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Recently the renormalization-group method has been used to give the asymptotic behavior of the physical
fixed-angle scattering amplitude in $' field theory. This method does not directly apply to forward (or
backward) scattering due to the inevitably singular nature of the zero-mass vertex functions at 8, = 0 or m. In
this note we apply the method used to get the above results to integrals of the vertex functions over the angle

variable. The resulting restriction we get on these integrals leads us, with the help of rigorously established

inequalities due to Bessis and Singh, to a new strong upper bound on rr„,(s) for the massive $' case. The new

input we need to get this result is, like many of the assumptions used in connection with the renormalization-

group method, valid at least order by order in perturbation theory.

I. INTRODUCTION

Recently it has been shown that the renormaliza-
tion-group method can be used to study the asymp-
totic behavior in energy of the fixed-angle elastic
scattering amplitude on the mass shell. ' The
results hold only for theories with tame infrared
behavior such as P' or Yukawa theories. In these
cases one gets a simple scaling behavior of the
elastic amplitude at high energy and fixed center-
of-mass scattering angle, 0, w0 or g:

E(s, 8, ) -s '~( "iis(8, ),

where y(g„) is the anomalous dimension of the Q
field at the ultraviolet fixed point g =g„ in the P'
case.

The fact that the renormalization-group method
puts restrictions on the high-energy behavior of
the fixed-angle amplitude was first pointed out by
Huang and Low' in 1964. They also correctly
pointed out that one cannot use the renormalization-
group method at fixed momentum transfer t. The
reason for that becomes evident when one recalls
that the renormalization-group method gives the
asymptotic behavior of a vertex function for a mas-
sive theory in terms of expressions which involve
the vertex functions of the zero-mass theory.
Large s and fixed t gives us essentially an excep-
tional momentum configuration with 8 .. = 0. The
zero-mass four-point vertex function is certainly
singluar at z = cos8, =+ 1. Thus one cannot use
the renormalization-group method directly at fixed
t, or at fixed z if z =+ 1.

The nature of the singularity of the zero-mass
vertex function at z =+ 1 is not rigorously known.
However, in perturbation theory this singularity
is at worst logarithmic in the P' case. One can
also give heuristic though not rigorous argu-
ments that at worst this singularity is a pole.
Several authors' have made the assumption that

this t=0 singularity in the zero-mass case is not
worse than what is given by the exchange of two
zero-mass particles in perturbation theory, i.e. ,
in the Q' case one gets a logarithmic singularity.
They used this assumption plus the existence of
fixed-s dispersion relations to directly obtain
bounds for the total cross sections in the zexo-
mass case where the methods of Martin and Frois-
sart do not hold.

In this brief note we shall combine assumptions
similar to but weaker than those of Refs. 4 with
the renormalization-group techniques of Refs. 1
and 2 to obtain restrictions on the massive theory.
These restrictions then lead us, via an inequality
due to Singh, ' to a bound on the physical massive
total cross section of the form o „, (s)
~ const x s-'&«-i In's for the Q' case.

The renormalization-group input used in Refs. 1
and 2 has of course not been rigorously justified,
but it is based on perturbation theory. Similarly,
the assumption of Ref. 4 on the nature of the g = 1
singularity is based on perturbation theory. For
these reasons one cannot view our result as an im-
provement of the Froissart bound even for the Q'
case. However, there have been many attempts
to determine the asymptotic behavior of o „,(s) by
calculating the leading behavior of a certain sub-
class of graphs and then summing it up. ' The route
we follow takes account of all diagrams, makes
weaker assumptions, and yet leads to different
conclusions, namely, the Froissart bound is not
saturated. Unfortunately, one cannot make a di-
rect comparison since the methods of Ref. 6 were
only used for massive electrodynamics, and gati'

theory, while those of Refs. 1 and 2 can so far
only be used for theories with tame infrared be-
havior such as P' or Yukawa theories. At this
stage there is no conflict.

In Sec. II we review the results of Refs. 1 and 2

on the fixed-angle behavior. We then derive our
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main result in Sec. :III and state the new input
needed. In Sec. IV we show how the asymptotic
behavior of integr als over angle of the scattering
amplitude obtained in Sec. III leads to a bound on
the total cross section.

8 8 (~)~ —„+p( g) ~y( g)+y( g) r'"'—(p;;g, m, v )
Bp. Bg BPl

= 0. (2.1)

We areonly interested here in the case n =4, and
simple dimensional analysis gives us

D, r~ &(XP, ;g,m, q)=O,

with

(2 2)

D, =- -X—+P(g)——4y(g)+ [y(g) —1] m —[.5 s s s
s )
(2.3)

This last equation has the standard solution

r&'(xp, . ;g,m, g)

=r~'(p, . ;g(z), m (x), p, ) exp —4

where

i g( x) (&)

p(x)

(2 4)

) —„g(~)= p(g(~)),
8

g(1)=g,

) —m(X) = [y(g(~)) —1]m(~).
8

8A.

If P(g) has an ultraviolet-stable fixed point g„and
y(g„) &+1, then m (X)-0 as A. -~, and

II. REVIEW OF FIXED-ANGLE BEHAVIOR

In this section we briefly review the results of
Refs. 1 and 2 using the approach of Callan and
Gross. ' The whole discussion is restricted to the
P' case.

We use the so-called "improved" renormaliza-
tion-group equations. ' One considers the n-par-
ticle vertex functions

r~ "~(p„.. . ,p„;g,m, p. ).
The mass parameter p, describes the off-mass-
shell point at which subtractions are carried out,
and m is a parameter related to, but not the same
as, the physical mass, m»„, f(g, m, p. ). ——The
main point is that as m -0 one obtains the vertex
functions of the zero-mass theory with p, then
being the mass needed to define the subtraction
point. The renormalization-group equations are
given by

r&'&(xp,. ;g,m, p. )-) '&«-&r~'&(p. g o „).
(2.5)

Both the existence of the fixed point and the va-
lidity of the bound on y are necessary for the ap-
plicability of the renormalization-group method
even for Euclidean p, We shall assume that both
hold. Note that on the right-hand side of Eq. (2.5)
r~'~(P;;g„, 0, p, ) is a zero-mass vertex function,
and if the p,. 's are such that I'~' is singular then
Eq. (2.5) is useless.

To apply the renormalization-group method on
the mass shell one introduces the momenta

p,.(z,)=q, +r,./), ', .i=1, . . . , 4, (2.6)

where q,. '=x,.'=0 and 2q,. x,. =nz, '. The parameter
A. , is at this stage taken to be independent of A. . The
mass nz, is a fixed mass which at a later stage we
set equal to the physical mass. We consider the
vertex functions r~'~(Ap, . (X,);g,m, p. ) which now

satisfy

D~ri'~gp, (A. ,);g, m, p, )=0. (2.7)

-~-'~~ -~r~'~(s„z„m, =o;g„,o, p, ),

(2.9)

where so= (q, +q,)', to=(q, +q~)', and zo= 1+2t~/so.
Also, for large A,

s(x) =~'[s, + 0(1/z')]

z(X) =z, + 0(l/Z').
(2.10)

Thus in Eq. (2.9) one is taking the limit of large s
at fixed z = cosa, —=zp The vertex function
r~'~(s„z„m, =o;g„,o, p, ) is a zero-mass vertex
function with both internal and external masses
vanishing. It is argued in Ref. 2 that for -1=z,
&+ 1 this zero-mass vertex function exists at least
for p' theories, and hence Eq. (2.9) gives the
large-energy fixed-angle behavior of the massive
vertex function on the left. But the massive ver-
tex function I' ' (s, z, m, =m,„„,;g, m, g) differs
only by a finite factor from the physical scattering
amplitude:

The solution is identical to that in Eq. (2.4) with

p, replaced by p, (A. ,). At this point we set X, =X in
the solution and take the limit of large A. to obtain,
as A. ~)

r"(Xp. (A) g m p, ) -A. -'~«- r '&(q .g 0 p, )

(2.8)

In terms of the variables s(X) =—X'[p, (X)+p, (A.)]', z(A. )
= cos 8, , and m, ' = [XP,. (X)]' one has

r'&(s(X), z(X),m, =m, ;g, m, q)
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F(s,z) =- G(g, m, p)I'~'~(s, z, m, =m ~„„,;g,m, p),

(2.11)

and hence Eg. (2.9) leads to the scaling relation
(1.1).

For forward (or backward) scattering, z, =+ 1,
one cannot use Eg. (2.9) directly since
I'&"(s„z„0;g„,0, p, ) is singular at z, =a 1. How-
ever, we shall see in the next section that if this
singularity is integrable (as suggested by per-
turbation theory) one can still get useful results.

One should note that we use the relation (2.11)
only for the massive case. For our purposes we
do not need to relate the zero-mass vertex func-
tion to the zero-mass scattering amplitude. The
function k(8) in Eq. (1.1) is thus proportional to
the zero-mass vertex function
I"~'~(s„z,m, =0;g„,0, p) and not simply related
to the zero-mass scattering amplitude.

III. ASYMPTOTIC BEHAVIOR OF INTEGRALS
OVER THE ANGLE VARIABLE

In perturbation theory the singularity of
I'~'~(sa, z„m, =O;g„, 0, p) at z, =+1 is logarithmic
for P' theory, and at least order by order in per-
turbation theory the integral

pI
F (80, za, m = Oqg, 0, p)dza) 1 & 5 & 0

exists and is finite. So the first assumption we
make in addition to those of Refs. 1 and 2 is the
following.

Assumption A. The above integral is finite for
the full zero-mass T' '). This allows us to deal
with singularities at z, = 1 that are stronger than
logarithmic as long as they are integrable at z, = 1.
This is our main assumption. It is similar to and
weaker than those made in Ref. 4. In addition we
shall need a technical assumption about inter-
changing the A. -~ limit with integrals over z,
which we shall specify below.

To proceed we now consider

I '~{Xp,.(Z,);g,m, q)

r(4) s A XI z A. Xl m. = P g m P.

(3.1)

For large ~„s(X,X,) =~'[s, + 0(le, ')], z(X, ~,)
=z, + 0(1/A, '), and we get

F~'~{XP,(X,);g,m, p, )

=F A s„z„m,=;g,m p + 0(4), ~m 1

(3 2)

Next we defi' G~ as

Amp
Qg A, sp, m = )g)m) p,8

(3 3)

It follows from the previous section that

1
D~G~ X's„m, =—m„g, m, p, = 0, . (3.4)

The solution of this equation is the same as be-
fore, and after setting XI =A. we obtain

Gz(A. s„m, =m, ;g, m, p. )

=G'z sp, m, = -';gA. , m A. , ]Lt.0& 8

-F(&) &(z)x exp —4 dx +0 —,
g P(x) A.

(3.5)

Asx ~ we get

Gz(X's„m, =m, ;g,m, p)

"x '&&~"l G~(s„m, = 0;g„,0, p).

(3.6)

Given our assumption (A) the right-hand side of
(3.6) will exist if we are allowed to interchange the
A. -~ limit with the integration over z,. Namely,
we have to assume the following.

Assumption B.
~1 mo

*1
lim I'~'~ s„z„m,= ';g(X), m(X), p, dz, = l~'~(s„za, m, =O;g„,O, p)dz, . (3.7)

Simply, we are assuming that the zero-mass lim-
it of the integral over angle is the same as the integral
of the zero-mass vertex function. One can easily
make simple mathematical counterexamples with

no uniform convergence in A, where Eq. (3.7) is not
true. However, these counterexamples do not
seem to be consistent with what one expects to get
in each order of perturbation theory. Following
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the general philosophy on which all use of the re-
normalization-group method rests, namely, the
extension of some property of perturbation theory
to the full theory, we shall assume that the above
interchange holds.

As an aside it is perhaps worthwhile to note that
assumptions similar to Eq. (3.7) concerning uniform
convergence in the high-momentum (or zero-mass)
limits are often implicitly made in the literature
when one is relating the scaling of the structure
functions of electroproduction to that of the Wilson
functions. '

Given the validity of (A) and (B) the right-hand
side of Eq. (3.6) will exist and will lead us to the
following asymptotic behavior for integrals over
p(4) ~

which states that there exists a constant c, such
that for —c,/1n's~t~ 0, 4(s, t) is free of zeros and
therefore positive. An improved version of this
result given by Singh' states that for t ~0,

(4.3)

We can always choose z, small enough such that
for t in the interval —c,/ ln's ~ t ~ 0, the second
term on the right-hand side in Eq. (4.3) is less
than unity in modulus. The Jin-Martin lower
bound" on o„,(s) gives us o„,(s) & c/s' for
large s. Then in the above interval, Eq. (4.3)
leads us to

A(s, t) 1
49f s ' c,

dz 1 ~'~(A. 's„z,m, =m, ;g;m, p. )

-constxX '&~' ~.

(3 8)

This holds for any small 5&0, and any nonvanish-
ing external mass including m, =rn p pl phys For
sl p vl phy the integrand on the left involves the
massive physical vertex function, which differs
from the scattering amplitude only by a finite con-
stant. We finally obtain, as s-~,

I
F(s,z)dz-c sotnxs '&~' l, 1&6&0. (3.9)

The differential equation (3.4) holds for fixed 5
which is independent of A, . However, the solution
(3.5) of this equation isanidentityforany 6. So
in the solution, Eq (3.5), w. e can set 5 =5(A. ) and
then take the limit X —~ even if 6(A. ) 0 as A. - ~.
We shall do this in applying Eq. (3.9) in the next
section and we only need the right-hand side of
(3.9) to give an upper bound.

(4 4)

Choosing 0 =2c,/sin's, we can drop the absolute
value sign in Eq. (4.2) and get

A(s, 0) ~ dt '0 ~ const x s' '& '- .
A(s, f)

A(s, 0)

From Eq (4.4) .we have

(4 6)

4(s, 0)
&0 49t 2-

dt 1+ ln—
~ -c /1 fl's - 1~ phys o1

A(s, 0) ~ constxs' '&~~"~ ln's,

and hence

(4 7)

~ constxs' '&~

(4.6)

where by judicious choice of e, the quantity in
brackets is positive. This finally gives us, for
large s,

g„,(s) & const x s '&~~ "~ ln's. (4 8)

IV. BOUND ON THE TOTAL CROSS SECTION

We show below how Eq. (3.9) restricts the asymp-
totic behavior of the total cross section. To do

that we transform back to the t variable, and get
for large s

From the positivity of the propagator one knows
that y(g„) & 0, and hence if the anomalous dimen-
sion vanishes, y(g„) =0, we still get the bound
o „& (s) ~ ln's for large s. Note also that combining
Eq. (4.8) with the Jin-Martin lower bound gives us
an upper bound on y(g„), namely, y(g„) ~ 3.

r p

dt F(s, t) - const xs' '~~~" . (4.1)
V. CONCLUSIONS

Taking the imaginary part of (4.1) we have

p

J
dt A(s, t) ~ const xs' '~~~ "~.

-bs/2
(4 2)

This bound is true for large s and any 6&0. We
recall the result of Bessis' on the zeros of A(s, t),

In conclusion it is perhaps worthwhile to stress
the remarks listed below:

(1) The use of the renormalization-group method
for on-mass-shell amplitudes as in Refs. 1 and 2
is on less firm ground than when one is dealing
with the deep Euclidean region. Even though z is
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physical and in the analyticity domain, the variable
s is on the s cut. Terms in the Callan-Symanzik
equation which are negligible for momenta inside
the analyticity domain might not be so on the
boundary of the domain.

(2) Our assumption (A) which is true order by
order in perturbation theory can be significantly
weakened. One can handle the case where the singu-
larity of the full zero-mass vertex function at z = 1 is
less singular than any finite-order pole. The argu-
ments needed to carry out this are quite involved
and lead to a weaker bound on o „,(s), namely
o „,(s) ~ constx(lnlns)'. We shall publish these
results in a later paper, especially since they
might have more general interest independent of the
renormalization group.

(3) If one uses the method of Tiktopoulos' and

applies it directly to a function Gz defined as an

integral over a 1 ~'~ normalized in the same way

as in Ref. 1, it should be possible to check our
uniform-convergence assumption (B) at least order
by order in perturbation theory. For the lowest
nontrivial orders it is true. Work along this line
is in progress.

(4) This paper is restricted to P' field theory.
One should not take the scattering of the mesons
in that theory to represent actual physical m-m

scattering. Hadrons are certainly much morecom-
plicated objects. So the fact that for y(g„) &0 Eq.
(4.8) implies o„, (s)-0 as s-~ for the P' mesons
has little to do with the data on rising proton-pro-
ton total cross sections. Anyway, no experiment
has yet ruled out the possibility that in the real
world eventually cr„, (s) -0 as s- ~.

(5) In Ref. 2 the existence of exotic pinch-type

singularities of the zero-mass vertex function in
the interval -1&a =+ 1 was excluded. We are of
course here making the same assumptions as in
that paper in regard to this point. Furthermore,
even though the z = 1 singularities of the zero-mass
vertex function are presumably logarithmic in each
order in perturbation theory, it is quite possible
that the sum of all orders might lead to a much
stronger singularity at z =1 for the full I'~'~. How-

ever, if this happens, it would cast great doubt on
the validity of the renormalization-group method
itself, where one ignores terms that are small or-
der by order in perturbation theory and hopes that
their sum is not large.

Note added in proof By a. minor modification of
the method above we can also handle the case where
the singularity of the zero-mass vertex function at
z = 1 is a simple pole. The result is the same as in

Eil. (4.8) except now one has a factor ln's instead
of ln's on the right. However, one must stress
that a pole at z = 1, i.e. , t= 0, implies the existence
of a zero-mass bound state in the zero-mass the-
ory which can couple to two of the fundamental
zero-mass mesons. This leads to a three-particle
zero-mass vertex similar to that in Q' theory and

would then cast strong doubt on the assumptions of
Refs. 1 and 2. Namely, a P' theory with such a
zero-mass bound state might not have "tame" in-
frared behavior.
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