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The zero-point energy is studied in the MIT bag model in which the quantum fields are confined, in a
covariant way, to a finite region of space. The calculations are performed in the static boundary
approximation. The resulting eigenfrequencies are summed using a cutoff. For the three-dimensional problem,
new methods are introduced to compute the zero-point energy and to isolate the divergences occurring when
the cutoff is removed. Divergences are found which cannot be absorbed by renormalizing the physical
parameters in the bag model Lagrangian, as currently formulated. Alternatives are suggested and analyzed.

I, INTRODUCTION

When fields are confined to a finite volume which
can change, the zero-point energy E,=(0~II~0) can-
not be removed by the simple normal-ordering
prescription used in conventional field theories.
In an MIT bag model, I = f d'x(Z, -8), where Z,
is any conventional Lagrangian density. ' Two con-
straint equations on the surface of V ensure co-
variance; the boundary points are functions of the
fields confined to V and consequently the boundary
surface can change during physical processes. In
this case, a cutoff must be introduced and the zero-
point energy explicitly calculated. Divergences
which occur as the cutoff is removed are then ab-
sorbed into renormalizations of the physical pa-
rameters in the theory.

In this paper we calculate the zero-point energy
using a. dimensional cutoff on the sum over three-
dimensional spherical static cavity modes. The
leading divergence, which is proportional to the
bag volume, is absorbed into a renormalization of
the bag constant B. Calculations are performed in
the zero-coupling limit of confined fermions and
gluons. An important question is then whether the
remaining part of the zero-point energy is finite
and proportional to I/R, the bag radius. ' If so,
the only divergence is proportional to the bag vol-
ume and is insensitive to the boundary conditions.
The remaining finite part of the zero-point energy
is determined by the long-wavelength part of the
spectrum where the static boundary approximation
is most reliable. On the other hand, divergences
proportional to the surface area or to the radius of
the bag indicate that there are contributions to the
zero-point energy from nonleading but still large
frequencies which are sensitive to our treatment
of the boundary.

The first zero-point energy calculation was done
by Casimir in 1948, for the electromagnetic field

confined by two perfectly conducting plates sep-
arated by a distance L.' The object was to calcu-
late the (attractive) force/area on the plates re-
sulting from the finite term proportional to I/L in

the zero-point energy. In 1958 the existence of
this force was verified experimentally and its mag-
nitude was found to be consistent with the Casimir
prediction. '

Later, Casimir speculated that a similar inward
force from the vacuum fluctuations of the electro-
magnetic field, confined to a three-dimensional
conducting spherical shell, balances the outward
Coulomb force in the semiclassical Abraham-
Lorentz model of the electron as charge distributed
over a spherical shell. ' Many years passed before
Boyer did this much more complicated calculation
and found that the zero-point energy force on the
surface of the sphere was outward. ' Like Casimir
before him, Boyer used a subtraction procedure
to isolate the finite part of the zero-point energy
proportional to 1/ff because only this piece con-
tributes to a force on the spherical surface. Fur-
thermore, because of the reliance on numerical
methods in this work, the divergent zero-point en-
ergy of an isolated spherical cavity is never ex-
plicitly calculated.

In Sec. II, we develop a method for calculating
the zero-point energy w'hen the boundary is a
static three-dimensional sphere. The section con-
cludes with explicit formulas for the cutoff zero-
point energy of scalar, fermion, and vector fields
being given. Details of their derivation are pre-
sented in Appendix A. In Appendix B we pause to
apply this new method to two zero-point energy
problems in which the bag boundary is not three-
dimens ional.

The formulas derived in Sec. II are analyzed in
Sec. III. We isolate terms which diverge as the
cutoff is removed and a numerical check on our
analytical technique of doing this is provided. In
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addition to the quartic divergence found in the
parallel-plate problem, an additional quadratic
divergence in the zero-point energies of the fer-
mion and vector fields occurs as the cutoff v tends
to zero:

E,(r) = VO(1/r') +AO(1/7') + ~ ~ ~ .

The quadratic divergence cannot be absorbed into
a redefinition of any physical parameter and there-
fore presents a serious obstacle to using the zero-
point energy obtained in the static boundary ap-
proximation to the bag model.

In the final section we speculate on possible ways
to circumvent this difficulty including (i) an altern-
ative method of calculating the zero-point energy
in the static boundary approximation, and (ii) al-
lowing the boundary to make small oscillations
about its equilibrium shape.

Gs (r, r', v) —= Go~(r —r', 7) + I'~ (r, r', ~)

with

(2 'I)

1
0~ » 4 2[/~ ~l)2+ 2]

satisfying

(
2

—, +V" Gp r - r', 7 =-& 7 &' r- r'

(2.8)

(2.9)

G (r, r', 7)~~q z =0, which automatically follows
from the definition (2.3), completely specifies the
Green's function, G~(r, r', g). The cutoff zero-
point energy can now be calculated according to
Eq. (2.5).

The advantage of this procedure is manifest
when we separate out an inhomogeneous piece of
the Green's function

II. GREEN'S FUNCTION METHOD FOR SUMMING

MODES IN A SPHERICAL CAVITY

A. Scalar fields
a ~

2

2
~~ s

j
~I

7
~~

~

a , +V' I'~ (r, r', ») = 0 . (2.10)

The zero-point energy for a real scalar field
confined to a static spherical bag of radius 4 is'

E~ = —,
' g Q (z l + 1)(u,„

l=p n%
(2.1)

The eigenfrequencies (u,„)are determined by

j,(u, „R)=0. Only the positive solutions are in-
cluded in the expression for Ep. We introduce an
exponential cutoff'

E'(&) -=-' P g (21+1)~,„e (2.2)
l=o n& o

To proceed we define

ao +l ~t4.i.(r)e.*&.(r') ln

l=p m=-l 2&ln
(2.3)

where Q„,„(r)= N, (v, „)j,(~«r)—Y,„(O) and N, (e,„),
the normalization, is chosen so that (Q„, (r)) «rm
a complete orthonormal set of eigenfunctions of
the wave equation for the spherical cavity. It fol-
lows that

d'rG'(r, r, i)=Q ' e- ~ ~'~&2L + 1&

l, n 2+in

and consequently' that

a'
E,(7)=, d'rG (r, r, v) .

7 v

It is also easy to check that

(
2

, +V' G (r, r', 7.) =-6(7)6'(r-r') .aT'

(2.4)

(2.5)

(2.6)

This equation, together with the boundary condition

The inhomogeneous term Go(r —r', v) represents
the direct propagation of the scalar wave from its
source at (w' = 0, r') to the observation point at
(~, r). It is the solution to Eq. (2.9) in the absence
of boundaries and therefore its contribution to

2

d'r G, (r, r, 7) = (2.11)

is independent of the boundary conditions. It can
also be argued in general terms that this quartic
divergence is stronger than any which may appear
in (s'/87') f» d'r I'~ (r, r, 7). Consequently (9'/Br')
x J» d'r G~o(r, r, r) is the only contribution to E,(7)
proportional to the volume, so an important objec-
tive is already accomplished when the redefinition

6
+rcn =+ +

4% 7
(2.12)

is made to eliminate this divergence. We may now

hope that the remaining calculation (s'/Sr')
x 1» d'r I' (r, r, 7) is facilitated because

(i) the most divergent piece in E,(r) has been
isolated, and

(ii) the method makes no reference to the eigen-
frequencies (~,„), so progress can be made using
analytical rather than numerical methods.

The construction of G~(r, r', 7) may now be com-
pleted by expanding I'~(r, r', r) in terms of the so-
lutions to the four-dimensional Laplace equation in
cylindrical coordinates. The boundary condition is
then applied and the amplitudes involved in the ex-
pansion projected out. The calculation is straight-
forward and the details are given in Appendix A.
The result is
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92
EO(~) =- „2 d'r r'(r, r, v)

g (21+1) dkk'cosk~ "'~'
)

[I„,i,'(kR) I„—,&,(kR)I, ,i,(kR)] .
7 l-0 0 t+ X/2

Since I'(r, r, T) is a solution to I.aplace's equation in V, the only divergences in lim, ,(8'/8 7')
x 1» d'r I'~(r, r, v) occur when the integration variable r approaches the boundary. This suggests an al-
ternative cutoff. Define

-
~2 B(l-e)

E,(e)=—, r'dr dQ I' (r, r, T)
i
87 0 T =0

(2.14)

This expression is finite even when the cutoff T-0 because the range of integration is now restricted to
exclude

i r~ =R. Using the e-type cutoff, the contribution of the homogeneous Green's function I' (r, r', T)

to the zero-point energy becomes

Eo~(e) = Q (2l+1) dxx' "'" [I„,g,'(x(l —e)) —I„,i, (x(l-e))I, ,I,(x(l-~))].
m&, 0 0 ii+ i)a x

(2.15)

It will be seen in Sec. III that Eq. (2.13) is more
useful for numerical computation while Eq. (2.15)
is more amenable to analysis.

B. Fermion fie1ds

The preceding method is easily extended to fer-
mions where the corresponding matrix Green's
function S„&fr, r', v) is a solution to

(1+iy r)„~S„~(r,r', v) =0 (2.17)

on ~r~ =R. The eigenfrequencies satisfy j,{+,„R)
=aj„,(~,„R) for j=fz —,'. S„B(r,r', ») is related to
the zero-point energy by

E~o(v) = —— d'r Tr [S(r, r, ~)y'] . (2.18)

y' —+i y ~ V S„a(r, r', v.) = -5 85(7)6'(r —r')
BT nX.

(2.16)
with boundary condition

As before, the inhomogeneous part can be sepa-
rated out:

S„B(r,r', ~) -=S'„'8(r-r', 7)+K 8(r, r', ~) (2.19)

with

-=y —,y ~ 4, -,), ,
]

{2.20(o) = 1

~& 4m r —r' +y

(
p 9

y —+iy V R&8(r, r', v) =0 .
87 eX

(2.21)

The contribution of Si„')s(r, r', 7) to E",(~) is —6V/
4m'T' and the arguments concerning the contribu-
tion of Go~(r, r', r) to E,{v) apply here as well.

X 8(r, r', i) is constructed in terms of the solu-
tions to Eq. (2.21). After satisfying the boundary
condition Eq. (2.17) the result (see Appendix A) is

E,(T) =—— d'r Tr [R(r, r, T)y']

or, using the e-type cutoff,

E~o(e) = Q (2j+1)
1

W y= I/2

&& [ I,„'(kR) —I, „(kR)Iq (kR) —I,. '(kR) +I...(kR) I, ,(kR)],

, [Z,.„(x)i,.„(x)-Z, (x)i, (x)] „

(2.22)

(2.23)

Formula(2. 23) is g, eneralized to massive fermions by making the following change in the limits of integra-
tion and integrand:

dxx[x' —IjnR)']' ' (2.24)
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C. Vector fields

Finally, the zero-point energy E,(v) for vector fields may expeditiously be found by solving two scalar
Green's function problems. The transverse electric frequencies (~,„jare solutions to j, (&uTER) =0. Their
cutoff sum is therefore related to the scalaroreen's function problem previously described. The transverse
magnetic frequencies are solutions to (d/dR)[Rj, (&u,„R)]=0 and their cutoof sum is related to a scalar
Green's function problem in which (d/dR)[RG™(R,r', v)] =0. So we can write the zero-point energy as

(2.25)

if we are careful to exclude the l =0 contributions to G™,G as indicated by the subscripts in Eq. (2.25)."
Then, using the by now familia, r methods, the results are (see Appendix A)

12& Q 1""='4."-- -4.R

(2.26)&& [I,~,g, '(kR) —I(+3(,(kR)Ig,g, (kR)]

The second and third terms are the result of subtracting the l =0 contribution of the free Green's functions.
The complicated piece is the contribution of I', „,(r, r', v) +1 ~T~, (r, r', v) which we can rewrite, using the e-
type cutoff, as

@„( )
1 p (2l 1) d, K„,g,(x) (d/dx)(WxK„, (,(x)) [I, I I ) (2.27)

III. EVALUATION OF THE ZERO-POINT ENERGY

%e now return to the evaluation of the contribu-
tion of the homogeneous Green's functions to the
zero-point energy for the three-dimensional
spherical bag. The discussion is restricted to the
scalar field example; methods will apply without
modification to the somewhat more complex prob-
lems [see Eqs. (2.23) and (2.27)].

Expression (2.15) is finite so long as e e 0. For
simplicity we rewrite it as

Eo(e) = Q (2l+1) dx Ef(x, I),
l=o 0

(3.1)

where the definition of E, (X, e) is obvious from Eq
(2.15). The Debye expansions for the Bessel func-
tions I,(x), K„(x) occurring in the definition of
E, (x, e) are expansions in decreasing powers of the
argument x." Unlike the corresponding Hankel ex-
pansions they are not dependent on any relation

between v and x. The leading terms in the expan-
sion may therefore be substituted into Eq. (3.1)
with no approximation made on the sum over the
order l. The integrand 2, 0(2l +1)E,(x, e) then
becomes an expansion in decreasing powers of x
which, when the integration is performed for small
e, can be used to pick out the divergences in E,(e)
as e - 0. The substitution of the Debye expansion
proceeds in the same way for those Bessel func-
tions with argument x(1 —e) as those with argument
x. That is, since the factor (1 —e) is near unity it
will not affect the number of terms in the Debye
expansion which must be carried in the x» 1 limit.
The (1 —e) factor is simply carried through the
process of simplification until the integral is eval-
uated, the sum over orders is performed, and the
divergence is extracted.

To illustrate, the first nonvanishing contribution
from the Debye expansion is

1 g+ lg+3g2( ( - ))

E&(x, e) ~ (ve 2f~+i/2~*&) —. . . » 2 ((l+&)'+x (1 —e)'+(1+2)[(1+2) +x'(1 —e)']'

(3.2)

l
f, (x) —= (x2+l2)'~2 —l sinh '— (3.3)

jt may be shown that

f( (x(1 —e)) =f&(x) —e(x'+1')" +o(e') (3.4)
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and that

(I2 ~x 2) 1 / 2 )

ef~(") ~i+ i(")= —+
x x

x 1+ 1
2(l2 ~x2)1/2 6(l2 2)3/2

1
8(l'+x') (3.5)

In the derivation of Eqs. (3.8) and (3.9) terms which
would have contributed cubic divergences canceled
between the opposite parity modes so that Z~(e),
Zo(e) diverge quadratically -I/e2 rather than -I/c3
as in the scalar field problem. "

To check the procedure we have used we recall
that for fermions Z, (r) the corresponding expres-
sion using the T-type cutoff may be written

The 0(c) term in this expansion contributes a factor
2~ «2+ )+3 22 l/Z

e "I-" +('+'/ j to the asymptotic expansion of
E, (x, e). It is easy to show that e may be set equal
to zero elsewhere in Eq. (3.2) when calculating the
leading divergence inZ, (e). Using Eqs. (3.4) and
{3.5) we now obta, in

2

F3(x e) e-2e t«2+(l+ 3/2)2] &/2„.„2[(l +-,')'+x'j

Z'. (T) = Q (2j+1)
2gQ j =1/2

dx E, (x)e'*"/ a,

(3.12)

where E;(x)= F, (x, e) ~, , From Eq. (3.8)

(3.13)

x'l' x(2j+1)F;(x) ~ dl
j = I./2

1
Z2(&) , 2mB

1
24m'

oc oo 2

dll dx (, ,
)

X g ~ («2+ )2 )1/ 2Xe

(3 'I)

The corresponding expressions for confined fer-
mion and vector fields are

+ Ii2
+&( 4 ~j + ~~ X 2~[& +(j+ I) ]'/

p

(3 8)

+&&2 2
-2 i' 2+(&+ 1/2i 21'/2

l 1 2[(1 ~1)2+ 2]5/2

with the result that

1 OQ

Z, (e) = Q (2j+ 1) dx E~(x, e)2PR j=/2 0

p

(3.10)

1
60mAe' (3.11)

(3.6)

Finally, since the major contribution to Z, (e) oc-
curs when l-x» 1 no error is made in calculating
the leading divergence, when the index l is treated
as a continuous variable and Z, =,—f, dl There. -
fore,

Therefore, we also expect a quadratic divergence
in Zo(T) as 2 0:

1 x i«~ RZ~(T) d x —' e'"/'...2mB, 3
(3.14)

But now the function of x, Z, ,/2(2 j+ l)E~(x), may
be tabulated numerically and its asymptotic be-
havior compared with Eq. (3.13). For successive
values of j and a fixed value of x we simply evalu-
ate (2j+1)E,(x). When j»x the series (2j+1)EF (x)
behaves like -1/'j'. " The result to high accuracy
is that

and

(2 j+1)F~(x) ~ x/3
j= j./2 «

P {2j+1)F~(x)-x/3 1/x,
j= I/2 «oo

indicating a logarithmic divergence in Z, (r) as
7- 0, in addition to the quadratic divergence al-
ready extracted analytically. Unfortunately, the
method of using the Debye expansion to calculate
the divergences analytically becomes more corn-
plicated when we attempt to extract divergences
weaker than the quadratic ones previously dis-
played. But for the bag model the quadratic di-
vergences already present a serious problem.
Unlike the quartic divergence, they cannot be ab-
sorbed into a redefinition of any physical param-
eter.

Our results are consistent with the work of
Balian and Bloch on smoothed eigenvalue densities
for scalar" and electromagnetic" fields in cavities.
For a scalar field satisfying a Dirichlet boundary
condition they found that

Vk' Sk 1 1 1 1
P(/2) =,——+, dg — —+—+.~, (3.15)2m' 8m 6w2

S 2 Rl A2
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where A, and A, are the main curvature radii of S.
If we write E~(K) =J, kp(k)dk using a large fre-
quency cutoff K, we obtain divergences O(K'),
O(K'), and O(K'). From Eq. (3.15) we can under-
stand the absence of quadratic divergences in the
parallel plate problem because the curvatures on
the boundary surfaces are infinite.

(o) (b)
IV. DISCUSSION

It may be useful at this point to recall. why Boyer
did not encounter any divergences in his zero-
point energy calculation. ' Consider the arrange-
ment of conducting spherical shells in Fig. 1.
Boyer computed

E,(a)=tim I[8,' (a)+E," (a, R))

(4.1)

where the terms in braces are the zero-point
energies of the electromagnetic field confined
to the regions depicted in the figure. The quartic
divergence, proportional to the volume of the
region, cancels between [Et(a)+Eo (a, 8)] and
[En'(8/q)+E'v (8/q, Jt)] even before the R-~
limit is taken. For vector as well as for fermion
fields, the cubic divergence cancels between op-
posite parity modes, region by region. Boyer
speculated that the quadratic divergence had the
form c,(a/T') in region I [c,(A/q/r') in region
III], c,(A —a)/T' in region II [ (Ac—Ji/q)/7' in
region IV] and therefore canceled out like the
quartic divergence. " However, using our Green's
function method we can calculate the zero-point
energy of a field external to a spherical region
and find, for example, that

E, (outside) = — g (2l+1)
2@A ) 0

dxG", (x, e),

where G", (x, e) may be obtained from F", (x, e) by
merely interchanging I„and E, Bessel functions.
The quadratic divergence in E, (outside) is
+ I/60mB&' and therefore the total. quadratic di-
vergence for a vector field filling all space and
satisfying q„E""=0 on

~
r~ =A vanishes. The

leading quartic divergences are then canceled in
a subtraction between the two configurations in

Fig. 1. Boyer used this procedure because only
the finite piece in E,'(a) ~1/a contributes to a
force on the surface confining the electromag-
netic field. However, it is difficult to see what
relevance such a subtraction procedure has to the
bag model. Even though it might isolate the finite
part of the fermion zero-point energy as it ap-
parently does for the vector zero-point energy,
such a calculation would have little significance for

FIG. 1. The electromagnetic field fills regions I, II,
III, and IV. E„„vanishes on the boundaries. «& R/g
«R and g is some constant greater than unity.

+ d'x(-,'i O' P'4 —M 4 4') (4.2)

for a massless field g inside V and a field 0 with
mass M outside V.' The Euler-Lagrange equa-
tions are

is" 9„)=0 inside V,

iy" 8 „4 = M 4 outside V,

g =4' on the surface of V,

M 4 4 =B on the surface of V.

(4.3a)

(4.3b)

(4.3c)

(4.3d)

In the M-™limit of (4.3), ( vanishes and the
boundary condition if' = llI is recovered from Eq.
(4.3). Before M- ~, waves propagate across
the surface of V and the corresponding Green's
function from which the zero-point energy can
be derived satisfies a continuity condition on the
surface, determined by (4.3). We might hope
(but not too much) that the quadratic divergence
cancels for finite M and is not restored in the
M- ~ l.imit even though the calculation based
directly on the M- ~ limit of the boundary con-
dition contains this unwelcome divergence.

This zero-point energy problem is substantial-

the bag model in which the field is confined to a
finite region of space and the boundary equations
arise as the Euler-Lagrange equations of a co-
variant Lagrangian which we can take seriously
as a fundamental theory.

However, there is one hint we can salvage from
this discussion of the Boyer problem. We refer
the following discussion to the example of con-
fined fermion fields. From Eq. (2.24) it is ap-
parent that the leading, quadratic divergence in

Eo (&) is independent of the mass of the fermion
field confined to V. Therefore, the cancellation
of quadratic divergences previously noted in the
Boyer problem should persist when the field either
inside or outside the sphere is massive. Now
the bag model confinement can be derived from
the Lagrangian
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ly more complicated than for the strictly confined
field (satisfying if' =( and has not yet been .

solved. Unfortunately, the parallel plate geom-
etry is not a good laboratory to study Eq. (4.3).
We can introduce a quadratic divergence into
that problem by allowing the strictly confined
field (satisfying i gg = g) to have a mass m. But
with the parallel plate geometry, these divergen-
ces do not cancel even in the case when the ex-
ternal and internaL fields both satisfy the limiting
boundary condition.

Should no method of eliminating the quadratic
divergence be found, the impact on the bag model
itself would be Limited by the particular assump-
tion on which this work is based —that the bound-
ary is static: In this case the classical cavity
modes are known and the nonlinear boundary con-
dition is particularly simple. The eigenfrequency
equations have also been found for boundaries
making small oscil. lations about a static spherical
equilibrium, R(t, 0) =R,r+ eR, (t, 0). In general,
these equations are nonlinear because the non-
linear boundary condition must be used to elimin-

ate R,(t, Q) from the linear boundary. These
equations are interesting because, as we saw
in Sec. III, the quadratic divergence occurs when
the source point moves indefinitely close to the
boundary; it is therefore sensitive to the nature
of the boundary. " However, while the Green's
function method is powerful enough to work for
a boundary condition of the form I., G(r, r', r}=0,
where L, is any linear operator, we have not yet
been abLe to apply it to the nonlinear eigenfre-
quency equations needed to sum the oscil. lating
boundary modes. "

While there is still much work to be done to
resolve the questions we have raised, it may be
that the zero-point energy can only be understood
in a full quantum-mechanical treatment of bound-
ary fluctuations.
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APPENDIX A: DERIVATION OF THE ZERO-POINT ENERGY FORMULAS

In this section we derive complete expressions for the Green's functions defined in Sec. II. For the
scalar problem

oo oo I

coso. =rr' —is the only angle in this problem. Setting G (r, r', T)~t-,
~

„=0and projecting out the r de-
pendence,

(A1)

(A2)

where P' =—R2+r ' —2Rr' coso. . Using K,&,(x}= (w/2x)'~ e"mand the Gegenbauer expansion,

p ( )
X„,~,(kR) I„,,(kr')

( )
l=O R

we obtain

(A3)

(2l + 1) K„„,(k R)
(A4)

and, therefore,

(A5)

8
S„e(r,r', r) = y' —+iy ~ V

BT ~8 4P [(1 —r +'T ]

s- -~
4P, o 0

The contribution of I' (r, r', T) to E, (r) or to E, (e) may easily be obtained by performing the operations
indicated in Eqs. (2.13) and (2.14).

For fermions,

+ Q J
dke'"[A ' q+ "(r)q ' 8(r')+A 'lC "(r)g (r')]

Jpm 0

The superscripts + and —refer to j =l +&, j=l —&, respectively. The boundary condition is

(A6}
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(1+i@ r)„&S),t) =0 on
~

r~ =R. But notice that

-to'r[(i+ted ~ r)Jif], „=[(1+ted r)~],„
for any 2&2 matrix M. Therefore„ the boundary condition gives only two( independent 2~2 matrix equa-
tions. We choose (I+i y r), ),S~, =(I+i@ r), „S~,=0:

—(1+ty r), qSql', ) ——— —+o'ro' V (ABa)

and

—(1+ii i),~()if= —(a ~ iver V ——

(I+ty r)„X„=g )t dqs'-[A&'„le&'(qR)(-)"'& f, „,(tqr )y, l ()0)y, l *( 0')
d, m 0

+A,~ lF~ '(qR)f, „t,(iqr')Q, ' '(0)())I„' (0')],

((+iy (),i)C~, =Q J qe'd"(A,"'F (qii)(—)))"'&'f (itir')(' '(())(' ' (()')

+A~l„)I'(, '(qR)f, ,&,(tqr')Q,"(0)(t),"„' (0')],

(ABb)

(ABa)

(ABb)

where

&,"(qR) = [(-)""f, ,t, (tqR)+ (- )' "f,',i.(tqR)],

&l, '(qR) = [f,',&.(tqR) +f, ,&,(tqR)],
1/2

In obtaining (ABb)

0,'"(0)4,"*(0')=( )( ' ')4,'"'(0)e,"*(0')
has been used.

We continue by projecting out the v dependence in (AB) and (AB), using the integral encountered in de-
riving (Al). Then after using the Gegenbauer expansion and the definition of (t), '„(0)we can project out
the angular dependence by operating with Jd0 y'*„(0). E(luation (AB) becomes

t
i@~

BB

1
+ [ s(s + 1) —t (t —1)]'~'—

R

+ [s(s+1)—t(t +1)]')'—12 1

K„„,(kR) I„„,(kr') „( )
8 t

i@a —+-
BR R

(A10)

Applying the operations to (A9) we find that

(s+ t +1)l'*„(0')

( [ s(s + 1) —t (t —1)]') 'I'*. . .(0')

[ s(s+ 1)—t (t + 1)]'~'I'+,
+,(0'))

Alla
(s —t + l)Y'+, (0')

0 y*.,(0)y&„-)(0)y&„-&'(0')=, 1

(—[ s(s + 1) —t (t —1)]'~'I'+, ,(0') (s+ t)I'+, (0')

(Al lb)

—[s(s+1)—t(t +I)]')'1'*, „,(0'

and j =s+2 in functions multiplying (Alla), j =s
—2 in functions multiplying (Alii).

According to (A10) and (Al 1) the boundary condi-
tions now become two 2 && 2 matrix equations. Of these

eight equations four are redundant, leaving four equa-
tions for A(,'I&, and A('I&, (which, of course, can
be obtained from A., ',&2 by s- s —1). The solution
is
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'+'t'2 z [I,+,(2(k 8) viI, +,(2(kR))

(A12)

Recursion formulas were used to simplify the
result. It is now simple to find E~(7) or Eo (e)
using (A6), (A12), and the prescription given
in Sec. II.

To generalize these results to massive fermions
we need only begin with the free-space Green's
function ~

$~ t(t —t', t)=(y —t(y' tt —I tt(t —r', t(,
u8

(A13a)

~j yn
( t ) 4'[(r . «l)2 T2] 1/2

x A;(m[(r —r'}'+ 7'] 't"), (A13b)

(A13c)

and subtract out its contribution to the zero-point
energy,

(A15)

The l =0 contribution from I'~(r, r', r) +~r, r', r)
is eliminated merely by not including it in the
sums in Eqs. (2.26} and (2.2"l).

APPENDIX 8: TWO EXAMPLES: THE MASSIVE FERMION
SLAB AND THE ONE-DIMENSIONAL MASSIVE

SCALAR FIELD

First, we repeat a calculation of the zero-point
energy of the fermion fiel.d confined by parallel
plates at ~ = 0, I . To make things more interesting
this time we allow the fermion field to have mass
m so the Casimir method will no longer. work at
all.

The Green's function is

After constructing G (r, r', &) the vector probl. em
is almost trivial. GTE, of course, satisfies the
same boundary condition as G, so the amplitudes
are the same. It is also apparent from the deri-
vation of G that the ampl. itude for G M may be
obtained by applying the operator d/dr" to the
numerator and denominator of the G amplitude.
%e then average out the l =0 part of the free
Green's function,

S„8(xr - x'r, z, z', r) = Slo&l(r —r', 7)

+K~8(xr —Xrt Zt Z
1 T)&

where

~ ~8,~ ~, 8'y' —+iy 1(t' +i y ——m Sl2(g'8. ~ ~ ~ 9. —

(B1)

G(o' r-r' v = — dnGl=o(r r t ~)
4

d~
4p[( «t)2 2]

1 ~(r —r ) +t7'2

16WZZ'r' (r +r') +Z'

= —S„86(T)62(xr—xr)6(z —z')

(B2)

is the Green's function in the absence of bound-
aries and for this geometry may be represented
by

(
-g~g+t k& ~ (x~-x&)

S'„'(I(xr-x'„z-z, )
( ), J

(f&(fkr
2( 2 k 2 2)1)2

+ ~' m ) ' '( - '1
T 1' + gg

%~a ls a solution to the homogeneous equation, chosen so that

(1+iy, )8 =0 on z =I, (B4a)

(1 —i y, }S= 0 on z = 0. (84b)

It is straightforward to apply these conditions and find that
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(2w)' 4] cosh[(v'+ kr'+m')'~'L] + [m/(&u'+ kr +m')'~'] sinh[(e + kr +m )'I2I]j
nIs'&. i&n i ~ &m'" & ((s(n ) i (msns s&sl ) {n si ~ & Ts+&s&»& &s, &

(~'+ kr'+m')'~'
I

(y ()' kr+i&uy +»&)(s-l. )ss ~ i s (m+yr kr+»y )
((() +kr +m

y, ~-&'&m+r~ ' I z+~ n'&& X,

The contribution of the inhomogeneous Green's function (83) to the zero-point energy is

d & Tr(6(0) yo)
8 IA 8 m

v 7T . 87 T

in a section of the parallel plates with area, A. .
Now we calculate the contribution of K„B,

9 3 o A 8

[)r v 2(2)])' sr
d'x Tr(BCy') =,— dz d(ddkr'e ' '

V ~

~
~

0 ~~ 3
~

0

!

& ~
2 l iI ~1

(86)

22& 1
(d'+kr2+m' '~'

a 2 )./2
co[s( )&o so+s)m"' ]+I. . .„; si nh[( &c* sos' sm)' &'I, ]

I
+k'g + ts ) I+2 2 2 1/2 m

cosh[(2z L)((o' + k'+ m)'~'] e-(" s)'r s" )2 a 2 X/2

((o'+k '+m')'~' r

(87)
Shifting to the e-type cutoff described in Sec. II, the contribution of X

&
becomes

1
EQ (z & m) +

(2 )3
d(0 dk' co 1

r~'+y '+~»'/'
2 2 2 1 2cos)&[(&c'+S '+m')' 'S]+. . .„, sin»[(&c +S '+m')' 'I]I

(s) +kr +m )

+ . . . ,„sin&[(&c' + S ' s m')'&'I ((- *s)]
I

.
+kr +m

To mage progress it is convenient to define spherical coor&[fina«s: &= (& +kr ) "r =

xd(cos&9) dp. The angular integrals are trivial, leaving

E)"(q,m) = » I(mL, &),
1

(88)

where

I(mL, e) -=

00 1
&(s [s* (mn)'] &'. . . , , , i —™t{i—Ss)c "+ ™L

sinn[s(( —Ss)] I.jcoshy+ [ mL)/y ]sinhy] y y'

(810)

When m 0, K (m' r) 1/mr

dy y'(1/coshy)e '
I(mL, q) ~, — + —,(mL)'inc .(mI. ) (mI. )'

6 o 4q 2e

(811)
= ~ (2' —1)& jff4I/4'

and the massless result is recovered. For m 40,
the additional dimensional parameter permits ad-
ditional divergence which we extract from I(mI, , e),

Even in one space dimension the zero-point
energy of massive confined fields cannot be cal-
culated with the Casimir method. However, the
problem is interesting because a finite expression
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is obtained; the mass introduces no divergences
beyond that which can be absorbed into a redefin-
ition of the bag constant. We readily find that f(x) =7t —+x Q

x K, (xs)

s=l
(B12c)

nmEs (I. , m) = BI.+ 2 g —+ m'
n=o

1
= Ij„„I. f(2mI ),

82
, K, (Tm),

(B12a.)

(B12b)

When m-0, f-s'/6 and the massless result is,
of course, recovered. Notice that only the second
term in f(x) contributes to the inward force caused
by the zero-point energy on the boundaries at x
= 0, L. This term vanishes when w. -~ in ac-
cordance with our expectation that the zero-point
energy is a relativistic effect.

at 7 =0 noway be overlooked because the cutoff is never
actually removed. Rather, we hope to absorb the cut-
off-dependent terms into redefinitions of physical
quantities.
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We can easily generalize the cutoff

X is dimensionless and Jo d& f, (&) = &. I" (&~)
=—- Q"„Oe ~» ~~ can be exopanded in TX. The numerical
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