell particles. This has to be consistent with energy-momentum conservation at each vertex.
The parallel with Cutkosky rules?® of field theory is obvious. For one application of these “cutting” rules
see Ref. 29.

APPENDIX B

Dimensional regularization has been done using the analytic continuation

1 . ('U'z)z-n/a,’r 2=n/2 "
(@n)° f Pk = YT (B —n/2) fd ks

where u is a constant mass called the unit of mass.!® This definition avoids terms with Euler’s constant
in the intermediate stages of the renormalization and simplifies the algebra. The uniqueness of analytic
continuation in dimension has been discussed by Kang.° The n-dimensional integrals have their usual
values,'® and some useful relations are the following:

1. fd"k(k2)5=o, g=-1 (B1)
2. f dk5(k?)=0, (B2)
3. f d"R(k?+ 2p * b —m?)"=4(- 1)/ r(al;((;g’;@m 5 ) (B3)

4. f Ak, (k% +2p + b —m?)® =i(— l)aﬂnIZ(_Pu) m—)r-(‘%%};%:m ’ (B4)
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5. fd"k(kukv)(kz"' ZP"k"ma)-a: r(az)((ml):pz)a-n/z[r(a n/2)1) pu"'zguvr(a—l n/2)(p +m2)] (B5)
n 2 T(2-n/2)
6, fd He)z U T " (B6)
APPENDIX C

The corrections to the meson coupling constant at the one-loop level due to many-body effects can be
evaluated by separating out the temperature- and density-dependent terms in the propagators entering
Feynman integrals for the meson-meson scattering amplitude. The diagrams of Fig. 2 together with tri-
angle and square diagrams which are generated by the presence of cubic couplings in Eq. (7) contribute at
the one-loop level. An efficient way of evaluating these corrections is to use the definition of Coleman
and Weinberg® for the coupling constant in terms of the effective potential:

8t
AR(B’ “F)-'-AR"" 30.4 Vl(B’IJ'F:O‘o)’ (Cl)
(o]

where 71(5 , kg,0,) is the temperature- and density-dependent part of the effective potential, or the thermo-
dynamic potential, at the one-loop level. For the ¢ model a direct extension of the results of Dolan and
Jackiw® yields

V.8, up,0.)=—-4 f ((;”1;3 11n(1+e‘5“1'““‘”51|l) f ((;rrl; 1[ In(1 — e™®F1)+ 31In(1 - e"#%2)], (c2)

where

E,= (p2+g2002)1 /2’

E,=E, = (k®+ [1,2+3r0,2) 2,
and

E2’='Em1r= (k2+ "“02*';_7‘002)1/2'
We are discussing a system of nucleons with no antiparticle distribution (i.e., 77z =0), and the number of
species of fermions is 2; this accounts for the factor of 4 in front of the integral over p in Eq. (C2). As
in the work of Coleman and Weinberg ® the coupling constant is defined for a value of o, away from the

minimum of the total effective potential in order to avoid the infrared problem. Substituting (C3) in (C1)
we obtain

12g* np2pePtu
A‘R@y“i‘):Aﬁ_(zTg)‘s J‘ d3P<E 3+_F—EB—M'2—>

24 g%, 2 J d3p(3n"' 3np23 eBEM 20p%%%5H F2BZeBEM>

(2m)3 E,* E,3 E,®
, 18% & < 15n, 15mp°gePfr  12n,%32e2"Fu L SneB 2gBEu
(277)3 J- - 7 EMB - EM5 EMs
~ 6113 SeSBEM+ 61’&F333623EM _ nF233eBEM>
E,* E,* E*

Mg? 5 [(n; nlzﬁe”l) 1/n, ~n,
‘4(2n)3fdk Eft T E? +3(E1—-E2>}

%0, f . [(_ 3n,  3n,BefPt 2n,%%% n1252e531> 1 <nl-n2>]

2(2m)° ES° T E® E® 7 E® /'9\E-E,
_Aglot f dak[<15n,+ 150,81 12n,3%®"1  6n, 3% "
16(2m)3 E/ E}’ ES’ ES
. 6}1143 346383 6n 33 :sfzﬁE1 . "125 34eBE1)
E, E, E,

(e E) ©
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where

ny=n,p= (e F1-1)"

and the terms.arising from pions are obtained as indicated in (C3) by the replacement of (,,E,) by (n,, E,)

in the integrands.

At zero temperature, ny=0 and the fermion terms alone survive. They are evaluated by taking the zero-
temperature limit after differentiating the logarithm in (C1), and

ARB7=0, Lp)=Ap+ i [4g200 f a’p _—_9(“ _EM“)]-

80,3 (2m)? E,

(c4)

This then defines the appropriate branch of the logarithm. The resultant expression is Eq. (44) of Sec. III.

*Work supported in part by the U. S. Energy Research
and Development Administration.

L. D. Landau and E. M. Lifshitz, Statistical Physics,
2nd edition (Addison-Wesley, Reading, Mass., 1969).

7. Goldstone, Nuovo Cimento 19, 155 (1961).

3Y. Nambu and G. Jona-Lasini(r Phys. Rev. 122, 345
(1961). '_

!S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

SA. Salam, in Relativistic Groups and Analyticity, Pro-
ceedings of the Eighth Nobel Symposium, edited by
N. Svartholm (Almqvist and Wiksells, Stockholm, 1968),
p. 367.

®D. A. Kirzhnits and A. D. Linde, -Phys. Lett. 42B, 471
(1972). '—"

’S. Weinberg, Phys. Rev. D 9, 3357 (1974).

®T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974);
T. D. Lee and M. Margulies, ibid. 11, 1591 (1975).

L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).

198, W. Lee, Chival Dynamics (Gordon and Breach,
New York, 1972), and references therein.

13, L. Adler and R. F. Dashen, Currvent Algebra (Benja-
min, New York, 1968).

12See for example L. P. Kadanoff and G. Baym, Quantum
Statistical Mechanics (Benjamin, Menlo Park, 1962).

BGreen’s functions for a relativistic many-body theory
have been formulated by R. L. Bowers, J. A. Campbell,
and R. L. Zimmerman, Phys. Rev. D 7, 2278 (1973);
7, 2289 (1973). B

4y, B. Kislinger and P. D. Morley, Phys. Rev. D 13,
2765 (1976); 13, 2771 (1976). -

15G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189
(1972). —

186G, Leibbrandt, Rev. Mod. Phys. 47, 849 (1975).

'"C. G. Bollini and J. J. Giambiagi, Phys. Lett. 40B, 566

(1972); J. F. Ashmore, Lett. Nuovo Cimento 4, 289
(1972); also see Ref. 15. -

18G. °t Hooft, Nucl. Phys. B62, 444 (1973).

G, Leibbrandt and D. M._(;aE)per, J. Math. Phys. 15, 82
(1974); 15, 86 (1974). -

%N. N. Bogoliubov, J. Phys. Acad. Sci. USSR 11, 23
(1947), reprinted in D. Pines, The Many Body Problem
(Benjamin, New York, 1961).

3. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957).

2M. Hoffberg, A. E. Glassgold, R. W. Richardson, and
M. Ruderman, Phys. Rev. Lett. 24, 775 (1970). For a
recent review see G. Baym and C. Pethick, Annu. Rev.
Nucl. Sci. 25, 27 (1975).

Bgee for example A. L. Fetter and J. D. Walecka, Quan-
tum Theovy of Many Particle Systems (McGraw-Hill,
New York, 1971), p. 430.

Uy, L. Goldberger and S. B. Treiman, Phys. Rev. 110,
1178 (1958). ‘_
B, W. Lee, Nucl. Phys. B9, 649 (1969); J. L. Gervais
and B. W. Lee, ibid. B12, 627 (1969); also see J. A.

Mignaco and E. Remiafii—, Nuovo Cimento 1A, 376 (1971).

%a. Baym and G. E. Brown, Nucl. Phys. A247, 395
(1975); J. Delorme, M. Ericson, A. Figureau, and
C. Thevenet (unpublished).

2", M. Gel’fand and G. E. Shilov, Generalized Functions
(Academic, New York, 1964), Vol. 1.

R, E. Cutkosky, J. Math. Phys. 1, 429 (1960); also see
M. Veltman, Physica 29, 186 (1963).

#¢C. B. Dover, J. Hiifner, and R. H. Lemmer, Ann. Phys.
(N.Y.) 66, 248 (1971).

303, S. Kang, Phys. Rev. D 13, 851 (1976).

313, Coleman and E. Weinbe?g, Phys. Rev. D 7, 1888
(1973). B




