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The use of renormalization-group techniques to study the high-energy, fixed-angle behavior of on-shell S-
matrix elements is discussed and reconciled with the fact that the field operator associated with an external on-
shell particle is not unique. It is shown that, in a theory with an ultraviolet-stable fixed point, the various
choices of interpolating field all give the same effective fixed-point anomalous dimension. The remaining
differences in the renormalization-group equations for vertex functions of different interpolating fields are
absorbed by the finite renormalization necessary for constructing properly normalized scattering amplitudes.

I. INTRODUCTION

The techniques of renormalization group and
Callan-Symanzik equations" were originally de-
veloped to investigate the behavior of Green's
functions in the deep Euclidean region where all
external particles are far off the mass shell. Sub-
sequently, by incorporating the W'ilson operator
expansion the analysis was extended to describe
inclusive cross sections for deep-inelastic semi-
leptonic processes in which the target hadron is on
the mass shell but the mediating vector current is
in the deep Euclidean region. "More recently,
the renormalization-group analysis has been used
to treat exclusive hadronic processes, in particu-
lar, high-energy, fixed-angle elastic and quasi-
elastic scattering in which all the particles are on
the mass shell. " In the last case the scattering
amplitude scales asymptotically as a power of the
energy, the power being determined by the fixed-
point values of the anomalous dimensions of the
fields describing the external particles.

This seems puzzling if one recalls the well-
known result of Lehmann, Symanzik, and Zimmer-
mann' (LSZ) that there is great freedom in choosing
the operator to be used as a local interpolating
field for a given physical particle in on-mass-shell
amplitudes. There is an apparent paradox unless
all fields satisfying the same weak asymptotic
limit have the same fixed-point anomalous dimen-
sion. This should be true whether the particle is
elementary (corresponding to the quanta ot a ca.—

nonical field in an underlying Lagrangian) or com-
posite (corresponding to a bound state and rep-
resentable only by composite fields).

The main point of this paper is to show that the
necessary condition is, in fact, satisfied. All
equivalent interpolating fields have the same ef-
fective fixed-point anomalous dimension and the
renormalization-group results are in perfect
agreement with the basic theorems of LSZ. In
that sense, then, we are discussing only a pseudo-

problem here. However, the question posed above
has been a source of confusion to us and to col-
leagues to whom we have posed the apparent para-
dox, and the question does not seem to have been
addressed specifically in the literature. We con-
sider it useful, therefore, to present an explicit
answer.

The asymptotic high-energy fixed-angle ampli-
tude is related in these calculations to an ampli-
tude in which the mass parameters approach zero.
The high-energy behavior of the physical ampli-
tude is controlled by the zero-mass singularities
of the theory. The latter arise from two sources:
zero-mass singularities of the unrenormalized
(and ultraviolet regularized) Feynman amplitudes
and singularities of the wave-function renormaliza-
tion constants in the zero-mass limit.

It is only the latter which are easily studied by
renormalization-group methods and which we wish
to discuss here. Therefore, we assume through-
out that the unrenormalized theory has a finite
zero-mass limit. %e must renormalize the theory
in a way which can be extended to the zero-mass
case by defining our renormalized parameters at
Euclidean momenta. A convenient method of ac-
complishing this is the %einberg approach to the
renormalization group. '

In Sec. II we discuss carefully the relation be-
tween Green's functions and vertex functions de-
fined via the intermediate renormalization method
of steinberg and the physical T-matrix elements.
For particles associated with the quanta of a ca-
nonical field we show how to separate the T-ma-
trix elements into factors which have finite zero-
mass limits and factors whose zero-mass sin-
gularities can be computed by renormalization-
group methods. We exhibit explicitly how the LSZ
theorem is respected and identical results are
obtained when an arbitrary composite operator is
used as an interpolating field for the particles in
mass-shell amplitudes.

In Sec. III we generalize this last point by con-
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sidering the renormalization-group equations
satisfied by general Green's functions defined for
the composite field operator and show that these
generally more-complicated equations reduce to
the usual form for mass-shell amplitudes. The
anomalous dimension thus defined for the com-
posite operator is not the same as that of the ca-
nonical field but it has the same value at an ultra-
violet-stable fixed point. This is sufficient to
give identical predictions for the physical T-ma-
trix elements.

The generalization to the case of bound states
which must be created by composite operators is
briefly discussed. The anomalous dimension of the
lowest-dimension composite operator is the rele-
vant quantity here. As noted previously, ' zero-
mass singularities of the bound-state wave func-
tions will usually be present and important in this
case.

II. ANOMALOUS DIMENSIONS AND ZERO-MASS

SINGULARITIES

%e begin by exploring the relation between con-
ventionally normalized on-shell T-matrix ele-
ments and the on-shell Green's functions of a field
theory defined by an intermediate renormalization
at Euclidean momenta and zero mass as proposed
by %einberg. %e use the subscript H to denote
quantities in the conventional Heisenberg picture
where fields have vacuum to one-particle matrix
elements of unit norm. Unsubscripted Green's
functions, etc. , refer to the intermediate renor-
malized fields.

For simplicity we assume that the theory is
characterized by a single coupling constant g and
mass parameter m. Another parameter p with the
dimensions of mass specifies the Euclidean re-
normalization point.

Let (""(fP};g,m, )),) denote the Green's functions.
Vertex functions (Green's functions with external
legs amputated) are defined by

r'"'(/p};g, m, u) =I [ 1'"'(p, ';g, m, p)
i

s= 1

«(")((p};g,m, V) (2 1)

&'"'((&));n;», n)=&' "»n -n f ~((((&'))~~'i~'
1

X I"(n)((p};g()(),m()(), g), (2 5)

where the effective coupling constant and mass are
solutions of the differential equations

)(~~ =P(g)

Qm = -m(1+y(g)),
9A,

(2.8)

with initial conditions

g(1) =g,

m(1) =m.

We assume that the usual condition y(g) & -1 is
satisf ied.

For n =2 let ()(P)' approach M'. Then (2.5) gives

S-'(g, m, i()[()p)'- M'(g, m, g)]

=A, 'exp -2
I

y (g(x')) u. '/)('

x r(2)(p g()(), m()(), p),
(2.7)

from which we deduce

M(g()(), m()(), ((() =M(g, m, p)/)( (2 8)

()(g()(),m()(), i(,)

, —+p(g), ——my(g), &(")(fp} g, m, ) )

=~y(g)&(")(fp};g,m, u)

(2.4)

As a convenient shorthand we will use the symbol
X) for the differential operator on the left-hand
side of (2.4).

This equation and ordinary dimensional analysis
lead to the standard solution

Let M(g, m, ))) denote the physical mass of the
particle. For n = 2 and P' near M', we have

I '(p';g, m, p) = 8 '(g, m, i()(p' —M')

= s(g, m, i(, ) exp -2 y(g ()('))d)('/)(' .

(2.9)

+o((P'- M')'). (2.2) From (2.5) the on-shell vertices satisfy

Z (n) —[S(g m ~)] / f(nn)n (2.3)

The n-point vertex functions satisfy the "im-
proved renormal ization-group equation"'

Thus, the physical on-shell T-matrix elements are
given by

X I

r(n)(()(p};g,m, )),) =)('-"exp ny(g()('-))d) '/) )

1

x 1'(")(fp};g(A,),m()(), 4). (2 5')

Note that the vertex functions on both sides of
this e(luation are on the mass shell [see (2.8)]. We
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assume now and henceforth that there is an ultra-
violet-stable fixed point at g=g„[P(g„)=0] which
controls the asymptotic behavior of the theory.
Then

limr&"&({Xp);g,m, p)

i.cal coupling constant G via

&~"({J);g, m i )I...„. =. -f G(g, m, ~).

The "symmetric point" is

P; Pi =M'(45;, —1)/3.

(2.13)

=)~ "&+&» ~~exp n

x 1 "({p);g, 0) p,) .

(r(z.) -r Q(&')))&&'le'I

(2.10)

It is easy to see that

G(g, m, p, ) = G(g(~), m(X), p)

and (2.12) can be written as

(2.14)

Because of the divergence of the integral
r(„"i({~p);C, M) =~'-"r&,"&({p);G, M/~), (2.15)

y(g{x '))ch'/z',

limT ({A.p}"g m p.) =A.' "f"&&" f({6)),

where

(2.11)

the residue of the Green's functions at the ex-
ternal mass poles does not have a finite nonvan-
ishing zero-mass limit. However, the zero-mass
vertex function 7 does exist in this limit if the un-
renormalized theory has no zero-ma, ss singular-
ities. ' Then combining (2.3) with (2.5) we have

which is obviously simple dimensional scaling and
useless for predicting the A. -~ behavior.

We emphasize again that the power of the re-
normalization-group analysis and intermediate re-
normalization procedure is to express T~ as a
product of functions, some of which have well-de-
fined nonzero limits as A, -~ and others whose
asymptotic behavior can be computed. In our case
the zero-mass singularity is confined to the finite
renormalization constant S(g,m, p). This be-
comes more explicit if we consider 5 as a func-
tion of G and M instead of g and rn. Define

S(G(g, m, p), i'(g, m, g), p) = b(g, m, p.). (2.16)

The M-0 behavior of b is dictated by (2.9), viz.

{8)is a, set of angles between the momenta of the

particles.
In the case of scattering amplitudes for different

particles belonging to multiplets of an approximate
symmetry group, the only symmetry-breaking
factors in (2.11) are the finite wave-function re-
normalizations 3(g,m, p). The exponent of A. and
the shape of the angular distribution exhibit the
exact symmetry. The analysis carried out here
refers to the case where only mass terms break
the symmetry, but the generalizations to other
types of soft-symmetry breaking are straightfor-
ward.

To further emphasize the meaning of this calcu-
lation, we observe that (2.3), (2.5'), and (2.9)
give

T',"'({~p); g, m, I) = ~' "T'"'(({P); g(~), m(~), &).

(2.12)

This looks like ordinary dimensional scaling and
follows directly from

plus ordinary dimensiona, l analysis. To make this
even more transparent, we remove reference to
the intermediate coupling constant, g, and Eucli-
dean renormalization point, p, by defining a phys-

b(G, M/A. , p, ) = &(G, M, (u)

r

&&exp, -2 ~(g(~')) d~'/~'

(2.17)

The exponential factor which controls the high-en-
ergy behavior of T~ can be thought of as the zero-
mass singularity of the renormalization constant.

We will use this idea to give a, definition of
y(g„) which is equivalent to the conventional one
for a canonical field and which can be easily ex-
tended to define the fixed-point anomalous dimen-
sion of a composite field.

Consider any unrenormalized local operator
4 (x) constructed as a product of canonical fields
and their derivatives and carrying the same
quantum numbers as the canonical field (I)(x). To
construct a properly normalized local interpolat-
ing field for on-shell amplitudes we define

c (x) -(ole(x)lo)
(olc (0)I»

(2.18)

where [» is a one-particle state. There are, of
course, delicate limiting procedures which must
be defined to give meaning to the quantities above. "
When necessary we will define divergent quanti-
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ties as sums of Feynman diagrams regulated by
an ultraviolet cutoff parameter A.

In particular, we define a wave-function re-
normalization constant for the field 4 by

(0[C(x)~n) =A'~-'$ ~»2(G A/M)e-*" (2.19)

where dc, is the canonical dimension of 4 . For the
elementary field p, $e(G, A/M) is the usual on-
shell wave-function renormalization and

FIG. 1. Graphs contributing to 3(@ in Sec. II and to
@in Sec. IH.

$,(G, A/M) = $ (G, M, p, )Z(g„A/{{(), (2.20)

in$, (G, A/M)

ln(A/M)
(2.21)

where g, is the bare coupling and Z is the Wein-
berg intermediate renormalization constant.

Diagrammatically, the on-shell T matrix comes
from residues of the poles in the external mo-
menta and it can be seen that demonstrating the
renormalization-group result to be independent of
the interpolating field is equivalent to demonstrat-
ing that the leading zero-mass singularity in $c,
is the same as that of 5&. To that end we define a
quantity y4, associated with the general local op-
erator by

For the elementary field Q, ye = y(g ) . Our
task is to show that ye=y@=y(g„).

For simplicity we consj.der the case of 4 as the
product of unrenormalized scalar fields, o "(x),
which we can take to be the same as or different
from P(x). The generalization to a product of
several different fields or terms with derivatives
is not difficult. Let

C (x) =:[(«"(x)]":.

8 c, can be calculated from the set of unrenormal-
ized graphs of Fig, 1. Writing them in terms of
the basic Green's functions of the theory, we have

A' 'i '~'(G apl)=5 '*I-f"
R(A)

d'k
(2w)'n'(p —Q (, —,

q
—,', (~:(s„.g„m„A) r(, „)({){,p;g„m„A)

(2.23)

where 4" is the unrenormalized propagator for the field g and I'&„» is the unrenormalized amputated ver-
tex function for r (« fields and one Q field. A(A) indicates that the integration region has an ultraviolet cut-
off characterized by the parameter A. To determine the leading A ~ behavior of (2.23) we use renormal-
ization-group methods to find the large-momentum behavior of the integrand.

Renormalizing the Green's functions in (2.23) in the manner of Weinberg, we have

A" '$
c,
' '(G, A/M) = $' '(G, M, p)[Z, (go A/g)]" '

~
~4, " '-="= d4k,

2~ 'Q' p — Q, —-', gg k,-;g, rn, p, T.'~„» k,p;g, rn, p

z(A)
(2.24)

where g~ is the intermediate wave-function re-
normalization constant for the 0 field. The leading
cutoff dependence comes from the region where
all integration momenta I), are O(A). Therefore,
we scale the integration momenta by

u* = (A/M)f '.

$» (G, A/M) = (A/M) «- '- -«'-'[Z. (g„A/ij)]"»'

xf(G, M, {{{), (2.25)

where f (G, M, iL) is a cutoff-independent function
which need not concern us further. To extract
the cutoff dependence of (2.25), we define

As A/M-~ the l' are restricted to a finite inte-
gration region APE). The leading power of (A»'M)

of the integrand can be obtained by applying re-
normalization-group results to the functions in the
integrand. The result is

z.(g, A/i ) =z.(g., A/i )

and recall that y, (g) is defined by

&z =2y (g)z .
It is then easy to see that

(2.27)
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g (g, A/p) =(A/)), ) '~~" )&(const.

Inserting this result in (2.25) we get

Iim 5,'~'(G, A/M)-(A/I) ~(-'-))(const,

(2.28)
Q(k;a, ~, ) ) = ~, (k'-P')"

d. ..,-„- Q(P') &u'.

(3.3')

(2.29)
which, substituted in (2.21), gives the desired
result

re=r(z )

HI. RENORMALIZATION-GROUP EQUATIONS FOR

COMPOSITE OPERATORS

To see the structure of the renormalization-
group equations in more detail, we consider what
happens to the formalism if we actually define re-
normalized Qreen's functions for the composite
field

C (x) =:[v(x)]":. (3.1)

Q(k) =I(e(k) e '""(0~T(4 (0)y(x))~0)d'x. (3.2)

The superficial degree of divergence of this ver-
tex is d„=x —1)0 so Q(k) is divergent and should
be considered as cutoff dependent. %'e renormal-
ize by subtractions at -p'. Let X be the largest
integer ~26„. Then

Q(k;g, m, g)

(3.3)
defines our cutoff-independent vertex. " This re-
normalized vertex can be conveniently expressed
Rs

0 is an intermediate renormalized scalar field.
jf we want to define a renormalized Qreen's

function for n external 4(x) fields, we need to in-
troduce renormalized proper vertices for j =1 to
n 4 fields and any number of canonical (I)(x) fields
and construct the complete set of renormalized
Feynman diagrams by combining these proper dia-
grams with the appropriate Qreen's functions for
the canonical fields in aH possible ways.

The proper vertices for 4 and (I) fields can be
renormalized by subtraction of the necessary
number of terms in the Taylor series in the ex-
ternal momeIita about —p'." Applying the dif-
ferential operatcr of the renormalization-group
equation to these Qreen's functions will give, in
general, inhomogeneous equations. If, however,
we are interested only in the mass-shell 7 matrix,
the equations are much simpler. Only graphs with
a pole in each exter&al momentum contribute. The
only new vertex which we need to introduce is

The pole terms in the Qreen's function for n
external fields are given by

Gc)((k&])l „= ~&ZQ(k ) G(y (fk]).

As before, the residue of the n-tuple poles in the
external momenta differs from T~„"~ by a finite re-
normalization factor. Applying the operator S to
this Qreen's function we get

&G(e)l,.). = -Ir G(e)I,.„,
with

y, = —[x Q(Af')]/Q(M') +r(g).

(3.5)

(3.6)

Equation (3.5) can be solved in the same form as
(2.5) except that rc, depends onm and p, as well as
g. The integral in the exponent is replaced by

r,(g()('), m()( '), )),)u. '/z' . (3 7)

The scaling behavior of the T matrix is controlled
by the value of y~ at the fixed point. To obtain a
function with a finite nonvanishing value in the
zero-mass limit we need to introduce again an
amputated vertex function I"&~~ by first defining a
two-point func tion

())=if' ee'"(Oi 7(5'( )0e( «)) ))0

—subtractions. (3.8)

6+ requires subtractions of its one-particle ir-
reducible part but this is irrelevant when we look
at the pole term. Then

n

I ()))= j+ —- l(k ) G(n)
-5=1

and for k, '=M', all i,

(3 9)

r ~(s., o, ) ) =1 ~+r(Z ). (3.12)

@I (~) -nr P (~) (3.10)
It is important that the rescalings of g()() and

m(A) keep the amplitudes on the mass shell so that
inhomogeneous terms from the extra counterterms
never enter these equations. The solution of (3.10)
is of the standard form. Note that physical di-
mensional analysis gives

(
9 8 ' 9

)( —+ m —+ A.
—I"~'(/)(P}; g, m, g) = (4 -nr)r(g) .

(3.11)
It is straightforward to see that agreement with

the results of Sec. Il requires that
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Applying the renormalization-group operator to Q(M'=0) gives

0 djt+1
uQ(0;g„, 0, p, ) = —, (-p') „„„[un(p';g„,0, p, )]yp'

+2' 2
— -P 2 Q P dP (3.13)

At the fixed point the scaling properties of the Green's functions drastically simplify the evaluation of
these derivatives. The structure of Q(p') is given in Fig. 1 and can be expressed as

r

, , a, (k„.g„, 0, p),&,', I'&„,~((k),P;g„,0, p)(3w)'5'(P —g k,.). (3.14)

The distributive property of the X) operator gives

»(P';g, o, v) = [-~r.(g )+r(g )]Q(P';g, o, v). (3.15)

To evaluate the second term in (3.13) we use the scaling properties of the Green's functions at the fixed
point to obtain

1 E+ 1 1

Q (0.g 0 p) — (~&)&+& Q (P & ~ g 0 p) 3 g-~+~ I ~+y, (~„)&-f~+1(~ )& dg
p earp 02

The same scaling properties allow us to write

(3.16)

M+1 M+1 d, V.
2 -(g+ 1)+r [1+yo{g-)]/2-I:1+7(g-}]/2

Q(p'; g, 0, u), = „, n(p';g„, 0, p.) 1+
-~ =-(v +~a') ~p ~p

(3.1V)

With these results it is easy to evaluate the second term on the right-hand side of (3.13) and obtain

d 1
v'du2 NJ

0 -
g X+1

(-P')"
d . Q(P';g. , 0, i ) &P' =(~[1 r.(g.)] —[1+r(g )]]Q(0'g, 0, i )

k2 P p2 p2

Putting all the pieces together we finally get

r~(g, o, v) =1-~+r(g ), (3.19)

which is the desired result. The generalization to
the case of a 4 (x) defined as a product of several
different operators is straightforward.

In the case of a bound-state particle for which
no canonical interpolating field exists in the the-
ory, the composite field of lowest dimension (low-
est twist) can be multiplicatively renormalized
and an anomalous dimension can be assigned to
this operator. " The analysis of the first part of
Sec. II can be repeated in this case. However,
there will, in general, be additional zero-mass

singularities from the bound-state wave function
and these must be evaluated to predict the high-
energy behavior of the T matrix. '

If a higher-dimension operator is used as an
interpolating field for a composite particle, we
can carry through the analysis in analogy to the
treatment of a composite operator as the inter-
polating field for an elementary particle. In aQ
cases the fixed-point anomalous dimension con-
trolling 8-matrix elements is independent of the
interpolating field. Because the operator of lowest
dimension is multiplicatively renormalizable, it
provides the simplest definition of the anomalous
dimension.
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