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%'e investigate the XVick-rotated Bethe-Salpeter equation of a fermion —vector-gluon system of zero total mass

by using fermion-like effective interaction kernels. %'e summarize useful relations among the four-dimensional
spinor-vector spherical harmonics in order to derive a system of ordinary differential equations for the radial
wave functions. These equations are applied to a study of the short-distance behavior of the solutions

satisfying appropriate boundary conditions. As a byproduct, we obtain the indices of the ground-state
solution in explicit form, Some comments on the constituent models that involve the radial excitations of
fermion-gluon systems are included.

I. INTRODUCTION

The constituent models of matter offer an at-
tractive possibility for describing the low-lying
quantum states of hadrons. A standard field-
theoretical treatment of the dynamics of com-
posite systems is provided by the Bethe-Salpeter
(BS) equation. ' Important progress has been made
on the solution of the BS bound-state problems
that involve spin-0 or spin- —,

' constituents: Ex-
tensive reviews are given by Nakanishi' and B'ohm,
Joos, and Krammer. ' (For more recent develop-
ments see Refs. 4-V.)

In a previous paper, ' we have discussed a BS
equation describing fermion-antifermion systems
bound to zero total mass by the exchange of
Abelian vector and axial-vector gluons. The BS
wave function of a fermion-vector-gluon system
(spinor-vector BS wave function) is another in-
gredient in the constituent models that are based
on vector-gluon theories. For this reason, we
next extend the investigations to the spinor-vector
BS equation involving a ladder-type interaction
kernel of fermion quantum number. %e only con-
sider a neutral vector gluon V, coupled to a fer-
mion field 4 as given by the effective Lagrangian'

I =L,(4)+Lo(V )+ GI~:4y"O'V:,

L,(C ) =4 (iy'8„—&)4,

m 2

L'(V ) = —'F"F + V'V-

—,'(1 c)(S V,)',

where I' „=~ V„—~„V„. The gauge-fixing term
—,'(1 —c)(&~V )' is included in order to reduce the
singular behavior of the conventional propagator
of massive vector gluons. (Assuming spontaneous-
ly generated masses by the Jackiw-Johnson mech-
anism, "an axial-vector gluon may be introduced

PBBS mo —4' —R g +if ' (1.2)

where the mass m, of the Stuckelberg ghost is
fixed by m, ' =rn„' j(1—c).

In configuration space, the spinor-vector BS
wave function is defined by

7 „„(x„x,) = &O
~
re.(x,)V„(x,)

~
e&.

For Heisenberg states 4 of four-momentum P„
translational invariance implies

~„(x„x,) =y, (z)exp[—iP, (p,,x,'+ p,,x,')], z=x, —x,

(1 4)

with the restriction p, , + p, =1. (The spinor index
n is omitted. ) The calculations will be carried
out in the center-of-mass (c.m. ) coordinate frame
by choosing

Po=E, P, =O (j=1,2, 3),

where E is the total c.m. energy of the system.
The present study is based on the homogeneous

ladder-type BS equation

(-iy%„+ tc)[(U —rn ~)g~" + c&,"&;]7'„(x„x)

=I""(x, x,)~„(x„x,), —

(1.6)

with s„„=e/&x~ (k=1,2) and ~= —&~~a, . In the
strict ladder approximation one has (see Fig. 1)

Ih"„„(z}= G ~'y" —.S'(z; ~)y'.I2 v~ C

2

(S' is the free fermion propagator. ) We shall

in a, similar way. } The explicit form of the gluon
propagator that belongs to the Lagrangian L,'(V, )
can be written as"

1=
m„*—q' —~e (+"" q'+~'~)
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addition, we include a brief discussion of the
short-distance properties of the BS wave function.
Some comments and speculations are left for Sec.
VI.

FIG. 1. Graphical representation of the BS equation
with the ladder approximation. Dashed l.ines denote
vector gluons.

O'"(z) = O, (z)y'y", (1.10)

where Pv =(-z') '~'zv, and the concrete form of
the functions U„U0, and 0, should be restricted
according to the Ward identity (cf. Ref. 12). Near
the light cone, the ladder approximation and scal-
ing arguments suggest the following parametriza-
tion:

U, ( )izy'2, =iy'
v } dm'p, (m') —.D'(z;m'), a=0, 1

choose a more general effective interaction kernel
which may be written as

Ivv(z) = Uvv(z) ~Ov (z) (1.8)

U'"(z) = U, (z)y"iy'2 y' —U,(z)iy'2, f"2", (1.9)

8
Pgp —2 -- p' + P,jI p~8

8
P2 = i -p- —P.~P@~

8

(2.2)

The Wick rotation" will be carried out by a
straightforward generalization of the usual pro-
cedures. We define the Wick-rotated relative
wave function }r}„as

P,(x) =iy'( ix„x„x„x-,),
}1},.(x) =y~(—ix„x„x„x,), j=1,2, 3.

II. PRELIMINARIES

Let us start by removing the center-of-mass
coordinate. The BS equation of the relative wave
function y„(z) becomes

(-y'P„+~)[V.'-m&')g'""- cP2P.']V „(z)
=e""z '2}sdz'I "v(z)p (-z),V

(2.1)

with Eqs. (1.8)-(1.12) and

O, (z) = dm'm v(m') —.D'(z; m') .
2

(1.12)
Here x,- = z~, x4 =is' and all the components x, are
real. In addition, we shall use the following nota-
tions:

Here D' is the free scalar propagator, p, ,(m')
and a(m') denote the effective spectral functions,
and the integrals

dm a, }m } aad f da'aaa}m }

are assumed to be convergent. [Jdm'mo(m') may
vanish. ] Notice that the light-cone behavior of the
strict ladder approximation (1.'7) is radically
modified by the second term on the right-hand side
of Eq. (1.9). A term of this type is also involved
in the fermionlike potential of Ciafaloni and Fer-
rara."

For simplicity, we next consider the Wick-ro-
tated BS equation of the relative wave function
p„(z) at vanishing total c.m. energy E. In analyz-
ing the solutions belonging to a particular sector,
we shall use O(4) expansions along the lines sug-
gested in Hefs. 13-16. The outline of this paper
is as follows. Section II discusses the structure
of the Wick-rotated BS equation. To prepare the
separation of the angular variables, we define a
set of four-dimensional spinor-vector spherical
harmonics in Sec. III. The derivation of the radial
BS equations is presented in Sec. IV. Section V is
devoted to a study of the indicial equations. In

y gy
0

P, =E, P,.=O,

8 = 8 —IzzP„, 8'„=8 + pQ„,

(2.4)

(2.5)

and 8, =8/8x, . The Wick-rotated version of the
BS equation (2.1) can be written in the form

(y,8;+x)[(8,'8.,'- m ')5„-c8;8'„]y„(x)
= e"' -" z' 2dIZ„,(X)P„(-X).

(2.6)

According to Eqs. (1.8)—(1.12), one obtains

I„(x)= W,„(x)+M,„(x),
W „(x)= W, (R)yvy, k',y + Wo(R)yp, x„X„,

M.„(x)=M, (R)y„y„,

where S„=x,jR, R = (x„x )' ~', and

(2.'I)

(2.8)

(2.9)

W, ,(R) = — 4, dm'p, ,(m') ', (2.10)

M, (R) = —, dm'm~(m2) V(R; m'). (2.11)

The function (4zz) 'V(R; m') is the Wick-rotated free
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scalar propagator which involves the first-order
modified Bessel function K, as given by

I/(R;m') = „ If;(mR).
4'

(2.12)

W, ,(R)=2&& Q '+ for R-0
M„(R) =&&R '+ for R-0, (2.15)

The short-distance behavior of the interaction
kernel I„„canbe derived by using the well-known

expansion

V(R m )2=4R 2+2n&21nR+ for R -0. (2.13)

E&luations (2.10) and (2.11) yield

III. CONSTRUCTION OF THE BASIS FUNCTIONS

A. Spinor spherical harmonics

For completeness, we next summarize some
well-known definitions. The components of the
three-dimensional spinor spherical harmonics are

Y(JLM), (3, (/&) C(I— Z, M —...) YL M, /2(g, 9&),

(JLM)2( & 0 ) C(L2~& + 2 & 2) YL&M&1/2(&3& (/)

Here Z is the total angular momentum, YL (I, =J
a-2') denotes the three-dimensional scalar spher-
ical harmonics, and the Clebsch-Gordan coeffi-
cients C are listed e.g. by Rose." In addition, we
have

with

1
&&&1 2

= ——
2 dm Pl I&(&&& ),

pffft ~O' m4g2 g

(2.16)

(2.17)

x, =x sin3 sing, x, =rsinB cosp,

x, =& cosa, & =(x,'+x, '+x, ')'/'.

The four-dimensional spinor spherical harmonics"
Y&N JLM&8 (p =1,2) involve the Gegenbauer polyno-
mials" C"„as given by

%e observe that the interaction kernel I „of the
third-order BS e&luation (2.6) is marginally singu-
lar at R -0 if the integrals (2.16) are different
from zero. In this case a proper treatment of the
boundary conditions is necessary since the short-
distance behavior of the wave function depends
critically on the coefficients w, and w, .

In the subsequent part of this paper we restrict
ourselves to a study of the BS e&luation (2.6) for
E -0. In this limit one can readily verify that the
BS equation is form-invariant under the transfor-
mations of the four-dimensional rotation group
0(4) extended by three-space reflections II, .

&N JLM&8(

2 + (N+ 1)(N L)
8(N+I. +1)!

&& I.!CL "L(cos&/) sinL&&,

where cos8 =x,/R, and Q indicates the angular
variables 0, 3, y.

Let us turn to the normalized basis functions
Z(~~» and Z(„"~» that belong, respectively, to
the irreducible representations (2'Na-2', ,'N) and—

(—',N, ,'N a-2') of O—(4). These functions have been
constructed and discussed by Rothe, "and the
final result can be written as

(N JM)8( ) (~+2) I
+ (J +~+ 2) 2 (NJ'& Jvl/2&M)8(Q)+ ( ~+ 2) (NJ& Jkl/2&M)8(

~&M JM)8( ) (2N+2) l(N+~+ 2) 2 (NJ, J+l/2, .M)8(Q) +(N ~+ 2) i (YN, JJ122/, )M8(Q1).

(3.1)

(3 2)

(3.3)

The functions Z(k) and g(~) are related by three-
space inversion I,:

2~(NJM&8( ) ( ) (NJM)8(

where N~tw —,'. (The spinor index &2 will be omit-
ted later on.) According to E(I. (3.3), the spher-
ical harmonics F(~'~» are eigenfunctions of the
three-space reflection II3 =y4I, :

I, : (x„x,)-( x„x,) (j=1,2, 3).

By using the Acyl representation of the y matrices,

0 io,. t

H2 Y&N JM&(Q) = (

In addition, we have

I~Y&N JM&(Q) = (—1) Y&N JM&(Q),

(3 7)

(3.8)
4

-io,. 0$ 1 0
(3 4)

we now define the four-component spinor spherical
har1nonlcs Y&N J 2)& (Q) (&2 1

&
2

&
3

& 4) as

Y(N JM&8(Q) (3.5)

&N JM&2+8( ) =
&N JM&8( (3.6)

The orthonormality properties are given by

I &N' J'M'&(Q) NN&6J J 6MM& &

dQ Y(N JM)(Q) Y(N& J&M&)(Q) 0&' (3.9a)

(3.8b)
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TABLE T. List of the operators d.

d(0) (g. N) —
g

d"~ (5; N) =-d(6; N, A, ) (6 =0, +1, + 2)

Yg~o (N J&(&( ) (NM, JM)(

&t)(R)Y&N JN&(fl) = YIN~, JN&(fl)

x d(+1;X,R)@(R),

(3.10)

dd(-1; N, R}=—--
dA R

N+2
d(1 N R}=—+

dR R

2N+ 1 d N(N+ 2)
dR2 R gA

d~ 3 d N(N+ 2)
dA A dR R

d2 2N+ 3 d N(N+ 2)
dR~ R dA R2

d~( —2; N, R) =d(2 N+ 2, R)

d~(0 N R}=d(0; N, R)

(NJN)( ) (NJN)(

)& d(0;f«, R)&t (R),

where =8,8„, and the operators d are included
in Table I. Partial integration yields

dRA' 2 R d-j.;R,R, B
0

dR R3f, (R)d(1;X+1,R)f +(R)

provided that the contributions at R -0 and B-
vargsh. It will be convenient to introduce the no-
tation

d3 (153 N) d3(63 N R) {63 +], + 3)
dk(l;N+1, R) =- d(-1;b/, R) (3.13)

d3{-3;N,A) =d(-1;N+2, R) d{—1;N+19R) d(-1;N, R)

d3(-1; N9 R) =d(-1;N, R) d(1;N+1, R) d(-1;N, R)

d {1-N R) =d(l;N, 8) d{-1-N-1 R) d{1.N R)

d3(3;N, R}=d(1;N- 2, R) d(19N 19R) d(l; N, R)

dj( —3; 1v, B}=-d3(3;1V+3,R)

d3(-1;N, R) =-d3(1;N+1, R)

with

r
r 2r

dQ = d8 sin'8 d3 sinB dy.
0 0 0

(3.9c)

In the subsequent calculations we shall make use
of the relations"

8. Spinor-vector spherical harmonics

%'e now construct the spinor-vector spherical
harmonics that are derivable from the functions
+(+Jg ) by diff erentiation or multiplication with
the unit vector X:

Y&NJ&J)& (~) ~u Y(NJN)(@t' (3.14)

Y((N~JN&) (0) =[X(K+2)) '1
RB„Y&&N)J,&)(Q). (3.15)

The other basis functions of this sector can be
constructed by multiplication with j„. To obtain
an orthonormal set of spherical harmonics, we
introduce

"&o&~y fix
X+ 1 a 1 ' ' [ &+& & &~ ~ &,.y ) [&(1&t + 2)1 Y&2&s&~

(NJN) (~) 2(~ 1 2) )& (N+l, JN)( ) (NJ'N) (~)+ + (~ ] ) 1 (N JN) (3.15)

The normalized harmonics Y&NJ'„y&„(m =0, 1,2)
are defined for the quantum numbers N =N~ that
satisfy the following re&luirements: (i) N~
(ii) The normalization factors [see E&ls. (3.15)
and (3.16)j must be finite at N =N, Let us app. ly
the relations (3.9)-(3.12) to derive

(m) +)'
J' &NJN)r ( ) &N' J'N'&~( ) mnJ NN' JJ~ NN~ ~

(3.17a)

The 0(4) expansions will take a compact form
by using the four-dimensional spinor-vector
spherical harmonics f

«N
J&'N) &„as defined by the

orthogonal transformation

8&",&'„),„(n) = P W„'„(X)Y«"„&",)',„(fl)(~ =0, 1,2),

(3.19)

dlQY(NJN) (Q)f(/pl Jl&y ) (0) 0,

In addition, we prescribe

(3.17b)

(3.18)

X+2 ~'~' Ã
2(X+1) 2(1&1 +1)&

(3.20)
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Space-time inversion yields ~ according to Eq.
(3.8),

f F&7r'za') (Q) =( 1)""F'(Freed& (Q) (3.21)

C. Relatians

q({&)-g q(I& —
{& (S.

By using Eqs. (3.10)-(3.12) and the notations of
Table I, one obtains (a=0, 1)

()"&f)&({R)Y (a{(aQ&) =0

Q(a) ~(R)10(I {a)(Q)

(3.23)

"1/S
=r&'„&,(Q) —— — d'&( 1;X 1)y(R),

(3.24)

Before treating the separatloQ of aQgUlar vari-
ables, we derive some useful relations involving
the spherical harmonics (3.19). (To simplify the
formalism, we shall suppress the quantum numbers
8 a&Id M.) Let us first evaluate the products

venient to define

bining Eqs. (3.10)-(3.12) and (3.22)-(3.29), we
derive, after some algebra,

y, {&,y(R)r(("„{&a&(Q)= Y(("„(„'».(Q)L»""(X)y(R), (3.34)

j(a)Q(a&y(R)g(mla)(Q) lr(a&a&(Q)G(a)(~)y(R) (3 36)

(3.36)

Q(a)q(a)q {a)y(R) g( mla) (Q) —g(a(T) (Q)E(a& a) (~) rP (R)

(3.37)
- q(a)q(a)j(a)y(R) f(mia)(Q) y(rrla) (Q)G(ala)y)@(R)

(3.38)

(3.39)

where the matrices 0"~" 6'" 8'" and E""
G"'" K"' are listed in Table II and Table ID
respectively. Notice that the matrices with upper
index 0 = 1 involve the operators 4 and d3 defined
in Table I. Both Table II and Table III include ex-
pressions of the type [E(I&'(f{r-l)]~, which can
be evaluated by using the definition of the operators
d~ and d I3Isee Eq. (3.13) and Table I]. For ex-
ample, we have

q(a) y(R)lr (3 la)(Q) [E")'(X)]'=-==-d'(-1 ++1 R)

2I@+y p2~
y (o i a) (Q)

( ) y(a) (Q)X+1~1

(3.25)

(3.26)

i
d, (l;X+ 2,R).

IV. SEPARATION OF THE ANGULAR VARIABLES

Our starting point is the expansion of the BS
wave function )I&„(x) in terms of the four-dimen-
sional spinor-vector spherical harmonics (3.19),

(4.2)

(4.3)

E&,'"&(X)= d(0;f&I+1,R),
E&', {'&(x)=d(0;x- 1,R),
E(' "&(x)=d(o.x+1 R)
E"{"&(K)=0for mCn

(3.30)

(3.31)

(3.32)

(3.33)
%'e need similar relations for all the operators
occurringinthe BSequation (2.6) (E-0). By com-

Vfe now turn to the operator H. Stra, ightforward
ca,lculation yieMs

&&r. (R)e' "(Q)= Y'" "(Q)E" "(N){t&(R) (3 29)

Here, and in the following part of this paper, the
repeated index n implies a summation over e from
0 to 2. The matrix elements F„"'"can be written
as

where f I)r&„and f I1r)a Rre 1'Rdlal WRve fllnctlolls.
One can also consider the BS wave function p(a&(x)
which is given by

f {",)&, (R) = 0, f ((,'„(R)= 0. (4.6)

Vfe now are in a position to derive the radial
BS equation of the fllIlctlons f (N)„by substltut&ng
the expansion (4.1)-(4.3) into the Wick-rotated BS
equation (2.6) at E -0; the separation of the angu-
lar variables can be carried out with the help of
the relations (3.21) and (3.29)—(S.S9). The final

(4.4)

with Eqs. (4.1)—(4.3). Taking into account that the
norma, lized harmonics F'&'„'&+„' and F&'„',",'&„are de-
fined only for N &0, we shall prescribe
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TABLE II. The matrix elements D~(t „~), G~(„), and S~(~).

DOI+)(N) g,(&)(N)

0, 0

0, 1

0, 2

N(N+3)
(A'+ 1)(N+ 2)

1——do)(-1;& -1)N+1

2
-1w (N+1)

(—1+1)[(N- 1)(N+ 1)]'/2

(1+1)[(N+1)(N+ 3)]«2

1, 0

1 2

2, 0

2 2

[N(N+2)]«2 &)d (-1;N-1)

— d«)(1; N+1)
(N+ 1)(N+ 2)

d(»(-1; N+1)N+2

0

N+1)(N+3)]&/2 (»
N+2

d' (-1;N+1)

N————d(')(0; N -1)
2(N+1)

[N(N+ 2)] d(g )( @ 1)
2(N+ 1)

[N(N+ 2) ]t/2
(~ )

2(N+1)
6+2- - d(')(P. N+1)

2(N+ 1)

(-1~1)-
N

[(N —1)(N+ 1)]~/2

N+1
2 (1 + 1)

[(N+ 1)(N+ 3)]~/2
(1+1)- N+2

2- (1+1)-N+1
N+2

D~~l„-)(N+1) = —[D( l+) (N)]

TABLE III. The matrix elements P~„l~, Q~„l~, and &~(~).

m, n

0, 0

0, 1

y(+ I+)(N)

' N(N+3) d(')(1.N+1)
~(N+1) (N+ 2)

d,' (-1;N-1)

g(& I+) (N)

0, 2

1, 0

1.2

2, 0

2 1

2 2

N 1 (g)

[N(N+2)]~/~ ( )d (-1;N —1)

d(') (1;N+1)
1

(N+1)(N+2) 3

d( )(-1;N+1)

[(N+1)(N+ 3) ]«2
— d', )(-1;N+1)

@oI-)(A(+I) ~(ol+)(A()

~6l -)(N+ 1) — [~(&l+) (N) ]

2 N+2

—2d3 (1;N+ 1)

N(N+3) ~/~
( )

2~ (N+1)(N+2)

1 N+g
2 N+1

d(3' )
(—I;N+ I )

g(ol -) (N+1) = g(ol+)(N)

gOl -)(N+ 1) [g(&l +)(N)]

~(-) ~(+)
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result may be written ln the form

B&++&(N}f&+& (R)+B&+-&(N}f&-& (R) 0 (4.5)

m =0, 1,2 for N &0, m =0, 2 for N =0

B„'-„'(N)f',„',„(R)+B'-„-'(N}f',„-',„(R)= 0, (4.7)

m =0, 1,2 for N &0, m =1,2 for N =0,
where

B'++&(N) = &&[F"'+'(N) —CG"'(N) —m '5 ]

a(o)x 0
& a(0)0

(+) (-) (4.16)

B&'„&(N,p)aI~&&„=0 (m=0, 2 for N=O),

B& „'(N, p)aI J&„=0 (m = 1,2 for N = 0),
where m=0, 1,2 for Nc0, and

(4.18)

Inserting the leading terms (2.14), (2.15), and
(4.15) into the radial BS e&luations, we obtain the
system of homogeneous linear equations for the
coefficients a&„"&„

B&'„-&(N)

+ (-1)"M,(R)S„'„'(N), (4.s)
=F"„' '(N+1) —cG„"J '(N+1) —m 'D'„'„' '(N+1)
—(-1)~W (R)K& & —(—1)xW (R)G&o& &(N ~-1)

B +„'(N, p) =F'2„' '(N+ 1) —cG" '(N+ 1)

—(—1)"w,K' „& —(-1)"«,G&0„& '(N+ 1),

(4.19)

(4.9)
B' „'(N) = —F„"„"(N)+ CG„"„&'(N)+»& 2D'„'„"(N)

—(- I.)"W(R)l~&:„&- (-I)"W(R)G&0»(N),

(4.10)
B' „'(N) = &&[- F&'„'(N+ 1)+cG&'„&(N+ 1}+&&&v'5„„]

+ ( 1)"M,(R)S&-„&(N+1). (4.11)
Notice that the matrix elements F"„",G"„', . . .
are explicitly given in E&ls. (3.30)—(3.33) and
Tables I-III. In the real region, these formulas
yield

B„'"„'(N)= [B'„:&(N)]~,

B&-„&(N) = [B&„'-.&(N)]',

B&.-„&(N) = [B&-„-.&(N)]'.

(4.12)

(4.13)

(4.14)

f&"„'&„(R)=a&'„' Q&'+ for R -0, (4.15)

where, according to the prescriptions (4.4) and
(4.5),

One may re&luire that the formal relations (4.12)-
(4.14) must lead to a manifestly Hermitian oper-
ator 8; however, this condition implies a restric-
tion on the choice of the parameters zv„zo„and
c (cf. Sec. V).

In summary, the radial BS wave functions sat-
isfy a system of ordinary differential equations
of third order. We have fixed the short-distance
behavior of the interaction kernel by E&ls. (2.14)
and (2.15), thus; according to the standard theory
of linear differential equations, there exist power-
like asymptotic solutions at R -0,

d,"'(3;N) = (p+N 2)(p+N)-(p+N+ 2),
F"&-'(N+1) =- [F&2 "(N)P,
0&:„»-(N+1}=- [G&2»'(N) J',

d,""( 3;N) = —d"'(-3 N+3)
d""(-1 N) = —d&'&(1;N+ 1).

(4.24)

(4.25)

(4.25)

(4.2'7)

(4.as)

V. INDICIAL EQUATIONS
A. MAO

We begin by investigating E&ls. (4.1"I) and (4.18)
for nonzero values of ¹ To guarantee nontrivial
solutions, the indices p have to satisfy the indicial
equations

det IB"&(» p) I

= 0,
«tIB'. (N, p)l=o.

(5 1)

(5.2)

Let us first consider regularized interaction
kernels for which zv, ,=0. In this case, the indicial
equations can be explicitly solved by rewriting
them in the factorized form

'
(N, p) = —F ' (N)+ cG '&(N)

( 1)"w,E&'„& —(—1)~«&,G"„"(Ã).

(4.20)

Here I'"„"and 6"„'"can be obtained from the
matrix elements F"„"and G„'„"(see Table ill)
by the formal substltutlons a=2 and

d~&'&(—3;N) =(p N —4)(p--N —2)(p —N), (4.21)
d3&2&(-1;N) =(p —N —2)(p —N)(p+N+2), (4.22)

d~&2&(1;N) = (p N)(p+N)(p+N-+2), (4.23)

det
I
B'„'„'(N,p) I ~ =A& '(N)(p N —2)'(p —N—}'(p+N)(p+N+ 2)'(p+N+ 4) =0,

«tlB'. (N, p) I... =~"(N)(p-N-3)(p-N —»'(p N+1)(p+N+-1)'(p+N+3)'=o,

(5.3)

(5.4)
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where

A "(N) =det
~

—I'" +'(N)+ cG" '(N) ~. (5.6)

in Sec. VA. The indices p~ are the roots of the
indicial equations

B,&; &(0, p) B,&; '(0, p)

&& '(p w &c)—
We now observe that, for R -0 and zv, , = 0, the
radial BS equations (4.6) and (4.V) have nine in-
dependent regular asymptotic solutions and nine
irregular ones provided that

(5.V)

and

II&+ &(0 p) II&+-&(0 p)

=0

$& +&(0 p) II& +&(0 p)

Notice that all the solutions p„(p~~ p~„) of the
indicial equations (5.3) and (5.4) are integers.

Let us turn to a brief discussion of the short-
distance behavior of the radial wave functions
for marginally singular interaction kernels
(w„,WO). Equations (4.19) and (4.20) show that,
in general, the solutions of the indicial equations
depend on the parameters zvi~ u'0~ and c

p, = p„(N, «&„«&„c) (k =1,2, . . . , 18). (5.8)

Here we call "good" or "bad" indices which go
smoothly into positive (including zero) or negative

values, respectively, if one takes the weak-cou-

pling limit se, ,-0. Neglecting the nonleading

terms in the interaction kernel, the 18 independent

solutions of the radial BS equations can be ex-
panded in the powerlike series

(p; K&, &&&o)
=

II&,'(0, p) II2.'(0, p}

(5.11)

where the matrix elements 8 are given in Eqs.
(4.19) and (4.20). In particular, we have

Sz /2
II&; '(o, p) =-

2
(p-2)p(p+2), (5.12)

8,", '(0, p) =--,'(1 —c)(p —2)p(p+2)+2«&, +-,'u&, .
(5.13)

Proceeding as before, we first consider the
solutions for regularized interactions. The indicial
equations become

~' '(p o, o}=- (1 —c)(p 2)'p(p—+2)'(p+4)

f&+&k&(R) RP& ~ a&+I&&& Rh
(N)n ~ {N)nh

hW

(5 9)
~"(p;0, 0) = —(1 —c)(p —3)(p —1)'(p+ 1)(p+ 3)'

provided the differences ph —ph, of the indices are
nonintegers. Otherwise, according to mell-known

theorems, the expansion of the solutions may in-

volve logarithmic factors for 0&1. If p, —p, =inte-

ger, for example, then the second solution is
given by b&'„'&lnR times the powerlike first solution

plus the series (5.9) for I&=2, where the coeffi-
cients b and a can be calculated by standard re-
cursion formulas (see, e.g. , Ref. 14).

To formulate the boundary conditions at R -0,
we shall follow the procedure of Ref. 8. As a
first step, the choice of the parameters u „u„
and c will be restricted by requiring that the nine

solutions that involve good indices only ("good"
solutions} must be less singular than the other
ones. We now may prescribe that, as R -0, an

acceptable solution of the radial BS equations

(4.6) and (4.V) must be a linear combination of the

nine good solutions.

B. W=O

In the particular case N =0, the radial BS equa-
tions are reduced to four coupled ordinary dif-
ferential equations of third order. To obtain the
short-distance expansion of the solutions, we can

apply the standard recursion procedures outlined

=0. (5.15)

Thus, for N=O, zv, ,=0, and c41, the 12 indepen-
dent asymptotic solutions of the radial BS equations
consist of six regular solutions and six irregular
ones in the region R -0, and the short-distance
behavior of the leading regular solution is governed

by the sixth index p, =0. Substituting p =0 into Eqs.
(4.1V) and (4.18) (and denoting the solutions by

a'&, &„" and a«', »„', respectively) one readily verifies

(5.16)

a'"' =0 (5.1V)

We now apply the expansions (4.1)-(4.3) to obtain

the following short-distance behavior of the BS
wave function:

q, (x)
~ „~= a&&, I,"I'(,)„'(0)+~ for R -0. (5.18)

Taking into account that in the vector-gluon model

(1.1) the field equations involve the operator
y 4 V, it is instructive to consider the function

z, &1&,(x) in the limit R -0. Equations (3.2V) and

(5.18) yield

y &&C&& (g)
~ ~~ 2aI0 I&

Y'&
o &/ 2 &o(Q) + for R 0

(5.19}



2656 K. LAD AN Yl 14

Let us return to the behavior of the solutions
at nonzero coupling parameters zo, , First, w' e
consider the "good" index p, (0, w„w„c) that goes
smoothly into the leading index p, (0, 0, 0, c) =0 by
taking the weak-coupling limit ~y o 0 We ob-
serve that, for a particular class of the coupling
parameters ~„m„and c, the indicial equation
(5.10) yields a negative index p, characterizing a
singular solution of the radial equations (4.6) and

(4.7). Such solutions of the fermion-antifermion
BS equation have been found by Guth and Soper' to
correspond to admissible normalizable bound-state
wave functions. In addition, it has been shown that
the "bad" (abnormal) solutions can be ruled out by
means of the normalizability condition proposed by
Tiktopoulos" if the coupling strength is sufficiently
small. Thus, in this way, the normalizability con-
dition is crucial in selecting the admissible solu-
tions of the bound-state problem.

The application of a non-gauge- covariant ladder-
type approximation implies that, in general, the
root p, of the indical equation (5.10) is not inde-
pendent of the gauge parameter c. Callan and
Gross' have discussed a similar "spurious" gauge
dependence in the ladder approximation of the
fermion-antifermion wave function which could
lead to quite different results for the asymptotic

8

~C
—p, (0,w„w„c)=0. (5.20)

Inspection of the explicit form of the indicial equa-
tion (5.10) shows that our prescription (5.20) is
satisfied if

zo =-4u (5.21)

On account of this requirement, the indicial equa-
tions (5.10) and (5.11) can be written in the follow-
ing form:

behavior of form factors by changing the gauge.
By a judicious choice of the effective gauge and

coupling parameters, a ladder-type model might
produce some relevant short-distance properties
of the BS wave function calculated in a more real-
istic higher approximation. However, we have no
arguments of this type to select a particular ef-
fective gauge parameter c for the fermion-vector-
gluon BS equation (2.6).

The ladder model (2.6) provides a study of the
spinor-vector BS wave function at a semiphenome-
nological level. Within the framework of this mod-
el, let us restrict the choice of the coupling pa-
rameters zo by prescribing the gauge independence
of the index p, (E -0):

6&-'(p;w„—4w, ) =-(p —2)p(p+2)[(1 —c)(p —2)(p+2)(p+4)+(2+ c)w, ] =0,
a' (p; „—4, ) =-(p —1)(p+1)(p+3)[(1—c)(p —3)(p —1)(p 3) —(2+c)w, ] =0.

(5.22)

(5.23)

Let us notice that the fulfillment of the prescrip-
tion zgp 4M' y guarantees six gauge-independent
indices (p =0, +I, a2, and -3) which survive the
unitary gauge limit c 1, if the interaction kernel
is marginally singular (w, +0). Moreover, these
indices solve the indicial equations in the nonsingu-
lar case zoo=tv, =0, c41. At c=1 and M, 0, all
the negative indices (p =-1,—2, -3) characterize
irregular (abnormal) solutions which can be ruled
out by means of the normalizability condition. (The
short-distance behavior -R ~ of a fermion-anti-
fermion BS wave function was first shown by Man-
delstam" to be unacceptable from the standpoint of
the normalizability condition. ) On the other hand,
the solutions controlled by the indices p =0, 1, 2
are obviously compatible with the normalizability
condition and, in the present model, we obtain the
asymptotic properties (5.18) and (5.19) also for
~, =-4~, ~0.

For c tI, the 12 solutions of the indicial equa-
tions (5.22) and (5.23) include six gauge-dependent
indices which are fixed by the roots of two cubic
equations. We would like to emphasize that there

is a large class of the parameters w, (w, =-4w, )
and c, for which three of the gauge-dependent
indices are larger than zero and the other ones are
involved in non-normalizable singular solutions of
the BS equation. Such effective gauge and coupling
parameters are particularly suitable for practical
calculations because, in this case, we recover the
leading short-distance properties of the wave func-
tion calculated in the unitary gauge.

VI. COMMENTS

The radial BS equations (4.6) and (4.7) may be
regarded as a particular prototype of the descrip-
tion of fermion-vector-gluon systems. So far we
only considered a ladder-type approximation where
the mass operators of fermions and gluons are re-
placed by constant external masses. We now look
forward to more interesting applications which
include the numerical solutions of the BS equation
(2.6) for nonzero total c.m. energies. In this case,
the four-dimensional rotation symmetry is broken
and the O(4) expansions lead to an infinite set of
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coupled radial equations. On the other hand, one
may expect on the basis of some more familiar ex-
amples" that the short-distance behavior of the
wave function is still controlled by the asymptotic
solutions of the radial equations at zero c.m. ener-
gy.

The scope of this paper should be extended to in-
corporate a gauge theory based on U(1) xSU(2). We
have in mind a "lepton model" involving a medium-
strong coupling to massive U(1) vector gluons.
(The basic fermion fields carry unit lepton num-
ber. ) We note here that, although no higher inter-
nal symmetry Ie.g. SU(3)„„,j is included in the La-
grangian, the spinor-vector BS equations of the
type (2.6) may generate a mass spectrum of the
spin- —,

' particles E~ that correspond to the solutions

g„(J = —,') describing the various radial excitations
of a fermion-vector-gluon system.

One of the intriguing possibilities is that the

spectrum of the spin- —,
' particles may include some

particular composite states of the type E~ F~ E~ in
which each of the excited fermion-gluon systems
I"o ( J'= —,') must disintegrate in order to undergo a
real decay. This triple decay could lead to a
"weak" transition in spite of the medium-strong
fermion-gluon interaction in the underlying field
theory.

The fermions of our model carry no familiar
baryon number. In spite of this fact, the strongly
suppressed triple decays that are of the type
F~ F~ E~ ground-state fermions might imitate
the weak quark-lepton transitions encountered in
the prequark model" of Pati, Salam and Strathdee.
This possibility suggests a parallel between the
radial excitations of the fermion- gluon systems
F~, on the one hand, and the spin-~ integer charge
prequarks, of which the quarks may be composite, on
the other hand.
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