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Renormalization of the nonlinear cr model in 2+ e dimensions
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The nonlinear o. model is renormahzable in two dimensions. It is shown here that there exists a
parametrization of this model in which only two renormalization constants are needed. The renormalization of
all soft operators is discussed, as well as that of symmetrical operators of dimension 4. The renormalization
properties of this model, although simpler, have many features in common with gauge theories.

I, INTRODUCTION

In recent articles' two of the authors have dis-
cussed the applications of the nonlinear cr model2
to problems of phase transitions near two dimen-
sions. ' The corresponding scaling properties fol-
low from the structure of the renormalization of
this model. Several aspects of renormalization
theory in this case are not completely trivial and
may be worth discussing in more detail. In par-
ticular, it will be emphasized that the special
choice of representation made in Ref. 1 consider-
ably simplifies the analysis. If one chooses an-
other parametrization, as for instance was done
in a recent article by Bardeen, Lee, and Shrock, 4

the analysis becomes more intricate and the scal-
ing properties are no longer transparent. From
the renormalization standpoint, the nonlinear 0
model and the gauge theories have several features
in common, though the first model is of course
much simpler. We shall base this study on quad-
ratic Ward- Takahashi identities analogous to those
derived for gauge theories by one of the authors. '
Therefore this article may be regarded as a ped-
agogical introduction to gauge theories.

This article consists of four sections. In the
first section we discuss the renormalization of
the model, in a particular representation of the
fields. In the second section we study the renor-
malization of the infinite set of soft operators
(the "relevant" operators of statistical mechanics).
The consequences for the renormalization of the
model in other representations of the pion field
are outlined. In the third section, we discuss the
insertion of some local operators of high dimen-
sion, physically interesting for the correction to
the leading scaling behavior. In the last section,
we briefly summarize a few results which were
obtained previously by these methods.

II. RENORMALIZATION AND WARD-TAKAHASHI
IDENTITIES

For convenience we shall describe the model
corresponding to an O(n)-symmetric interaction
(in the vector representation) in a two-dimensional
Euclidean space, though the discussion may be
extended without difficulty to other symmetry
groups and to 2+ c dimensions within a double ex-
pansion in the coupling constant and in &. The
Euclidean action of this model in terms of a 0
field and (n -I) v fields is

8= d x pe 7T 8 7T +p~ 08~&

in which 0 stands for

a(x) = [I- v'(x)]'~' (2)

j.x exp ——8+ — d'x J(x) ~ w(x) .
t

In order to write the action (2) we have made the
choice of a parametrization of the sphere S„,. In
this representation O(n) group a.cts linearly on the
vector (5, (l —w')'~'). In two dimensions the m

field is dimensionless, and all the terms of the
Lagrangian are of dimension 2 and the theory is
just renormalizable.

Regularization

The model needs in addition an invariant regu-
larization in order to be defined. The first prob-

and the corresponding generating functional of the
w Green's functions is defined with an invariant
measure as
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lem arises through the integration measure which
is formally an additional interaction of the form

——,'5"'(0) /I'x in[1 —Tr'(x)]. (4)

We know of three possibilities in order to solve
this problem:

(i) Consider the nonlinear o' model as a formal
limit of the linear o model [X(%2+o' —1)'] for
large coupling constant. '

(ii) Ignore the problem altogether by using a
dimensional regularization, ' which would set 5"'(0)
equal to zero. In this case it is necessary to pro-
vide first an infrared cutoff to the theory in order
to avoid the singularities due to the pion propaga-
tors below two dimensions. A very natural and
convenient infrared cutoff is given by a "magnetic
field, " i.e., a source H linearly coupled to the
0 field. Indeed the expansion of

a d'x 1-g'x

in powers of m' generates a mass for the pion.
(iii) Express the problem on a lattice, ' for

which the continuous limit gives back the action
(2). The problem is then well defined and reads

cAT ~

1Rtt (~),. q /1 ~ 2)1/2
1 % 4 j

1 1
exp — 8~ate+

1

in which

8)„,= 2Q f(%; —~/)'+ [(1—Trf')'/' —(1 —Tr/')'/']'),

(8)

g meaning some short-range coupling, for in-

stance a nearest-neighbor interaction.
The method of renormalization used in this

work applies both to the dimensional and the lat-
tice regularizations. However, the last one only
allows a thorough discussion of the contact terms
(4). The role of these terms is of course to elim-
inate the quadratic divergences of the perturbation
series. ' It is thus justified to use dimensional
regularization in practical calculations, as we
have done in our previous articles.

We shall now assume that the model has been
regularized, either dimensionally (in the presence
of the source H) or by a lattice, and we shall dis-
cuss the Ward identities and their implications for
the structure of the counterterms.

Ward-Takahashi identities and renormalization

The general method has been exposed in Ref. 5.
In the functional integral (3) one performs a change
of variable on the fields which corresponds to an
infinitesimal rotation of the group. In such trans-
formations new operators may be generated: Here
it is simply (1 —7')'/'. It is then necessary to
add sources for this new operator in the Lagran-
gian. One has then to examine what is generated
by this new operator under a group transformation,
and, if new operators arise, add the corresponding
new sources. This has to be repeated until the
system is closed under the group transformations.
With the parametrization (v, %) chosen here, (1
—m2)'/' generates nothing but the Tr and the system
is closed after one step. An arbitrary choice of
fields will in general generate an infinite number
of successive operators, making the discussion of
renormalization more tedious.

Our problem is thus to discuss

Z(Z, H) =

with

(1,)„,expp -8+ J(x) w(x)d'x (7a)

(7b)

Let us perform the infinitesimal rotation [in the
only interesting class O(n)//O(n —1) which mixes
7r and /r]

nm(x) = [1—m'(x)]'/'(u

5[1—m'(x)]'/'=- (o m(x).

The invariance of the action 8(m), of the measure,
and of the regularization, by the transformation W(J, H) =f InZ, (10)

(8) gives the equations

OZ 5Zd'x Z, (x)
( )

—H(x)
( )

——0

(i=1,2, . . . , n —1).

The generating functional of the connected
Green's functions of the m,
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satisfies the same equation (9). The Legendre
transformation, which generates the generating
functional of the one-particle irreducible func-
tions of the w field, is defined by

(1la)

5lV
7(;(x)=

( ). (11b)

Equation (9) is easily translated into an equation
for r:

,
— er grd'x

( )
—

( )
+H( x)7I.( x) =0. (12)

Z = I'«)P
n&

(13)

The corresponding Feynman diagrams are ob-
tained by expanding in pomers of %' to the appro-
priate order the action and the integration mea-
sure. At lowest order 1" is the action (7b) itself,

1'(0& =S(%,H),

which indeed satisfies Eq. (12).
At one-loop order the equation implies

gz'(0) $I'(&) $1 (&) gP(0)
X

5H '6, 5H

which will be denoted simply for brevity

Z (0) + Z'(&) p (16)

It is easy to verify that the differential operator

Z (0)
gI'(0) g gI (0)

d

The main feature of this equation is its quadratic
nature in I'. This will allow, as in gauge theories,
the transformation law (8) to become renormalized.
The discussion given in Ref. 5 for the implications
of Eq. (12) on the structure of the renormalized
theory can be easily adapted to our case. The aim
is to show that Eq. (12) is stable under renormali-
zation. We shall perform a loop expansion of the
functional I':

Z (1) div d2xgj/i(f+H(x)Q(&]] (20)

in mhich B contains at most two derivatives and
C is derivative-free. Now Eq. (17) yields the
following two conditions:

)) (x) 6C
(1 5') " 6%(x) ' (21a)

d x) r w+Tr
( 2)i, 2 C (1 m')i~' '

( )

= 0. (2 lb)

The most general solution of this system is

(% s.~)' Hr XQ+)(( d x
(1 2)2 +

(l 7)i/, 7

in which 8 is the action (1).
lt is easy to verify that Eq. (18) is now satisfied

if one mrites the rescaled action in terms of a re-
scaled field as

such that the new action (S+tS,) satisfies exactly
Eq. (12) to all orders in t T.his means that we

have constructed a one-loop renormalized action
in which the transformation law for the pion field
has changed and is now given by

b(S + tS„)
6H(x)

It is possible to continue abstractly along these
lines, show that the renormalized action satisfies
Eq. (12), and finally solve this equation to exhibit
the structure of the renormalized theory. An al-
ternative way, less general but more explicit,
consists in solving directly (17). From power
counting we know that I'") div is a local function
of dimension 2 of the v field. Noting that H(x) is
also of dimension 2, I" ' ' ' is at most of f~rst
degree in H. Thus the most general form of
p(l) div

is an element of the Lie algebra of Q(ii)/p(ii 1).
When the cutoff increases, the divergent part

of I'"' is singled out and satisfies the same equa-
tion,

with

(28)

Z (0) + p(1) div p (17)
—=1 —Xt+ 0(t'),

1
(24)

S = 1 "' ""+0(f) (18)

This equation (1V) is just the condition which
allows us to remove all the one-loop divergences
by adding to the action (Vb) S(i(,H) a counterterm
tS, (w, H),

Z =1 —2 p, t+ O(t '),
which achieves the renormalization at one-loop
ol der.

We have noticed that after this renormalization
the transformation law of the ~ field has been
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I (0) I (n) div 0 (2T)

The integration of this equation for I"'"' '" has
already been discussed, and we see that at order
n the effect of the renormalizations may be again
absorbed into a rescaling of the m field and of the
action.

This completes the induction and shows that for
this parametrization of the model there are only
two renormalization constants: one of the coupling
constant f, the other one of the field strength.

The renormalized action, divided by the re-
normalized coupling constant t, reads

modified since the new action is invariant under

6w = (1/Z —w')'~'(u.

Therefore the integration measure dw/(I —w')'~'
is no longer invariant. It is thus necessary to
modify it and replace it by d w/(I/Z —w')" ~'. This
modif ication of the interaction wiD only affeet the two-
loop order [since the expression (4) comes into the
interaction without the factor 1/t]. Thus the new one-
particle irreducible (1PI) functional satisfies again
E{l.(12).

We are now going to proceed inductively: Let
us assume that we have constructed a renormalized
action up to order (n —1) which fulfills E{l.(12).
Kith this action we construct the loop expansion
up to order n. From Eq. (12) we find that

+{0)~ F{n) (+{1)~ F{&l {)++{2)~ F{n-2&+. . .) 9

(26)

i.e., the right-hand side contains only finite re-
normalized terms.

Thus taking the large- cutoff limit, we obtain

For each irreducible representation there is
only one operator which is a scalar for the un-
broken subgroup O(n —1). It is obtained by taking
every index of the tensor corresponding to the
o component. The result is for the spin-/ represen-
tation

8, (w) =C", ' '[(1—Zw')' '] (29)

in which { ", ' '(x) is the classical Gegenbauer
polynomial [i.e. , orthogonal for the measure
(1 —x')'" " ' on the interval (-1,1)]. Thus in
order to renormalize the insertion of an arbitrary
soft operator, one has first to project it on the
set of Gegenbauer polynomials. Each component
obtained in this way is renormalized multiplica-
tively. An explicit one-loop calculation gives the
renormalization constant of 8, which is

l(l+n —2) f
2(d —2) 2w

' (30)

The consequences for statistical mechanics will
be published elsewhere. "

to the basis of an irreducible representation of the
O(n) group, they will not be mixed to other opera-
tors under renormalization. Furthermore, it is
easy to verify that there is only one renormaliza-
tion constant for a given irreducible representation.
It is well known that the basis of these irreducible
representations of O(n) is given by the traceless
tensor product constructed from the ~ vector
[w, (l/Z —w')' ~'].

For instance, the spin-two tensor corresponds
to the operators'

(1/Z w 2){i2

III. RENQRMALIZATION OF SOFT OPERATORS
INSERTIONS

In this theory, since the ~ fieM is dimension-
less, any local function without derivative of the
w field is a soft (relevant) operator. This means
that the Green's functions with one insertion of
such operators will have a superficial degree of
divergence reduced by two units; two such inser-
tions are superficially convergent.

In order to discuss the renormalization of these
soft operators, we shall assume that we have added
one such operator to the action and that we derive
the new WT identities as in the preceding section.
It is clear from the previous analysis that if we
have chosen a set of operators which correspond

The o model in other parametrizations

We are now in position to discuss the renormal-
ization of this model for an arbitrary parametriza-
tion of the sphere S„,. If the Lagrangian is ex-
pressed in terms of fields Q related to our w by

Q = wf(w'),

in order to generate the Green's functions of the
Q fields we may add in the above w representation
a source coupled to wf(w'). Therefore, in order to
renormalize these new Green's functions, it is
necessary to expand wf(w') on the successive ir-
reducible representations discussed previously.
This is achieved by expanding f(w') on the first
derivatives of the Gegenbauer polynomials. Con-
se{luently the renormalization of p is not simply
multiplicative, since each component is indepen-
dently renormalized. In other terms the renor-
malized parametrization of the sphere is different
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from the bare one (31). Under these conditions the
renormalization- group equations for an arbitrary
parametrization involves the diagonalization of an
infinite-dimensional matrix. This justifies again
our particular choice of parametrization.

III. RENORMALIZATION OF INVARIANT OPERATORS
OF HIGHER DIMENSION

6, =-2(-,'[(s, rr 9„7r)+(s,os„(r)]P, (32)

6, =-,'(e, rr s„rr+s,oa.o)(s„rr e„rr+s,os„o), (33)

(dr =—'(h)r b, rr+b, ohio) (34)

We shall now describe how these operators are
renormalized. The technique again is to add a
source for 8„8„and 8, to the Lagrangian, all
calculations being of course limited to the first
order in the source. It is clear from the analysis

The problem of invariant operators of higher
dimension arises in statistical mechanics, if one
describes the approach to the scaling limit. " The
first nonsoft insertion to be considered corresponds
to the Lagrangian itself. By renormalization the
Lagrangian is coupled to another operator which
is [(s o)'/o'+Z, H/Zo]. However, it is clear that
since the bare Lagrangian insertion corresponds
to a derivative with respect to the coupling con-
stant no new renormalization constant besides Z
and Z, may arise. The nextpossibility corresponds
to invariant operators with four derivatives. With-
in the bare theory there are only three such invar-
iant operators, namely

One obtains

(3V)

We have already solved the similar e(luation (15)
for operators of dimension 2. The technique for
dimension-4 operators is analogous, but now quad-
ratic terms in H are allowed,

8'~= d xB w+CmH+gn' H~ (38)

in which 8 contains at most four derivatives,
C contains at most two, and D is derivative-free.
The resulting equations are

2D(y)
' ' =0

5'(x) o ( y)

5"-(y) (y)d'xo(x) "(
)

—C(y)
(

)+2D(y) 5 (
)=0,

58 58d'x o(x)
(

)+C(x)
( )

=0.

The solution of these equations is

of Sec. II that the equation for the complete action
including these operators is again

53 58
d' x

( ) ( )
+H(x)rr(x) 0

We expand E(l. (35) to first order in the sources
of the 8, with the notation

S =a~0&+S"&

3 2

8 = cf x X —8 5 + 8 0' +g —8 g'8 ++8 0'8 0' +g —Zkg'++++0'+0'

HZ, +Z&cr, IIZ, + Z4cr '
+a, ' d[(s„r) s (e,o)']+ a, ' + operators of dimensions

I
(39)

One notices that two new operators of dimension
4, which are not invariant in the naive sense, have
been induced by the renormalization mechanism.
The reason is that the insertion of these operators
modifies again the transformation law of the pions,
which, as we have already discussed in Sec. II, is
not given a Priori but depends on the renormalized
action itself. Hence (I"'+3"))is indeed invariant,
up to first order in the sources, but for a modified
transformation law. More precisely the two ad-
ditional operators 84 and 8, can be generated by
a change in the definition of the m field of the form

HZ, +Z4ar('= 1+orZ+P " rr,Zo' (40)

in which the Q term is induced by the iteration of
the n term. The situation is very similar to the
one encountered for the renormalization of gauge-
invariant operators in gauge theories. " The re-
normalization of these four-dimensional operators
thus introduces a 5 & 5 matrix given in the Appen-
dix. The consequences of these results for statis-
tical mechanics will be published elsewhere. "
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IV. SUMMARY OF RESULTS

For completeness, let us briefly summarize
a few results previously obtained by this method. '
First of all the previous analysis applied in d di-

mensions provided one performs a double expan-
sion in the coupling constant and in (d —2). From
the form of the renormalized Lagrangian one de-
rives in the usual way the renormalization-group
equation,

in which p, is the arbitrary length scale which de-
fines the renormalized theory Th. e function W(t)
has the low-t expansion

which shows that this theory is asymptotically
free in two dimensions, and that there is an ultra-
violet (UV) fixed point above two dimensions. This
has several consequences for the Heisenberg fer-
romagnets concerning the expansion in (d —2) of
critical exponents and for scaling laws. ' From the
point of view of fieM theory, the situation is the
following. The existence of a UV fixed point im-
plies that the theory is renormalizable above two
dimensions in contradiction with naive power
counting. At this fixed point perturbation theory
becomes meaningless; in particular for d =2,
this occurs for. any value of the coupling constant.
In statistical-mechanics language, the fixed point
corresponds to a continuous phase transition.
Above that point another phase appears in which
the expectation value of the o vanishes in zero
source. The spectrum of the theory consists now
of (n —1) massive v particles, plus a o bound state
degenerate in mass with the pion. The mass,
which is proportional to exp[f dt'/W(t')], behaves
as exp[- 2w/t(n —2)] in two dimensions. These
facts are easily understood within the equivalent
statistical-mechanics proble, in which the
phase transition corresponds to a restoration of
the 0(n) symmetry which was spontaneously brok-
en by the o expectation value in the low-t phase.
Furthermore, they can also be checked directly
order by order in the 1/n expansion" by showing
that the nonlinear o model is equivalent to+he
linear one" in which the four-point coupling con-
stant is taken at the infrared-stable fixed point.
This constitutes the solution of the infrared-sla-
very problem in this model.
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APPENDIX: ONE-LOOP CALCULATION OF THE INSERTIONS
OF FOUR-DIMENSIONAL OPERATORS

Since the renormalization of higher-order com-
posite operators developed in Sec. LV has inter-
esting applications to statistical mechanics, "we
give here the one-loop calculations. The five
coupled operators derived in Sec. IV are

8, = —(9 7r ~ 9 m+9 o9 o)~,

8, =—(9,% 9,m+9, cr9„o)',

6, = —(4m hv+b, orb, o),

& Z~H+Z4cr
Z(9„m 9„%+9 o9 o),

Z~H+Z~o'

An explicit one-loop calculation of the insertion
of these operators at zero momentum in the two-
point function gives [keeping only the pole part in
1/(d —2)]

~2 t If 2 (p2)2

4 2m(d- 2} 2 4

Similarly we have calculated the one-loop four-
point function I'"(p1;-pl;q2;-q2) (in which p
and q are the momenta and IL and 2 the isospin
components) with 8; inserted at zero momentum:
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I &"=p'q' — (4- 2n)p'q'- 4(p q)'- H-(p'+q'),
2m(d —2) 2

1',"'=(p'q)' 2,—d 2
-2p'q' —2(n-1)(p q)'-

4
H(p'+q'),

I","= — [4p'q' —16(p q)' —2H(p'+q') + 4(n —1)H'],
t

t
&,"'=H(P'+ q') —

d 2
[-4P'q'+ 16(P q)'+(4 —n)H(P'+ q') —4(n —1)H'],

I'4' =H' — [P'q' —4(P q)'+2H'].
2m(d- 2)

The 5 5 renormalization matrix, defined by the finiteness of I'~0~'„, i.e., O'."=Z;,.8J is thus at one-loop
order

(4 —2n) 0

t
2w(d 2)

—2(n —1)

-16 (2 —n)

(n+ 2)

4(n —1)

0 (4 n) 4(n -1)—
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