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We develop a Green's-function approximation scheme for the ii$'" quantum field theory as an alternative to the
usual perturbation expansion in powers of 4 The approximation scheme consists of introducing a source term
into the Lagrangian, generating a sequence of coupled Green s function equations by repeated differentiation

with respect to this source, and forcing the sequence to close by discarding the dependence on higher Green's

functions. The validity of this procedure is then checked by using it to calculate the two-point Green's
function in ii$", iiiji, ii$' theories in one-dimensional space-time. We compare our predictions of the locations of
the low-lying poles with previously published tabulations of the eigenvalues of the equivalent quantum-
mechanical anharmonic oscillators. The agreement is impressive.

I. INTRODUCTION

In this paper we investigate the accuracy of an
iterative truncation scheme for computing the
Green's functions in a quantum field theory. Spe-
cifically, we use this scheme to find the poles of
the two-point Green's functions for the Xp', Xitie,

and X&f&' anharmonic oscillators. Then, by com-
paring the locations of these poles with previous
numerical calculations of the energy levels of the
oscillators, we demonstrate in the context of these
simple quantum field theories that the truncation
scheme we are proposing is rapidly convergent.

The truncation scheme we will use does not give
rise to a perturbation series in powers of the cou-
pling constant X. Rather, it uses functional dif-
ferentiation to generate systems of coupled
Green's-function equations which are then closed
by neglecting the contribution of the connected part
of the Green's function having the highest number
of external legs. A somewhat similar approach
was used by Baker, Johnson, and Willey' and
Cooper, Guralnik, and Kasdan. '

We summarize our conclusions as follows. The
leading approximation to the two-point Green's
function in the Ziti'" theory exhibits just the one-
particle pole. In the Xg model the location of this
pole is accurate to within 5% of its exact value for
all values of A. ranging from 0 to ~. In the Xg' and
Ziti' models the maximum error in the location of
the one-particle pole for any value of the coupling
constant is respectively 15'% and 25%. In the next
approximation the two-point function develops ad-
ditional poles. In the it/' theory the error in the
prediction of the location of the one-particle pole
is improved to 0.6% for all values of the coupling

constant. Moreover, the predicted value of the
three-particle pole is within 5% of the exact value
for all values of X. The accuracy of these predic-
tions is so impressive that we are led to speculate
that our truncation methods may also be accurate
in higher-dimensional quantum field theories.

In Sec. II of this paper we describe our iterative
truncation procedure and in Sec. III we summarize
our numerical calculations. Some further com-
ments are made in Sec. IV.

II. THE ITERATIVE APPROXIMATION SCHEME

The Lagrangian 2 for a Xt|i'" quantum field theory
in the presence of a source J(x) for the field p(x)
ls

2 = (8$)'/2 —m'P'/2 —Xtti'N —J&f& .
Varying 2 with respect to iti(x) gives the field equa-
tion

P(x) + m P(x) + 2NXQ ~ '(x) + J(x) = 0 .
Next, we take the vacuum expectation value of this
equation and norma, lize by dividing by (0

~
0)~. De-

fining

(0 Iiti(x)I 0)~
&0I 0)

we have

C (x) + m'C (x) + 2' ~ + J(x) = 0.(0 I @'" '(x) I 0)~

For the moment we specialize to the N = 2 theory.
From the action principle we have

z
5 ( )

- y(x) .
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Thus, applying 5/5J( y) to (1) with N = 2 gives
2 5(,+ m')G(x, ))+4) — ) )(x, )) )ie(x) ) G(x, y) + (Bii"(x,x) ) )e(x)) G(x, ))[ )(x -)) = 0,&Zx- &Zx (2)

where we define the two-point Green's function
G(x, y) by

&C(x)
G(x ) y) —

gd( )

and have used the identity

Equation (2) now reduces to

[ „+m'+ 12XiG(x, x)] G(x, y)

2

—4X G(x, y) + &(x —y) = 0.
~Z(x)

(3)

(0 I p'(x) I 0}~ &G(x, y)
( I, = — „' + 3iG(x, x)4(x)+ 4"(x) .

Now we set the source J= 0 and require that

C(x) i, ,=o.
(This in turn implies that all Green's functions
having an odd number of external legs vanish. )

This equation, which is the first of an infinite
sequence of coupled Green's-function equations of
increasing complexity, is an exact relation be-
tween the four-point and two-point Green's func-
tions.

The next equation of the sequence is derived by
differentiating (2) with respect to Z(z) and J(w) and
setting J=0. The result is

[ „+m'+12XiG(x, x)]G(x, y, z, w)+12Xi[G(x, x, z, w)G(x, y)+G(x, x, y, z)G(x, w)+ G(x, x, y, w)G(x, z)]
2

+ 24XG(x, y) G(x, z) G(x, w) —4X, G(x, y, z, w) = 0,
&Z x)

where we define

Q2

G(x)y)z) w) —
~ ( )~ ( )

G(x)y) .

Equation (4) is an exact relation between the two-point, four-point, and six-point Green's functions. The
remaining equations of the sequence are generated by taking functional derivatives two at a time with re-
spect to J.

Now we describe the truncation procedure. The first-truncation approximation consists of dropping the
term [5/&J(x)]'G(x, y) in (3). This gives a soluble equation for G(x, y) in the X(!)' model:

[,+m'+12AiG(x, x)]G(x, y)+ &(x —y) =0.
Repeating the above derivation of (5) for the XP'~ theory gives a more general equation which reduces to
(5) when N = 2:

( „+m')G(x, y)+2f(t(2N —1)!!&[iG(x,x)] 'G(x, y)+&(x —y) =0.
The second-truncation approximation consists of neglecting the term [5/5J(x)] G(x, y, z, w) in (4) but re-

taining the term [5/5Z(x)] G(x, y) in (3). This gives a coupled system of equations for the two-point and
four-point Green's functions in the A.Q' theory:

[ „+m'+ 12XiG(x, x) ]G(x, y) —4XG(x, x, x, y) + 5(x —y) = 0,

[ „+m'+ 12' G(x, x) ]G(x, y, z, w)

(7a)

y 12&j, [G(x,x, z, w) G(x, y) + G(x, x, y, z) G(x, w) + G(x, x, y, w) G(x, z) ] + 24XG(x, y) G(x, z) G(x, w) = 0 .

(7b)

The higher-order truncation approximations are derived in a similar manner.

III. RESULTS IN ONE DIMENSION

The formal derivation in Sec. II of the truncated
equations is valid in any number of dimensions.
However, in four-dimensional space-time, ex-

pressions such as G(x, x) are divergent and it is
necessary to develop a consistent renormalization
procedure to make sense of the truncated equa-
tions. In this paper we choose to avoid this com-
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plication by working in one-dimensional space-
time where G(x, x) is finite. Field theories in one
space-time dimension, known as anharmonic os-
cillators, prove to be an excellent laboratory in
which to study the accuracy of the truncation ap-
proximation because there are no divergences.

It is easiest to solve the truncated Green's-
function equations in momentum space. There-
fore, we specialize to one dimension by replacing

by d'/dP and take Fourier transforms of (6)
and (7). The first-truncation approximation for

the Xg'" theory in momentum space is an algebraic
equation for G(E):

G(E) = E' [m'+ ZV(XV 1)!!~P 'G"-'(x-, x) ] '

(8)

where we have recognized that G(x„x) is a con-
stant.

The second-truncation approximation for the
A.g' theory is a complica. ted nonlinear system of
integral equations:

( —E'+ p, ')G(E) = —I+4M(E), (9a)

[+(E, + E, + E,)',u, ']G(E„E„E,) = 12Xi [G(E,)H(E„E,) + G(E,)H(E„E,) + G(E,)H(E„E,) ] + 24XG(E, )G(E,)G(E,),
(9b)

p,
' = m'+ 12AiG(x, x),

OO

H(E„E,) =— G(E„E„E,)dE, ,

"p'=
p

and in coordinate space the solution has the form

G(x y) e-iMI x-yl
2iM

where M, the pole of G(p), satisfies the relation

+ ~g(2+ —1)!!(2M) (10)

It is convenient to introduce two dimensionless
parameters:

which represents the strength of the coupling, and

p, =M/m,

which measures the location of the single-particle
pole. In terms of these parameters (10) becomes

p.
' = 1+ 2Ne(2N —1)!!(2 p, )' ".

Equation (11) implies that

p,
- [2N(2N —1)!!6 ]

' '""' (6 -+~) .

This relation is consistent with an exact scaling
law discovered by Symanzik which states that as
e -+~ the energy levels of the

H = p'/2+ p, 'x'/2+ ex'" (12)

anharmonic oscillator grow as e' '~"'. Ordinary

Z(E,) =— H(E„E,)dE, .
1T gg QQ

It is easy to solve (8). In momentum space the
solution may be written as

I

perturbative treatments of anharmonic oscillators
which rely on constructing a series in powers of c
do not respect Symanzik scaling to any order in
perturbation theory. Because our nonperturbative
treatment incorporates Symanzik scaling even in
the leading truncation, we anticipate that the nu-
merical values of p, as predicted by (ll) should
agree well with the exact values for large as well
as for small &.

Indeed, in Table I, where we compare our pre-
dicted values of p, with the exact values, we see
that the agreement is good to 5', 15/o, and 25/o in
the &g', XP', and XP' models for all positive val-
ues of e. It is remarkable that the simple alge-
braic relation in (11) provides such a uniformly
accurate approximation to p. ' To make the com-
parison between our predicted values of p. with
previous numerical calculations of energy levels,
we note that p, , the mass of the one-particle state,
must be identified as the difference between the
first excited level and the ground-state energy of
the corresponding quantum mechanical anharmonic
oscillator. Numerical calculation of the energy
levels of the Xg' oscillator was done by Biswas
et al. ' and numerical calculation of the energy
levels of XP' and XP' oscillators was done by Hioe
et al. '

Although in the first-truncation approximation the
two-point Green's function has only one pole, in
higher -truncation approximations additional poles
appear. We regard our truncation scheme as a
lou -enexg~ approximation because, as we will
see, the higher poles in the two-point Green's
function develop in successively higher-truncation
approximations. '

We have not been able to obtain an analytical so-
lution to the coupled integral equations (9) of the
second truncation. However, we have numerically
iterated the integral equations on a computer and
have obtained predictions for the values of the one-
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TABLE I. Comparison of the exact value of p (the dif-
ference between the first excited level and the ground-
state energy) and the value of p predicted by the leading
truncation approximation in (11) for the A. Q, A. Q6, and

oscillators. The relative error=(predicted p- exact
p)/(exact p,).

and the three-particle pole is predicted correctly
to 6/o for all values of e. In the second truncation
approximation the two-point Green's function ap-
pears to have an infinite number of poles. How-
ever, we have only calculated the locations of the
lowest two poles.

0.1
0.5
1

50

0.001
0.01
0.1
1

10
100

1 000
20 000

Predicted p

&y' model

1.2212
1.6717
2.0000
3.0000
6.7441

&y' model

1.0109
1.0905
1.4426
2.2956
3.9381
6.9236

12.2679
25.9099

&y' model

Exact p

1.2104
1.6282
l.9341
2.8728
6.4154
1.7278~'/'

l.0107
1.0800
l.3635
2.0697
3.4737
6.0598

10.7097
22.5980

Relative
error

0 ~ 89/o

2.67%
3.41/o

5.12%
5.17/o

0.02%
0.97/o

5.80%
10.91/o

13.37/o
14.25%
14.55/p

14.66%

IV. FURTHER COMMENTS

It is appropriate to make several additional ob-
servations.

(a) It was not essential to use the one-field
source J to develop a truncation scheme. Indeed,
a two-field source S(x), which is introduced by in-
serting a term of the form S(x)P'(x) in the I agran-
gian, may also be used (see Ref. 2). Taking varia-
tional derivatives with respect to S and setting
S= 0 gives the following exact Green's-function
equation in A.P' theory:

[ „+I'+4PG(x,x) jG(x, y)+4&i ' + &(x —y)=o.. ~G(x, y)
&S x

The first-truncation approximation consists of
dropping the four-point Green's-function term
&G(x, y)/6S(x). For the XP' anharmonic oscillator
the equation corresponding with (11) is

0.001
0.01
0.1
1

10
100

1 000
20 000

1.0450
1.2434
1.735
2.618
4.070
6.402

10.118
18.395

1.0370
1.1726
1.517
2.179
3.309
5.153
8.110

14.716

0.'77%

6.04%
14.37%
20.15/o
23.00%
24.24%
24.76%
25.00%

particle and three-particle poles. ' The results
are given in Table II. Observe that the one-parti-
cle pole is now predicted to an accuracy of 0. 6'%%uo

(this is an order of-magnitude improvement over
the result of the first-truncation approximation),

However, w'e find that this first-truncated S ap-
proximation is not as accurate as the first-trun-
cated J approximation in (ll) (see Table III). Ap-
parently the S approximation is not as good as the
J approximation because a single variational
derivative with respect to S(x) does not induce as
much internal structure as two derivatives with
respect to J(x) and J(y).

(b) It is interesting that the J approximation
overestimates the value of p. while the S approxi-
mation underestimates the value of p, (see Tables
I and III). There is, of course, a mixed approxi-

TABLE II. Comparison of the exact locations of the one-particle and three-particle poles of
the two-point Green's function in the A, P model with their approximate locations as predicted
by the second-truncation approximation in {9).

Exact one-
particle pole

Exact three-
particle pole

Predicted one-
particle pole

and relative error

Predicted three-
particle po].e

and relati. ve error

0.1

0.5

50

1.2104

1.6282

1.9341

2.8728

6.4154

4.0698

5.8822

7.1387

10.8825

24.6929

l.2086
-0.15%

1.6205
—o.47%

1.9232
-0.56%

2.8550
-0.62%

6.3762
—0.61/o

3.8663
-5.00%

5.5683
-5.34/o

6.7786
—5.04%
10.3956
-4.47%
23.6991
-4.02/o
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TABLE III. Comparison of the exact values of p in the
~$4 model with the approximate value as predicted in the
leading S truncation approximation in (13j.

( „+M') G(x, y, z) + 6XG(x, y) G(x, z) + 3&i
. &G(x, x, y)

Predicted p Exact p Relative error
where

0.1
1

50

1.0880
1.5214
4.7134

1.2104
1.9341
6.4154

—10jp

—21/p
-26.5%

mation that is more accurate than either of the
two alone. However, we have not tried to formu-
late a reliable criterion for specifying, a priori,
the correct mixture of J and S.

(c) In this paper we have restricted our attention
to numerical approximations to the two-point
Green's function. However, it is clear that even
the lowest-truncation approximation may be used
to elucidate the pole structure of n-point Green's
functions. %e do not bother here to examine their
structure.

(d) We have seen that, in general, the second-
truncation approximation gives rise to beautiful
but analytically intractable integral equations. The
simplest integral equation of this type arises in a
XP' theory. In this model the first two coupled
Green's function equations are

(CI„+M') G(x, y) + SziG(x, x, y) + &(x —y) = 0

&G(x, y)G(x, y, z) = (')

The second-truncation approximation consists of
dropping the 6G(x, x, y)/5J(z) term. If we trans-
form to momentum space and eliminate the three-
point Green's function we obtain an integral equa-
tion for G(E):

1
E' —M' —18k.'f"„(i/2m)dE'G(E')/[(E+ E') —I'] '

%pe include this lovely equation here in the hope
that perhaps a solution will be found. '
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Bender, H. J. Happ, and B. Svetitsky, Phys. Rev. D 9,
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n &&n starting in the upper left-hand corner. As n
the eigenvalues of the truncated matrix approach their
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approach their correct values fastest, this also is a
low- energy approximation.
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convergent procedure for all values of e because ajar
and not e is the effective iteration parameter. If we
specialize (11) to the case N=2, we see that the relation
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ranges from 0 to ~, {'/p, ranges from 0 to 6. In the

theory the effective iteration parameter would be
e/p~', which ranges from 0 to 2~/[4N(2V- 1)!!]as e
ranges from 0 to ~. It follows that computer iteration
of the coupled integral equations becomes more effi-
cient as N increases.

It is an interesting result that if one assumes that G (E)
in (14) haa the form G(E)=g~ 0u~/(Z —E„)i, then one

can show that as k ~ the residues a~ rapidly tend to 0
and the pole locations E& rapidly tend to their harmonic-
oscillator values 2k+ 1.


