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Because of difficulties with the Gupta-Bleuler subsidiary condition in the charged sectors, an alternative

scheme for identifying physical states in the indefinite-metric space p of quantum electrodynamics is proposed:

Any vector 4&5 is a physical state if it is positive on the observables, (0 4, 5@) ) 0, (4,4) = 1, for 6 any

element of the algebra of observables. Observables 8, in turn, are selected by the requirement that they

commute with the generators of the restricted gauge transformations of the second kind, A„~A„+3„X,

Q
—i/exp(ieX), with X(x) = c-number, O'P = 0. This is equivalent to the requirement [B(x),Q] = 0, where

B(x) = 8 A (x) in the Feynman gauge. It is proved that the substitute Gupta-Bleuler condition

B (x)4 = b (x)4 provides a subspace 5 t„~ of physical states, where b (x) is the negative-frequency part of

any real c-number solution of the wave equation 3 b(x) = 0 satisfying I b(x)d'x = q, with q an eigenvalue of

the charge operator, Different functions b(x) characterize different superselection sectors which are

eigenspaces of generators G(X) of the restricted gauge transformations of the second kind with eigenvalues

G(X) = 3 X(x)30 b(x) d 'x. In a given superselection sector Maxwell's equations take the form

B„F"'= J —3"b, where —3"b is interpreted as a classical external current which is induced by the

quantum-mechanical current J", The proof relies on the axiom of asymptotic completeness $ =5'" =8'"' and8'" is

specified by the ansatz of infrared coherence, namely, lim„0a '„"(k) ——(27r) '"
X, e, p, /p, k, where a '„"(k) is

the photon annihilation operator and p, is the momentum of an incoming particle of charge e, , and in~out.
The spectral decomposition of the infrared-coherent space is effected. Its singularity in the neighborhood of

the electron mass agrees with the singularity of the electron propagator in the Feynman gauge, which allows

an on-shell normalization of the charged field Q.

I. INTRODUCTION

Quantum electrodynamics as currently formula-
ted'~' involves two concepts that are somewhat
foreign to each other: the dynamics and the sub-
sidiary condition. The dynamics may be thought
of as being specified by a I.agrangian'

Z = ——,'E""( As, —8„A„)+ ,' F'"E, —.

—Be A+ 2 B'+g(if+ eg- m)g,

which yields canonical commutation relations and
the equations of motion

(1.2)

indefinite-metric space. These are supposedly
provided by the Gupta-Bleuler subsidiary condi-
tion"

B&-&(x)C = 0, (1 6)

(84 84)~ 0 (4 C)=1 (1.9)

where 6 is any element of the algebra of observ-
ables. Second the equation of motion (1.4) is man-
ifestly converted by condition (1.8) into

where B' '(x) is the negative-frequency part of
B(x) The pu. rpose of this condition is to provide
states with two virtues. First they should be posi-
tive on the observables

(C (8 E~' —J')C) =0, (1.10)

B,E~'+ 8"B= —ettIy"g =—J',
(i y'+ e A —m) q = 0,

which also imply

BA =J
2B= 0.

(1.6)

By virtue of the canonical commutation relations,
the fields A and g are promoted to operators on an
indefinite-metric space 8 with indefinite inner
product (4', @) for O, 4 c 8. In addition to the dy-
namics, there is an independently postulated sub-
sidiary condition for the specification of the physi-
cal states which are a subset of the vectors' in the

which, it is asserted, is the correct form of Max-
well's equations.

There are two general questions about this form-
ulation which come to mind. First, are the dy-
namics and the subsidiary condition compatible
or, more precisely, do solutions of the subsidiary
condition exist in the indefinite-metric space de-
termined by the dynamics? Second, if we take the
dynamics seriously, why not accept as a physical
state any vector 4 which satisfies the positivity
condition (1..9), and if so might there not be physi-
cal states which do not satisfy the Gupta-Bleuler
subsidiary condition? These general questions are
in fact inspired by specific difficulties with the
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Gupta-Bleuler condition which we will come to
shortly.

In the present article we adopt as our philosophy
the notion that any vector in the indefinite-metric
space which is positive on the observables is to be
accepted as a physical state. Observables, in turn,
are identified in Sec. II by a gauge-invariance cri-
terion. Thus we do not make an independent as-
sumption about what are the physical states. They
are determined by the dynamics, augmented by a
gauge- invariance principle which identifies ob-
servables, and the requirement of positivity.

In order to investigate which vectors satisfy the
positivity requirement, we must specify the indef-
inite-metric space 8. We make the usual scatter-
ing postulate that it is asymptotically complete,
8 = 8'" = O'"'. But the usual assumption that the
asymptotic "in" and "out" spaces are Pock spaces
is replaced by the ansatz that they are infrared-
coherent. The infrared-coherent space is de-
scribed in detail in Appendix A. In essence it has
the property that an "in" scattering vector' which
is diagonal in the four momentaP, of the incoming
charged particles with charges e„a=1,. . . ,s, is
an eigenvector of the zero-frequency photon anni-
hilation operator a'"(k),

[a&"(k) ai"t(ki)] = ( g }2(A/3(k k')

with eigenvalue

~n
—1 capplim a (k)

( }3/2

where k=(v, k), +=ski, and in-out. This may be
stated as the operator equation

(1.12a)

(1.12b)

where p'"(P) is the charge density operator in mo-
mentum space

where g = a/v, whereas the spectral decomposition
of the Fock space has the singularity c8(p') 5 (p' —m') .
[The priority of the Feynman gauge in the present
circumstances arises because it is the only one
among the covariant gauges for which A'" satisfies
the wave equation, so the ansatz (1.12) applies
only in this gauge. ] Besides providing support for
the amsatz of infrared coherence, this result al-
lows the normalization of the charged field to be
related to the normalization of the asymptotic
states, as is shown in Appendix B.

Of course the ansatz of infrared coherence is
hardly new; it is supported by model calculations
dating back to the 1930's.' There is little doubt
that it would have found easy acceptance in the
form (1.12) long before now, were it not for the
fact that it directly contradicts the Qupta-Bleuler
condition. To see this observe that because B(x)
is a free field, B(x)=B"(x)=B'"'(x), the Gupta-
Bleuler condition, with &"=8 A'", reads

k ~ a'"(k)C = 0

whereas the ansatz (1.12) gives

(1.14)

limk a'"(k) = —(2m) ' ' e
+=0 a

(2+) 3/2 q

where Q is the charge operator. Thus we imme-
diately conclude from the ansatz that the Gupta-
Bleuler condition has no solution in the charged
sectors. This conclusion is in fact supported by
recently published proofs that no localized charged
state satisfies the Qupta-Bleuler condition. "

Because of this contradiction with the Qupta-
Bleuler condition, the ansatz (1.12) has generally
been avoided by various devices. For example,
Kulish and Faddeev" solved the dynamical equa-
tions of quantum electrodynamics at asymptotic
times and obtained a space characterized by the
low-frequency limit (1.12). Then in order to sat-
isfy the Qupta-Bleuler condition, they introduced
a different space with low-frequency limit

and k,"(p) and d,'"(P) are annihilation operators
for electrons and positrons, respectively. In Ap-
pendix B the spectral decomposition of the infra-
red-coherent space is effected for four-momenta
in the neighborhood of the electron mass shell. It
is found to have the same singularity at the mass
shell as the Wightman two-point function of the
electron in the Feynman gauge, namely'

(P'+ m) 1 „s e(p') 8(p' m')-
1 —@ 2m

lima'(k)-
( },/, P e, ' —c'(k)

a -Pa

where c"(k} is a fixed vector function of k satis-
fying k c(k) =1. This space does not admit a rep-
resentation of the Poincare group. In recent work
by this author, "" the Qupta-Bleuler condition was
maintained by introducing a retarded representation
which is asymmetric between in and out states. In
the retarded representation the incoming charged
particles with charges and momenta, e,. and p, ,
arrive unescorted by a coherent infrared photon
wave, lim„,&u a' "(k)= 0, whereas the outgoing
particles, with charges and momenta, e& and P&,



2572 DANIEL ZWANZIGER 14

leave with the infrared photon escort

lim a"'"'(h)- e p e P ~

co~0 (2~)"', p, h, . p,. h

(1.16)

It is transverse because of charge conservation,
Qe& —QeI —-0. As observed earlier, "the retarded
representation has, for reasons which we shall
review shortly, superselection sectors labeled by the
momenta P,. of the incoming charged particles.
Thus the initial state must be described by a den-
sity matrix p(P,.)5(P,. —P,.) which is diagonal in the
momenta of the incoming charged particles, but a
wave function p(p, ) with definite phase relations
between different momentum components is with-
out meaning. This is adequate for a scattering
theory based on cross sections instead of scatter-
ing amplitudes. In fact it appears to be the most
convenient formulation for practical calculations
to typical accelerator experiments and it will be
obtained from the present approach as a limiting
case in Appendix C. However, the retarded rep-
resentation does not allow an ordinary quantum-
mechanical description of the incoming charged
particles, as was pointed out to me by Swieca, "
for the possibility of a localized or wave-packet
state of a charged particle depends on the inter-
ferenee between different momentum components
and this is excluded by the suyerselection rule
just mentioned.

Thus attempts to maintain the Gupta-Bleuler
condition on the asymptotic state space run into
characteristic difficulties whose impact is rein-
forced by the negative result of rigorous quantum
field theory that there exist no localized charged
states satisfying this condition. " For these rea-
sons we have felt compelled to abandon it. Instead
we accept without reservation the infrared-co-
herence condition (1.12) and define physical states
by the Inore general positivity requirement (1.9).

It is helpful to understand the origin of the su-
yerselection rule in the retarded representation.
One way of obtaining it is simply to note that be-
cause of the low-frequency limit (1.16), the rep-
resentation space for outgoing photons depends on
the momenta of the incoming charged particles.
States in different spaces cannot be superposed.
Another derivation is obtained by an extension of
the ingenious argument of Strocchi and Wightman, '
who yrove the charge suyerselection rule as fol-
lows. The integral form of the Gauss law,

Q=bm E dSg~ 00

where the closed surface expands to include all
space, shows that the total charge equals the in-

tegral of the flux of the electric field at spatial
infinity. Because all observables are local and E
is a local field, it follows that Q commutes with
all observables, and hence defines superselection
sectors. However, the same argument also shows
that the flux per unit solid angle at infinity in any
spatial di ection also defines a superselection sector.
In the retarded reyresentation the vector potential
at large spatial distances approaches the Lienard-
Wiechert potential of the incoming charged parti-
cles

e,.1IIII A (x)
Gi-- i 4~ L~pi 'x~ —P~ x j

This gives for the flux yer unit solid angle at spa-
tial infinity in the direction x

e, —x'E,m, '
11IIIr F (t)r) x) =
g ~OQ 4F pB + (p 'x)a 4 ) a & a

lim r'F "(t, r, x) =
f' —& OO

a a gr nz+p x

These quantities define superselection sectors for
every x and thus for every set of values of the p, .
Consequently in the retarded representation, where
incoming particles are dressed at large distances
with their retarded Lienard-Wieehert potentials,
different momentum components of the incoming
charged particles cannot be superposed. Although
this is no obstacle to a theory of cross sections,
it does not allow a localized or wave-packet de-
scription of the incoming charged particles.

The retarded representation corresponds to the
traditional method of calculating cross sections,
namely by introducing a small photon mass A. ,
keeping a fixed, finite number of photons in the
initial state, and summing over final states in
which the number of photons emitted grows with-
out limit. The resulting cross section is indepen-
dent of A. because of the famous cancellation be-
tween real and virtual infrared divergences. How-
ever —and this is the important point —the cancel-
lation will not occur if the initial or final state is
described by a wave function p(p) for the charged
particles. It only occurs for cross sections, or,
in other words, if the initial and final states are
diagonal in the momenta of the charged particles.
Here we see the superseleetion rule of the re-
tarded representation at work, outlawing the su-
perposition of momentum components which lies
at the very heart of quantum mechanics. In the
following sections an alternative approach is de-
scribed which does allow wave functions for
charged particles.

In Sec. II observables are identified by the prin-
ciple of gauge invariance of the second kind, and
it is proved that a substitute Guyta-Bleuler eondi-
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II. GAUGE INVARIANCE AND PHYSICAL STATES

It is a curious fact that the dynamical content of
quantum electrodynamics is formulated in terms
of unobservable fields" A, and g. However, the
principle of gauge invariance allows the identifi-
cation of observables. Let X(x) be any real c-num-
ber solution to the wave equation O'A. (x) =0. The
Lagrangian (1.1) is invariant under the restricted
gauge transformations of the second kind charac-
terized by the gauge function A, ,

A -A

g - ( exp(ieA. ),

B B.

(2.1a)

(2.1b)

(2.1c)

(2.ld)

Our basic idea is to take as observables the local
operators which are invariant under the gauge
transformation (2. 1). In order to state this in a,

convenient form we introduce the generator G(A)
of the gauge transformation (2.1) and adopt the
following definition:

Definition. The elements 8 of the algebra ob-
servables 8 are all local operators 8 on the in-
definite-metric space which commute with G(A),

tion provides state spaces that satisfy the positivity
requirement. Section III is devoted to the physical
interpretation of these spaces and to reconciling
the equation of motion on them with Maxwell's
equations. In Sec. IV are some concluding reflec-
tions. In Appendix A the infrared-coherent space
is described with some care and a basis is found
in which the Poincare transformations have the
simple free-particle form. This basis is used in
Appendix B to effect the spectral resolution of the
infrared-coherent space, and the charged field g
is normalized on- shell by matching the spectral
functions of the infrared-coherent space to the
spectral function of the electron propagator. In
Appendix C it is shown how the present formulation
leads to the standard cross-section formula of
quantum electrodynamic s.

[B(x),P„,(y)] = 0,

[B(x),B(y)] = o,

(2.4c)

(2.4d)

where &(x) = (2v) 'e(x')5(x') satisfies O'A(x) = 0,
A(0, x) =0, and &(O, x) =5(x). The corresponding
relations for the unrenormalized quantities are
easily obtained from 8'B =0 and the canonical
equal-time commutation relations. It is easy to
show that [G (A), 8] = 0 for all A. with O'A. = 0 is equiv-
alent to the condition that 8 commute with B(x).
We thus obtain as a necessary and sufficient con-
dition for 6 to be an element of the algebra of
observables

[B(x),8] =0, (2.5)

which is the form we shall use in the following.
This criterion coincides with the definition of strict
gauge invariance. "" The justification of our defi-
nition" is its simplicity and its inclusion of the
observable fields par exce/levee E „and 4 . Let
it be noted that it also includes B itself. However,
the energy-momentum operator I', satisfies
[B(x),P, ] = iO, B(x), so P, is not an observable and
consequently the stress tensor 8 „(x) is not either.

Let us now turn to the problem of finding vectors
4 which are elements of the indefinite-metric space
8that are positive on the observables, namely
(84, 84) ~ 0, (4, 4) = 1. Such vectors are physical
states. Note first that in any irreducible repre-
sentation of the algebra of observables, B(x),
which is itself an element of the algebra, will, by
Schur's lemma, be represented by a c-number
function, say b(x), for the elements of the algebra
of observables are precisely those operators that
commute with B(x). A Hilbert space representa-
tion of the algebra may be obtained from the state
O by means of the Gelfand-Naimark-Segal (GNS)
construction:" The Hilbert space consists of (the
completion in norm of) the subspace of the indefi-
nite-metric space 8 whose elements are of the form
84, for which the norm (84, 84') is non-negative
by hypothesis. Assuming this representation to be
irreducible, as it will be if 4 is a pure state, we
find that 4 satisfies the condition

[G(~), 8] = 0, (2.2) (8O, B(x)8'4) = O(x)(84, 8'4), (2.6)

G(~) = jt ~(x)O,B(x)d'x, (2 3)

as may be verified" from the commutation rela-
tions which hold for the renormalized fields'

[B(x),&.(y)] = iO. &(x- y),

[B(x),4($)] = e (x- S)|t'($)

(2.4a)

(2.4b)

for all A. with O'X(x) = 0, where X(x) is a real c
number. The generator may be expressed in terms
of B(x),

where 6 and 6' are arbitrary elements of the al-
gebra of observables and b(x) is independent of 8
and 8' and depends only on C. In particular, with

(4, 4') =1, we have

b(x) = (4,B(x)4). (2.7)

Because B(x) is Hermitian and satisfies the wave
equation, b(x) is a real c-number solution of the
wave equation O'b(x) = 0.

The infrared-coherence condition imposes a re-
striction on b(x), for we have
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B' '(x)=B'"' '(x)

d'xB' '(x) = ——,'(2v)' 'k ~ a"(k)
~

td=O

and hence by Eq. (1.15)

(2.8)

in the norm24 to yield a physical Hilbert space
X,» and the observables 6 are promoted to op-
erators on 3C &».

The superposition 4 = c,4, +c,4, of two state
vectors 4, and 42 with different coherence func-
tions b, &b, does not define another state vector.
To see why this is so, let 4 „i= 1,2 be the nor-
malized completely coherent states

4,. = U,.Q,

where 0 is the vacuum state and

where Q is the charge operator. " Hence we have,
with B"(x)=B' '(x)t,

U,. = exp
d3k

n((!) (a~(k)b,.(()—a())(,. (n)]I.

,
b x d'x=q, (2.9)

B&-&(x)O = b &-&(x)4, (2.10)

for we have B(x)=B' '(x)+B' '(x)t and for any 8 in
the algebra of observables

where q is the charge of the state 4.
It is clear that a, sufficient condition for Eq. (2.6)

to hold is that 4 satisfy the condition

Here n~(k) = r"/r k, so k n(k) = 1, r" is a unit
future timelike vector, and b,.(k) vanishes at the
origin so n'(k)b, .(k) is a, regular photon wave func-
tion. These states satisfy (O, , 4,.) =-1 and also
a" (k)4,.=n"(k)b,.(k)4,. so k a(k)4, =b,.(k)4,. as re-
quired for 4,. to be a physical state. In order that 4]
and 4', be superposable wemusthave

~

(4„4)g~ & 1;
however, we find

(x)84) = 8B (x)4) = b' (x)84) (2. iS)

In Appendix A we will prove the following lemma:
Lemma. If 4' &= 8 satisfies the condition B' &(x)4.

=b' '(x)4', then 4' has non-negative norm (4), 4)) ~ 0.
Since the condition is linear it in fact defines a
linear subspace 8,» of vectors of non-negative
norm. The basic idea of the proof is elementary.
The unitary transformation which produces the
infrared-coherent space from the Fock space,
a~(k) -%&a~(a)'&it =a~(k)+s~(k), where s~(k) com-
mutes with a~(k), leaves the inner products in-
variant. Hence the condition k a(k)+ = 0, which
is known to define a subspace of non-negative
norm in the Fock space, maps into the condition
k a(k)4 =b(k)4 in the infrared-coherent space
provided only that s~(k) satisfies k s(k) = —b(k).

Equation (2.11) tells us that the subspace of non-
negative norm 8&» is invariant under application
of any element 6 of the algebra, of observables.
This gives the principal result of this article in
the form of the following theorem:

Theorem. If bc 8satisfiesthe condition B' &(x)4
= b' &(x)4 then @ is non-negative on the observables
(84, 84) ~ 0 and so, provided only that it have unit
norm (4', 4) = 1, it defines a physical state.

We have the following remarks:
(1) From what has been said before this condi-

tion has a solution only if b' '(x) is the negative-
frequency part of a solution of the wave equation
with fb' '(x)d'x=q/2, where q is an eigenvalue
of the charge operator Q.

(2) The linear subspace 8&» may be completed

for b, Wb2. Only the mixture, defined as usual by
x, (4 „84,) + x,(4„84,},with x, + x, = 1,0 & x,. & 1,
is a state. If the corresponding linear subspaces 8fg ]fbi 3

and 8&b &
are separately completed to different or,

in other words, orthogonal Hilbert spaces 3Cfb, j
and K,», then, as elements of these spaces, 4y2'
and 42 are thereby declared to be orthogonal, al-
though as elements of the indefinite-metric space
they are not orthogonal; the problem is rather
that their inner product exceeds 1 in absolute
value.

Because observables act within a given Hilbert
syace X,» characterized by a given coherence
function b(x), we obtain a vast class of superse-
lection rules, where each superselection sector
is characterized by a b(x) subject only to the con-
dition 8'b(x) =0, fb(x)d'x=q. This is a conse-
quence of the fact that all observables are invari-
ant under the restricted gauge transformations of
the second kind.

It is possible for two different state vectors 4 „
42(= 8 to yield the same expectation values for all
observables 8, (4 „84,) = (4 „84$. In such a,

case we say they are equivalent, 4, -42. Equiva-
lent state vectors must be viewed as representing
the same physical state which is best identified
with the equivalence class of state vectors. Viewed
as vectors in the indefinite-metric space 8, equiv-
alent state vectors may look rather different. "
However, it is sufficient to find one representative
from each equivalence class. The question as to
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G(X))(p g= f X(X)B b(X)d XX( (2.12)

whether the substitute Gupta- Bleuler condition
B' '(x)4 = b' '(x)C yields a representative of every
physical state in 8 is left open. However, it is
true that the functions b(x) do provide a complete
parametrization of the possible eigenvalues of the
generators G(X), Eq (2. . 3), of the restricted gauge
transformations of the second kind, E&l. (2.1). And

for every such function b(x), the substitute Gupta-
Bleuler condition does provide a coherent subspace
of physical states 8,» which may be completed in
norm to a physical Hilbert space K,» and on which
the generators G(X) have the eigenvalues

selection sector the equations of motion of local
quantum electrodynamics must be interpreted as
the dynamics in the yresence of an external clas-
sical current j'. The total charge which acts as
the source of the Maxwell field, namely the sum of the
quantum and induced classical charges, is now
zero and, as we shall discuss shortly, the 1/r'
part of the Maxwell field vanishes at large space-
like distances.

The presence of an external current implies a
violation of Poincare invariance. Since j is nec-
essarily different from zero in the charged sec-
tors, the presence of electric charge causes a
spontaneous breakdown of Poincare invariance.
This may be expressed formally as

III. PHYSICAL INTERPRETATION A)3C&b& 36&b'& (3.4)

In the description of yhysical states just ob-
tained, the generators of the restricted gauge
transformations of the second kind G(A. ) play the
same role as has traditionally been accorded to
the charge &)&, which is the generator of gauge
transformations of the first kind. Physical states
fall into different superselection sectors X&»
characterized by different eigenvalues of G(A. )
= f&(x) s, b(x) d'x The .corresponding superselec-
tion rules subsume the charge superselection
rule, for if A=constant, then G(A. ) generates a
gauge transformation of the first kind with eigen-
value qA. where q = fb(x)d'x is the charge eigen-
value. Thus it is not unnatural that in the charged
sectors, q c0, we must have b(x) WO, although the
Gupta-Bleuler condition calls for b(x) = 0. What
does require interpretation is the unexpected form
of Maxwell's equations in K„

++V J V gVQ (3 1)

j„'(x)-=—e,b (x), (3.2)

which is added to the quantum-mechanical current
~„as a source for the Maxwell field

yP V gV jVC (3.3)

The total charge carried by the classical current
J j;d'x= —fbd'x = —q is the negative of the eigen-
value q of the quantum-mechanical charge
&(&= f J,d'x in the superselection sector X„so
the classical current may be thought of as being
induced by the quantum current. In the neutral
sector we may set j'= 0 and maintain the Guyta-
Bleuler condition. However, in the charged sec-
tors this is not possible and within a given super-

and the fact that 3C, is not invariant under Poincare
transf ormations.

Because b(x) satisfies 8'b = 0, the &Iuantity —&&'b

may be interpreted as a conserved classical ex-
ternal current

where

b'(x) = b. ~ (x) = b(A '(x- a)),
which states that the Poincare transformation
U(a, A) does not act within the physical space 3C,»,
but maps it onto a different orthogonal space. "
This relation follows from

a&-&(x)C = b&-&(x)C ,

a&-&(x)V(a, A)C = V(a, A)B&-&(A-'(x- a))4

=b' '(A '(x- a))C.

(3.6)

Lest it be thought that this does too great a vio-
lence to our physical intuition, it should be kept
in mind that only local quantities are observables,
so the generators of Poincare transformations are
not observable. The function b(x), and hence also
j„(x), may be chosen to vanish in any given finite
region of space-time —for example, in the labora-
tory while an experiment is performed —consistent
with the conditions &&'b(x) = 0 and fb(x)d'x=q. It
is found that whenever b(x) vanishes, the energy-
momentum tensor derived from the Lagrangian
(1.1) reduces to the usual Maxwellian energy-mo-
mentum tensor. Thus, although it is not possible
to maintain traditional electrodynamics globally,
it may be done in any given finite region of space-
time.

Of course if local quantum electrodynamics is
a good guide, then some physical effects should
be well accounted for by a finite classical current
j', or by a mixture of states with different j'. For
example, the scattering of an electron will, to
some extent, be influenced by the preceding pro-
cess which originally produced the electron, say
photoionization of an atom. This influence may be
adequately accounted for by appropriate classical
currents and incident radiation, without introduc-
ing the dynamical degrees of freedom of the origi-
nal atom and the remaining ion. In fact the super-
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selection rule discussed in the Introduction, which
prevents the formation of wave-packet states of the
electron in the retarded representation (for which
j'= 0), suggests that such influences cannot be ne-
glected in experiments involving localization of the
electron, such as a time-delay experiment. Qn
the other hand, as shown in Appendix C, if b(x)
contains only very low-frequency components,
then it has only negligible effects on cross sec-
tions where, by definition, intensities as a func-
tion of asymptotic momenta are measured.

Let us look at the space-time yroyerties of the
radiation field implied by the infrared-coherence
condition (1.12). As discussed in Ref. 12, the
second term on the right-hand side of the Yang-
Feldman equation,

A,(x) =A,'"(x) + )
&"'(x—y) J,(y)d'y, (3.7)

p'"(P) = —e g [b', (P)b, (p) —d', (P)d.(P)]

is the charge density operator in momentum space
and b, (P) and d, (P) are annihilation operators for
incoming electrons and positrons, respectively.
Let us now evaluate, with suyyression of the "in"
label on a~(k),

3

A,'"(x) = „„[a,(k)e-""+a',(k)e'" ' "]

(3.9)

at large distances, or in other words,

A'"(Xx) = „, ~r — d&u[&ua„(k) e '»"" '"

+ boa~(k)e'»"» "]
Jh

with k x=—t-k x, for large values of A, &0. Let
it be understood that matrix elements of this oper-
ator equation are taken, so ~a,(k) and ~at~(k) are
smooth functions of (d. One has, by partial inte-
gration

A„(, 1 dk (ua, ((o, k) (oat((u, k)
(2~)' ' 2 ~+iak x e —ink x

"H
The infrared-coherence condition (1.12) states

reduces, at early times, to the Lienard-Wiechert
potential of the incoming particles

lim A,(x) = A,'"(x)

1
I

d'p P'"(p)
;P, „, , (3.8)2E [(P x)' P'x']'~' '

where

d'P p "(p)p,(" k)=(2.) ~ „2E P.S'
which gives

—8(- x') d'P p'"(P)p.
4m~ 2E [(p x)' p'x']'~'

(3.10)

This looks like the Lienard-Wiechert potential;
however, it is restricted to spacelike regions and
has the opposite sign. Substitution into Eq. (3.8)
gives for x'&0

8(x') d 'p p '"(p)p, 1
4 A. 2E [(p ~ )' —p'x']"'

Thus the effect of the incident infrared-coherent
radiation at early times is to cancel the Lienard-
Wiechert potential of the incoming charged parti-
cles at large syacelike distances. There is an
analogous formula for late times, and we may
write, for large X& 0, as a weak asymytotic limit

~(x')
I

d'P [~(- &)p'"(P)+ ~(x')p'"'(P)]p„
4zy „2E [(p .x)~ P2x2]~&2

(3.11)

We observe that at fixed t and large x, the 1/x
term of the vector potential A, (t, x) has been can
celed, and hence also the 1/x' in the Maxwell field
E,„(t,x). Although this at first appears to contra-
dict some of our earliest experience with electro-
magnetic theory, reflection suggests that this ex-
perience can be adequately accounted for by the
Lienard-Wi. echert potentials inside the future and

past cones at asymptotic distances.
The weak limit (3.11) may easily be verified in

lowest-order perturbation theory. To order e we
have

A„(x)=A,"(x)+[&'"(—e):q'"y g".](x), (3.12a)

g(x) = g'"(x)+ [S"'(—e)A'"P'"](x). (3.12b)

As an example, take the expectation value of A (x)
on the charged vector 4 = fd'x g(x)&f (x)Q, where 0
is the vacuum state and &f&(x) is a smearing spinor
function. One finds, for large A. &0, to order e,

(C, A„(Ax)4)

—e6(x'), p~

[(p x)'- p'x']"'

x4(p)(p~~)4(p)~(p ~ )g(p )

+ O(1/X'),

whe~e Q(p) = (2v) 't' ref'» "p(x)d'x. Here the Lie-
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(3.13)

(It is likely that this commutation relation is ex-
act. ) The first term represents the I ienard-Wie-
chert potential and the second is the coherent in-
frared radiation. The same cancellation occurs
at large syacelike separation, for we find, for
large A. & 0 and P' arbitrarily close to m',

e 8(x')p
[A,(W), q(p)]= 4 ~ ( ), ,~ „,g(P)+0 —,

(3.14)

IV. CONCLUDING REMARKS

We have outlined a physical interpretation of
quantum electrodynamics formulated in terms of
the unobservable fields A and g which are opera-
tors on an indefinite-metric space 8. It is based
on the identification of observables as all local
quantities which are invariant under the restricted
gauge transformations of the second kind,

A -A +s X g-ge"~, (4.1)

with 9'A. =O, X=e number, or, in other words, all
local quantities which commute with the generators

G(~) =
~( ~(x) S,B(x)d'x, (4.2)

where B(x)= 8 A(x) in the Feynman gauge. A

yhysical state is defined to be any vector in 8
which is positive on the observables.

Although it is attractive to contemplate a formu-
lation in terms of observables acting on a positive
metric space, such a formulation will not, in the
opinion of this author, avoid the issues raised
here. In particular,

lim r'E~„(t, r, x), (4.3)

the flux per unit solid angle of the electromagnetic
field at spatial infinity on the direction x neces-
sarily commutes with all observables and hence
defines superselection sectors. (Note that the
flux at infinity of a charge Q at rest is not Lor-
entz-covariant. ) In the local formulation presen-
ted here this flux is automatically zero. On the

nard-Wiechert potential produced by the source
contribution to A„, Eq. (3.12a), is canceled at
large syacelike distances by the dependence of the
vector C on A'" through Eq. (3.12b).

As a final remark, we observe that Eqs. (3.12)
allow us to calculate the commutator of 4 and g
tolowestorder inc. Setting& (x) = JA,(k)e '~ "d'0,
g(x) = fg(p)e '~ '"d'p, we find, for k, arbitrarily
close to 0 and P' arbitrarily close to m',

tA (~) ~(p)j, &(P')&(f &) &(&')&(&')
~(p)

other hand, the generators (4.2) of the restricted
gauge transformations of the second kind commute
with all observables and hence, by Schur's lemma,
they define superselection sectors labeled by the
c-number function b(x), which is the value of B(x)
in a particular superseleetion sector. The co-
herence function b(x) is restricted by

s'b(x) = 0

because s'B(x)=0, and by

(4.4a)

(4.4b)

where q is an eigenvalue of the charge oyerator,
in order that (4.2) generate a gauge transforma, —

tion of the first kind when X(x) = constant.
Those who find the indefinite metric a high price

to pay for manifest covariance and locality should
bear in mind that the indefinite-metric space pro-
vides a concise encoding system for positive me-
tric representations of the algebra of observables,
for as we have shown, for every function b(x) con-
sistent with Eqs. (4.4), the indefinite-metric space
8 contains a subspace of non-negative norm 8,»,
defined by the condition

B' &(x)C =-I &-&(x)C, (4.5)

where B' ' and b' ' are negative-frequency parts,
and furthermore every such subspace 8&» is in-
variant under the observables so that it may be
completed in norm to a physical Hilbert space
X,b,. The existence of numerous positive sub-
syaces 8&» in 8 corresponds to strong yositivity
conditions on the Wightman functions, as exem-
plified by Eq. (836).

Finally we comment on the -experimental pre-
dictions of the present formulation of quantum
electrodynamics. Two types of experiments must
be distinguished. The first is the standard cross-
section experiment in which intensities as a func-
tion of the incident and outgoing charged particle
momenta are measured, and influences such as
the mode of preparation of the incident yarticles
are minimized. For such cross sections the pre-
dictions of the present time-symmetric formalism
coincide with the traditional or retarded formalism
(in which the number of incident photons is finite
and a sum over the final photon number is effect-
ed), a,s shown in Appendix C. However, there is
a second type of experiment in which the phase
relations of the wave function of the incident
charged particles are important. One example
is a time-delay measurement. Another occurs
when the initial state is prepared by refocusing
a pair of particles which emerge from a common
syace-time event such as a decay or scattering
process. The traditional formalism is inadequate
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for the second type of experiment because the fa-
mous cancellation of real and virtual infrared di-
vergences will not occur. [If the initial state is
represented by a density matrix p(p, ,p',.) which is
not diagonal in P,. and P', , the real infrared diver-
gence will depend on P,. P',. whereas the virtual
infrared divergence is independent of this vari-
able. ] In the present formulation this transition
probability is finite. It deyends in an essential way
on the coherence function b(k). The support of b(k)
may be thought of as representing the distance of
the charged particles from their mass shell which
corresponds to the time elapsed since their pre-
vious interaction. Although the distant Coulombic
ta.il does not cause appreciable recoil, and thus
does not affect cross sections, it does produce
significant delays which depend on the incident
momenta and the time elapsed since previous in-
teraction.
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APPENDIX A: INFRARED-COHERENT SPACE
IN THE MOMENTUM BASIS

The representation space on which the infrared-
coherence condition (1.12) holds can be constructed
by shifting the annihilation operator

d3$
e;*(k)(-g..)e,"(k), (A2a)

(& „&0=) ~& Jf —,"(~&;"(&&I(-z.„)(~&l())I.

(A2b)

We wish to extend this scheme to include wave
functions &t& which behave like eP/P .k or, more
generally, like (t&~(k)/&d at the origin, and for
which the inner product (A2b) is divergent at the

a~(k) =a&(k)+,&, t d p „ f(k), (Al)

where a&~(k) is a Fock representation and f(k)
= f(&u, k) is a cutoff function with f(0, k) = 1. How-
ever, this is not convenient because it makes the
Poincare transformations ayyear comylicated,
with an intricate dependence on f(k). We will in-
stead construct the momentum basis from scratch. "

Let 8,"' be the one-photon representation syace
whose elements are the one-photon wave functions
(1&'(k) = Q "(&~,k) with inner product

origin.
Before we can effect the extension, we must

specify a bit more yreeisely the original space
8,"& which we wish to extend. Because (-g,„) is
indefinite, the inner product (A2) is indefinite and
does not serve to define a Hilbert space. To deal
with this problem, it has been traditional, ' ' as a
matter of mathematical convenience, to introduce
a Hilbert space topology, the so-called "large
Hilbert space" by means of the noncovariant and
nonphysical Euclidean inner product

(1) Hermitian

(2) sesquilinear

(ay„by, }=a+b(y„y, ),

(A4a)

(A4b)

(3) it must coincide with the old inner product
(A2) for &t&„Q, regular,

(4) translational invariance

(y;, y;) = (y„y, ) for y-(k) = e*"y'(k), (A4c)

(5) I.orentz invariance

(Q', , p,')=(p„Q,} for p "(k) = 'Ay"( -A)&k(A4d).
We postpone the discussion of positivity and do not
require it at present. The obvious regularization
of (A2), namely

In fact this topology is not suitable for extension to
wave functions with a singularity at the origin such
as I/~, for the Hilbert space topology ignores be-
havior at a single point (it identifies wave functions
which are equal almost everywhere) and so it is
not natural as a starting point for extension to a
cia.ss of functions whose behavior is specified at
a single point, namely the origin. We choose in-
stead a Schwartz topology" and stipulate that the wave
functions Q "(&d, 5) (= 8,"' be continuous infinitely dif-
ferentiable functions on the product of the unit
sphere k'= 1 and the half-line ~ ~ 0, and that are
of fast decrease as co -~.

To accommodate wave functions which behave at
the origin like I/&u, we introduce the extended
one-photon space 8,"' &8,"' which consists of wave
functions (1&'(k) such that vQ'(k) is regular:

P'(k) (= 8,"& if and only if &d&t)'(k) (= 8,'". (A3)

We call P(k) c 8«&e a "regular" wave function if
&t)(k) c 8&», and we call it singular otherwise. If
Q, and Q, are both singula, r, the inner product (A2)
is divergent.

We wish to construct an inner product (&t) „Q,}
for P„P,E 8«&e with the following properties:
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((„(,), —= —-', f d() ( drolnro—
0

x [(dy, *(k)( g(.„)(dp2*(k)]

(A6)

satisfies all requirements except Lorentz invari-
ance.

To discuss Lorentz invariance we note some
elementary facts. The transformation law

P~"(k') = (Ao~k~)A~()()"„(k), (A13)

where k' and k are related by Eq. (A9a).
We seek to correct the inner product (,), and

make it Lorentz-invariant by adding to it a term
which vanishes when both functions have vanishing
residue. The most obvious candidate,

(( „s,), 'j =-d(-(((",',*).( (( -)(., ((",,1
(A14)

k'~ =Agkv
V (A6) turns out to be Lorentz-invariant

for lightlike vectorsl k =(d(l, k) implies that light
rays k transform into each other according to

AD+A k
Ao AO kg

0 j
and that frequencies transform multiplicatively

(A7a)

(d'= (A,'+A', .k')u), (A7b)

so that the tip of the light cone e = 0 is an invari-
ant point. It is convenient to introduce the four-
index quantity

k" =k /~=(l, k) (A8)

and write these transformation laws more com-
pactly,

A~kv

Aok" '
V

(A9a)

m'=A k'(d

Because the measure

d k/2(d = 2 dk(d(d/QP)(d

(A9b)

dk

(A„'k')'
(A10)

A simple calculation now gives for the inner pro-
duct (A5)

19 2 1 1& 2 1

+ —,
'

dk In(A'k~)P; ~(k)(-g"")P", „(k)

(All)

instead of the Lorentz invariance condition (A4d).
Here we have introduced the residue of the wave
function at zero frequency

e'(k) =~&e'(& k)]l-=.

which depends on the light ray k and transforms
according to

(A12)

= 2 dk (d(d /(d )(d

is invariant, and d(d/(d=d(d'/(d' by Eq. (A9b), one
has for the Jacobian of the transformation (A7a)
or (A9a)

1P 2 2 lP 2 2% (A15)

so it cannot correct the Lorentz noninvariance of
(,),. Because it also satisfies all the other re-
quirements (A4), any real multiple of it may be
added to the inner product. Another possibility
which suggests itself is

It appears to satisfy all the requirements (A4),
but it diverges at k, = k,. Consider instead its
regularized form

Q „y,), = dk, dk, y,"*,(k,)

x le,".(k.) —e." .(k,)], (A16)

with normalization chosen for later convenience.
Despite appearances it is Hermitian- symmetric
because the difference (Q„(t),), —(Q„P,),* has an
integrand which is odd under the interchange

It also satisfies the other requirements
except Lorentz invariance. Instead, from Eqs.
(A10) and (A13) one has

2 0 1& 2 0

where we have used

dk In(A,'k')y;„(k)( g, „)y,"„(k),

(A17)

&4„e.),+~&4„e.)'
Here x is any real number. In dealing with the
many-photon situation it is convenient to write
this inner product symbolically in order to indi-

Jl
dk' ., 1 — ", —, = —4)) ln(A', k").

Ao k~

(A18)

Upon comparison with Eq. (A11), one observes
that the sum (,),+ (,), is Lorentz-invariant.
Hence we take as the inner product, defined on
the extended one-photon space 8„'"~ ~, and satis-
fying all the requirements (A4),



2580 DANIEL ZWANZIGER 14

cate which variable is eliminated in the contrac-
tion

dk ~~ k —g „,'k (A20)

In a final notational simplification we suppress
(-g, „) and the vector indices and write simply

' dky+(k)y, (k) =(y„y,). (A21)

The extended many-photon space 8, is obtained
from the one-photon space by the Fock construc-
tion. " Let a~(p) and a(Q) be creation and annihila, —

tion operators with nonvanishing commutation re-
lations

(A22)

for Q„P,c 8„'"E. The extended Fock space 8~ is
generated by applying powers of at(P) to the vacu-
um state Q, with a(Q)Q= 0, (Q, Q) =1. The result-
ing elements 4 of 8~ are sequences of n-photon
wave functions

[a"(k)4]„(k, ~ k„)'~"'"-=4„„(kk, " k )' ~ '~"'.
(A27)

although its Hermitian conjugate a'(k)~ does not
exist as an operator on 8~, but gives instead a
distribution. It is also convenient to introduce
the residue of the annihilation operator at zero
frequency

a"„(k)—= [era~(k)]f „„,
which depends on a direction k and picks out the
residues of the wave functions

(A28)

[az(k)4]„(k, k„)~&"""~

=~4 (k k ~ ~ ~ k )~.~~"'~~I
n+1 & 1 n [cd=0 '

(A29)

a~~(k) O = 0. (A30)

The Fock space over regular wave functions 8,
is the linear subspace of 8~ defined by the condi-
tion of vanishing residues of all wave functions

4 =14'„f, n=0, 1, 2. . .
4 =4 (k ~ ~ ~ k )~~"'~

n n 1 n

(A23a)

(A23b)
(A31)

Call 8, , the subspace of 8, consisting of trans-
verse wave functions, 4 (= 8' if and only if

a~+(k)C' = 0, k a(k)4 = 0.
which are symmetric under interchange of particle
variables and which are elements of 8~ in each
variable. A suitable restriction on the behavior of
the wave functions at large n is required in order
to ensure the convergence of infinite sums. The
inner product (4, 4') for 4, 4 E 8~ is

00 ](4, 4') = g — dk, dk„C„*(k ~ k )
n=0

x4 (kq ~ ~ ~ k ),
where here and in the following the integration with
"measure" dk,. represents the contraction (A21).
The creation and annihilation operators act ac-
cording to

[a~(y)4 ]„(k, . k )' ~ "'"~

Q"(k )4 (k ~ k k )'i"'g"' n

t»- &

(A25)

where the caret over a variable means it does not
appear, and

[a(y)4]„(k, ~ ~ k„)'~'-'~

dk *k -g „Cn„k k k

8+=-8 x8&. (A32)

It contains as a subspace 8""the space of free
particles and free photons

8~~ee = 8 && 8m y

Obviously it may also be characterized as the sub-
space of all vectors 4 (= 8~ which satisfy

Of course the inner product is non-negative on 8, ,
and it may be completed in norm to give the fa-
miliar Hilbert space of free photons K,"".How-
ever, 8, also contains other subspaces of non-
negative norm, namely the image U8, of 8,' under
any unitary operator U, for example,
U= exp[a~(P) —a(P)], Q E 8,"'~. This possibility
will be used to construct the asymptotic space
for quantum electrodynamics once the charged
particles are introduced.

I.et 8 be the usual Fock space of free massive
particles (which, however, it is natural at this
stage to also provide with the Schwartz topology)
and let bt(p) and b, (p) be the usual creation and
annihilation operators for particles of type a. The
extended space 8 is defined by the product of 8
with the extended photon space 8„

(A26) a~(k)4 = 0. (A34)

Note that because 4„(k, k„) are smooth func-
tions, rather than I.ebesgue measurable functions,
it is possible to define an annihilation operator
a (k) depending on a single momentum variable

The asymptotic vector space of quantum electro-
dynamics 8 may be similarly defined. It is the
linear subspace of 8~ which satisfies the infrared-
coherence condition (1.12) 4 c 8 if and only if
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a~+(k)C =, ,&, t d'P p(P) —„C, (A35)
P —p'

where p is the charge density operator in momen-
tum space

In terms of wave functions

C) =(C), „], s, n=0, 1, 2. . .

C, „=C,„(p, p„k, k),

(A37a)

(A37b)

p(P)= g e(p')5(p'- m, ')b.'(P)b. (P). (A36) this condltlon reads

(()4 (p ~ ~ p k k ~ ~ ~ k )~ ~ ~i"' ~n = — i i C) (p ~ ~ .p k . . .k )~i"~ ~„—1 e.p~
s, n+1 1 s7 0 1 n s& 12+/ E ~ —p ~ kt

(A38)

All operators and wave functions should of course
bear "in" and "out" labels which are suppressed.

We are now ready to prove the lemma used in

Sec. II: If (b c 8 satisfies B' '(x)C =b' '(x)C then C

has non-negative norm. We use B(x)=B'"(x)
= s A"(x) so the hypothesis of the lemma reads

k a(k)C) =,i, f(k)C . (A47)

[The proof is easily generalized to the case q= 0,
b(k) o0, but this is of no particular interest. ]

I.et g~ (k) be the singular photon wave function
depending on the four-momentum vector p

8 A'"(x)C =b'-'(x)C . (A39) —1
&,'(k = (2„),. k f(k),

A'"(x) =
d k [gin(k)e-ill'x + gin ('(k)ei)) x](2i))"' ~ 2(d

(A40)

k a(k)C = b(k)C. (A42)

On setting m = 0 we find, from the infrared-co-
herence condition (A35), with b(k) = b((d, k)

( )„, QC = b (0, k)C, (A43)

b(x) = — t —[b(k)e "" b*(k)e""]i d3k

(2i) )"' 2(d

(A41)

and suppression of the "in" label, the hypothesis
becomes

and let U(f) be the unitary operator on 8e

&(f)-=~m f &'(a(()(~'((,) —~((,))

satisfying

[~'(k), U(f)]=U(f) 2, . d'Pp(P) p. k.
(A50)

Observe that U( f ) is the unitary transformation
which effects the shift (Al). The cutoff function

f (k) has emerged unexpectedly, to within normal-
ization, as the eigenvalue of k a(k) or, stated
loosely, as the eigenvalue of the generators of re-
stricted gauge transformations of the second kind.
From E(I. (A50) we have

where we have used

k ~ a(k)
~ „,= [as(k) —k ~ as(k)]

=-(») "'Jd'()(()

[k e(k), U(f)]=U(f) 2, ... f(k)Q,

[~:(k),U(f)]=U(f) „... J d'pp(p) .

(A51)

= —(27)) '~'q (A44)

b(0, k) = (2))) '~'q.

It is natural to set

(A45)

This equation has solutions only for 4 which are
eigenstates of the charge operator Q. We assume
this is so, with corresponding eigenvalue q, so we
have

(A52)

The last relations shows that Ut( f) maps the in-
frared-coherent space 8 onto the free-particle
space 8"", for if @(=8 satisfies Eil. (A35) then
Ut( f)C. satisfies (A34), so Ut( f)C (= 8"". Simi-
larly if C' satisfies E(I. (A47), which is the hypoth-
esis of the lemma, then by the last relation but.

one, k a(k)Ui( f)C =0. So Ui( f)C. is a transverse
free-particle vector. Its norm is non- negative

b(k) = q„, f(k) with f(0) =1,

so the hypothesis of the lemma reads

(A46) 0 ~ (Ut( f)C, Ut( f)O) = (C, C)

Q.E.D.
We conclude this appendix by computing the ex-
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plicit form of the inner product in 8 in terms of
the wave functions satisfying Eq. (A38). Let
@2 (k) E 8„'" be a one-photon wave function with
residue Q,"s(k) = cp" /(E p k). Then E|I. (A18),
with A' replaced by P, /m, allows us to rewrite
the inner product (A16) in the simpler form

C v

(41% 42)0 2 Jt dk tt, „(k)(-g»)

(E
—p k) (A53)

C= —,
'

Jt dkp~»(k)( —g, „) lnE p -ml
+( 1&42)6 7 (A54a)

Consequently we may reexpress the desired co-
variant inner product, Eq. (A19), as

tion between the residue and continuum contribu-
tions is arbitrary, and it may be assigned any
convenient value.

Having found a simple explicit form for the in-
ner product when the wave function has residue
cP~/(E —p .k), we may apply it to the wave func-
tions 4 (= 8 which satisfy the infrared-coherence
condition (A38). It will prove convenient to effect
all the P integrations after the k integrations. We
formalize this by introducing, for every set of
vectors P, P, the subspace

yp ~ ~ o p1 s

of the extended photon space,

8yp ...p c:8y
1 S

consisting of vectors Cp ...p (=8„p,...p which sat-
isfy

1 8)P ~

as(k)@p p g y3i2 4p

where E= e ". We have separated the contribution
of the residues, which is written explicitly, from
the continuum contribution For every set of vectors p, ~ P, we write

Cp ...p (k, .k )=4(P, P„k, k)

(A56)

(A5V)

dk d~ln ——co, * 0 -g „co
0

and def ine 4p ~ ~ p
(= 8yp ~ ~ p by its wave functions

Cp ...p
——[C p(k, ... k )], n=0, 1, 2. . . .

(dk)~ Q,*(k)P,(k) .

Here we have introduced the "phase space"

(A54b) (A58)

This allows us to express the inner yroduct in 8
RS

(dk)~ . =——& dk du& ln — —~ ~ ~ ~,
0 840

(A55)

which differs from the usual photon phase space

, , s! i 2z, 2E,

&@ip" ~p@ 2~p"p &

(A59)

d'k/2(o = t dk da)/2(o (u' ~ ~ ~

0

by a partial integration. The covariant inner pro-
duct (A54) is independent of the a.rbitrary para-
meter & which cancels out between the residue
and continuum contributions. However, it is con-
venient to retain & as a reminder that the seyara-

I

(with s!-n,s, ! if there are several types a of
charged particle). All the k integrations are con-
tained in

& py"'4' 2 h'"p )~

which is the inner product in 8» ...p . A short
calculation using Eq. (A54) gives the explicit form

(C yp p y C2p p ) exp[ K(4)](C C ) (A60)

where

K(n)= —'
~t dkg ' ' (- )g ' ' ln (A61a)

(@,p, ...p, , c', p ...p )~= —
1 JI (dk, )~ (dk„)~4,* ... (k, k„)C, ... (k, ~ k„).

n=
(A6lb)
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The latter contraction makes use of the "phase
space" dk~ = ——,

' dk d&u ln(~/&)(s/s~)&u' ~ ~ ~ in
each photon variable. Because of the infrared-
coherence condition on the many-photon wave
functions, the residue contribution now appears
multiplicatively in the exponential exp[- K (&)] in-
stead of as a subtraction. In particular the arbi-
trary constant l = e ", which results from the ar-
bitrary constant x in the one-photon inner product,
is now seen to produce a harmless multiplicative
factor / ~ to the inner product, which is absorbed
in the normalization of the wave function. Here
the scalar 8 is given by

p(Q) =
( ), d xe 'o'"(O„U(x)C,), (B2)

where U(x) is the operator of translation by x".
Making use of the explicit form of the inner pro-
duct (A59), we have

where 4, and 4, are elements of the infrared-co-
herent space 8, is expressed in terms of the spec-
tral function p(Q) given by"

(Bs)

(2n)' ~& tanhg„.
(A62)

where p~ .~.~ (L) is the spectral function in
8»x "'&s '

where g, , & 0 is the hyperbolic angle between p,
and p~, p ~ 'p~ = mph~ cosh()~.

(4„4.)= „d'Qp(Q), (Bl)

APPENDIX B: SPECTRAL DECOMPOSITION OF THE
COHERENT SPACE AND NORMALIZATION

OF THE CHARGED FIELD

The spectral decomposition of the inner product

(B4)

Here 4-~ ...~ is an element of 8» .. .&
(:8~ and

U, (x) is the translation operator on 8„. By Eq.
(A60) we have

2v '
n=O

(B5)

pre are interested in the spectral function when the total momentum Q is close to the sum of the momenta

of the charged particles, Zp, , so that the momentum in the radiation field L = Q —Zp; is small. For t»s
purpose we replace the momentum L by XL and we will let X get small. On setting y= Xx we find

p (XL) =8 «'~' — d ye~~' — (dk, ) ~ ~ ~ (dk„) e"c~&'~1'C* ... (k, k„)
1 1

&s n=0

&4',
q ...~ (k, k„). (B6)

For small values of A. we may use the Riemann-Lebesgue lemma and replace the wave functions by their
zero-frequency limit since they are smooth functions [after multiplication by the u& which appears in

(dk)~, Eq. (A55)]

e,, ..., (k, ".k„) -' -C,.(p, ".p,)' ',
where 4,( p, p, ) is the no-photon wave function. This gives

p, , ...,,(») =C, (p, ~ p.)C.( p, ~ p.)F(~L),

F(XL) = e '~' — d'y e '~'exp (dk) e'"' '—1 1 1 e
(2~)' ~' ] (2« )' p

(Ba)

(B9)

The spectral function for four-momentum in the radiation field p ...~ (I.) has, for small values of I.,Py Ps
factorized into the product of the no-photon wave functions and a universal spectral function F(L) depend-

ing on a set of particle charges and momenta

F (L) =F (L, e„p,). . (Bl0)
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If the charges were zero we would have

F(L) = 54(L) . (B11)

Its deviation from a 5 function is the result of the singular coupling of charged particles to the infrared
radiation field. From the definition of the "phase space" (dk)8, Eq. (A54b), we find

1 1F(~L)=e-x"&, —, d4y e-"~e'
(2v)' X'

(B12)
e.e.*.~ *.

(2ii)' '. . . p,. kp,. k J, & see

where, for a four-vector a, k. a—= ao —k ~ g. ,1, d- ~e,e,p., .p,. (4 —ik y)

where C=- f"du Inu e" is Euler's constant. Use of Eqs. (A61) and (A62) for K(&) and B gives
0

E(L)=(lee) 8 " e '~'exp, —,
' dk ' -' Q ' ' ln

(2v)4 (2ii)' '
p,. ~ 0 J p,. 5 m,. (e i% y)-

E(A.L)=X ' F(L) .

(B13a)

(B13b)

The arbitrary constant & has canceled out as it
should. This equation gives a complete description
of the distribution of four-momentum in the in-
frared radiation field in the presence of charged
particles of four-momenta p, ~ p, . Observe that
F(L) is the Fourier transform of a function (dis-
tribution) which is analytic in the future tube, so
it vanishes if L lies outside the future cone, as it
must. It is homogeneous of degree —4+B so the
infrared renormalization has caused a change in
the infrared asymptotic dimension.

Let us evaluate the original spectral function
p(Q) for vectors 4, and C, containing a single elec-
tron. In this case only the term s = 1 contributes
to the sum (B3) and we have

" d3
p(Q) =

2E
C',*(P)C',(P)&(Q —P) (B14)

~(Q(= &,"( M )
4

( M )&(Q),

where P(Q) is the universal function

(B16)

I et Q lie close to the mass shell of the electron.
Because F(Q —p) has support only in the future
cone, Q'-p'~ 0, (Q p)'& 0, where M=&'Q' lies
close to m, the integration over p only gets con-
tributions when the four-vector P" lies close to
the four-vector Q". In the space 8 we are using,
the wave functions 4 (P) are smooth, so we have

(B16)(2i(), 2E„P(27]) (p ~ $)8 hajj(q 8$.
and l, = lee, P = (e/2n )' = n/ii. I orentz invariance of the last integral allows it to be evaluated in the frame
where Q=(M, 0, 0, 0),

8 3 —e' - m'
P(Q)=(

) 2
d xe' dte exp

(2 ) dk( ~)

I,et 5=M —I and make the change of variables p-~5'~'~p, x-~5 '~'~x, t-~

P(Q) = d'pd'xdte "'" exp —~ sgn5 — t .

(E —p k)/m
~ —i(t-)8 x) ' (Bl7)

5 '~t. For small 5 we find

Integration over x followed by integration over p
is now trivial and gives, after the change of vari-
able t —

~

5
~
t, with 5 = (M —m ),

P(Q) = —'l~ 1 8
dt e ((((( m) t(q -jt)8--&

2m 2m 9~
(B20)

i~
P(Q) ( dt e-((N-((()t(~ if)8

2r 2m

Writing this in the form

(B19) allows us to use the representation

(~ it)'-'= dh e "-""v81
r(1 P)
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valid for 8 = cz/zz & 1, which gives

1 8 8(M —m)
r(1 p) SM (M m)' ' (B21)

G(x) = (Ol T[)(3(x)q(0)~
I
0)

with Fourier transform G(Q)

G(x) = 1
(2n')4

e 'o "G(q)d'Q

(B2s)

(B24)

has the mass-shell singularity in the Feynman
gauge given by

z(g) + m) 2ml,

We may exploit the smallness of M —m to rewrite
this as

(2ml, )' 1
(Q)= -2 l r(1 p)

8 8(Q' —m')8(Q')
8Q' (Q' —m')~

which is a. well-defined distribution in Q for
p = (3. /v & 1. Note that for p = 0 we recover the
free- particle spectral function

P(Q) = 5(q' m')8(Q').

With this result, the goal of calculating the
spectral function in the infrared-coherent space
8, for four-momentum Q in the neighborhood of
the electron mass shell Q'=m', is achieved. If
the infrared-coherent space 8 is the space which
would be obtained by reconstruction from the
Wightman functions, this expression must agree
with the mass-shell singularity of the two-point
function of the electron. The electron propagator

where we have used r(P) I'(1 —P) = zz/sinzzP. Com-
parison with Eq. (B22) gives the relation at the
mass shell between this Wightman function and

the spectral function P(Q) of the infrared-coherent
space, 8=8'"=8'"'

W(q) =z(g+m)P(q), q'=-m'. (B28)

This simple relation allows a physical inter-
pretation of the normalization of the charged field

$ near the mass shell. I.et the vectors C, , z=1, 2

be given by

4,. = d'x x,. x 0, (B29)

where 0 is the vacuum state and P,.(x) is a four-
spinor smearing function. They have inner pro-
duct

(C'„@,& =
Jt d'Q 4,(Q)+'(Q)4, (q),

where

(Bso)

~'qy, (q)(4. )y,. (q)p(q), Q'= '

(BS2a.)

or, with u (Q), n =1, 2, a pair of Dirac spinors,
such that Z, u, (q)u (Q) = (g+m),

z d4,*~ Q 2 P {BS2b)

(',. (q) =
( )„;f (',.(x)e' '*d'x.

The contribution to this inner product at the mass
shell is, by Eq. (B28),

&e(x)%(0)&=
2 . ~'qe ""II(q),1

by II'(Q) = [G,(q) —G (Q) j /2)z which gives

(B26)

(B25a)
0

G(q) = zr(P) —,q2m' sq" m' —Q' —ze

(B25b)

where z is an arbitrary finite constant that defines
the normalization of the charged field g. This re-
sult has not been proved rigorously in perturbation
theory, but it is believed to be exact. ' The propa-
gator is related to the Wightman function W(q),

where (t),. (Q) =u (Q)(t),.(q). This is precisely the
form of the inner product, Eqs. (Bl) and (B15),
and we may identify, for Q = m', the one-pa. rticle
wave functions C,'."(Q) and O;."'(Q), where we have

restored the spin label n and the "in" or "out"
labels

~,'."(q)="" „),~ JI .(Q)e, ( )""'"d'-

—polit (q) (Bss)

This is precisely the relation that obtains ai the
mass shell in theories without massless particles.

Equation (B29) provides an exceptionally simple
charged state which satisfies the substitute Gupta-
Bleuler condition provided P(q) is of the form

+m 1
(Q)= r(1 p) 2, q'

(B27)

e(q) =e "c*"I(q') 8(q') (Bs4)

where w is a future timelike vector, u is a con-
stant four-spinor, and h(x) is a c —~ function sat-
isfying h(x) = 1 for x) m' and h(x) =0 for x ( 0.
This may be verified by writing the commutator
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[B(x),g(y)] = e&(x —y)P(y) in momentum space.
The coherence function b(x), expressed in terms
of its Fourier components on the light cone ac-
cording to Eil. (A41}, is given by

b(k) e(2~)-3/2 e- k sheik
'a

This yields a strong positivity condition on W(Q),
the Wightman function of the electron in the Feyn-
XIla11

gaugers

d Q u W(Q)u e 'o ' ~ 0 .

APPENDIX C: CROSS-SECTION FORMULA REGAINED

In this section we shall derive a quantum elec-
trodynamical cross-section formula which is
independent of the coherence function f(k). It is
obtained by letting the support of f(k) approach
the origin and summing over final states. In ac-
cordance with the superselection rule on charged
particle momenta discussed in the Introduction,
no such limit exists for quantities, such as delay
times, which depend on relative phases between
different momentum components of the charged
particles.

We represent the S operator considered as an
operator on 8E in terms of its Wick expansion

(dpi''ll (py)] (de'8 (lhg)]S (py Ipy p Ip ) f (dp ll(p )] ] [d( Q(l'I )]

It has the same form in either the "in" or "out" basis, so we may safely suppress this label. The normal-
ization factor (s!t!) ' should be replaced by n, (s, !t, !) ' if there are several types a of charged particle.
Here fdp represents fd'p(2E) '= fd'P[2(m '+ p'). 'i'] ' and fdk represents the infrared renormalized inner
product defined in Appendix A. Because the scattering operator S represents an observable, it commutes
with the generators of restricted gauge transformations

[k' a(k) S]= [k' a (k), S] = 0, (C2)

which means that the S-matrix elements S, „,, „(p&,k&., p, , k,.}are, as usual, transverse in the photon po-
larization indices. Similarly, S preserves the infrared coherence condition s"(k)4=0, where

s'(k)=as(k)+
2 „, d'p p(P)p'

by commuting with s~(k),

[s'(k), S]= [s"($),S]= 0. (c3)

This implies that the S-matrix elements satisfy

Jirq, (&u„[S,„,, „(]))&,k, k; P, , k, ) —c&,.(k )S. . . „(P&,k, k „p, , k,.)])=0, (C4a)

where

((d„[S,„,, „(Pg,k~, P;, k, ' ' ' k„) —c.;~(k„)S,„,„,(p~, ky, p. , , k, ~ ~ ~ k„,)])= 0, (C4b)

cg, (k) = —c,'z(k) = cg (k) —c.~(k)

(c&)

The S-matrix elements may be obtained from a reduction formula using the distances from the mass shell
5, =p, ' —nz, ' as infrared regulators, "or by use of photon mass or dimensional regularization. "

If the S operator is applied to the state @=(4', „(P, p„k, ~ k„)}there results the state with wave
functions

l CIO j
(Se),(p, k, ~ . k, )= dp' Q Q Q —, dk', ' 'dk'. S~,.(P)kJ '''k~ )&')ki'' kn)

(C6)
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The charged particle variables have been repre-
sented only symbolically because our interest
here centers on the photon variables. The sum
over permutations I' represents the sum over the
I![m! (I —m)! ] ' ways that I objects may be parti-
tioned into two sets of m and l -m objects each.

I,et the initial state 4 be obtained from a free-
particle state 4' by application of U, Eq. (A49),

with Jdp, dP„!t*(i),.)g(P, ) =1. We have

U = exp --,' d'p, d4P, P(P, )p(P, ) dk Pp'(k) P~, (k)

4= U+O,

U=exp dpp p g p
—g

(C7a)

(Cvb)

so the state 4 = U4', =()I, g is a completely coher-
ent state of the radiation fieM with wave functions
given by

where

p
(t' (k)=

(2 ) .p. kf(k), (C8)

)I, „(p„k;)=Ne, (k, ) e, (k„)5„(!)(p,),
where

e;(k) = c;(k)f(k)

(C11)

and f(k) is the coherence function. Suppose for
simplicity of notation that the state 4'=f4', J
contains only a fixed number 7' of charged parti-
cles but no photons, so its wave functions are
given by

—1 ~ e,P,"
(2w)'" ~ p, k

N = exp --,' dk e,*(k)e,(k) . (CIS)

(C9) If this is substituted into Eq. (C6) one obtains

00

(s')), ((,k, "),)= dp'N p e;().' .,)'''e;(), ) p —Juk,'~ d)."s,„(p,k '''4;p', ', ')'' '))
m"-P n=0

x~, (k') ~ ~ ~ e (k')g(p') (C14)

Suppose that the support of the coherence function f(k), and hence of e&(k) = c&(k)f(k), only includes such
low frequencies that S „may be replaced by its low-frequency limit, Eq. (C4), when contracted with e, (k),

dk' ~ „P,k;P', k,''''k„' &; k„' -Sm „,P, k;p', k', '''k'„, dk'c)y k' a) k',

where c,.j(k) is given in Eq. (C5). This yields

(S4'), (P, k, k, ) = dP'NM Q Q &, (kp ) (., (kp )S~„(P,kp k~; p'))t)(P'), (C16)

M= exp — ( dk c&, (k)w, (k) .
~/

(C1V)

If this initial (!) has sharp values for the momenta of the incident charged particles, this simplifies to

(S4'), (p~, k, '' k)=NM Q Q e;(ks )''' t;(k~ ) S(i,)teak'
'' kJ;p;).

m=o

Suppose that one wishes to calculate a cross section corresponding to a typical accelerator experiment:
Only initial and final paxticle intensities as a function of momenta axe measured, but no relative phase
between different momentum components. It is sufficient as usual to assume that the initial state has
sharp momenta (these could be averaged over) and that the final state detector is characterized by a den-
sity (efficiency) matrix p which is diagonal in the particle momenta

P=LP.(P, k, ' "k.)], o P. 1. — —

The unobservability of zero-energy photons corresponds to the analytic statement

„~~p„(p, k, ' ' ' k„)= p„,(P, k, ' ' k„,).

(C19)

(C20)

The cross section a(p) for the initial state with momenta p, to trigger the final state detector p is given by
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~(p)= f up, ~nM~(' P —', u, n", (se), ((„)", )., )p, ((„(, "),)(se)((„), "),)a ~, -zp,. +z)),1

(c21)

where Sk is given above, Eq. (C16), and a 6 function of energy-momentum conservation has been factored
out of S. We suppose that the support of f(k), and hence also of &,.(k) = c, (k)f(.k), is sufficiently close to the
origin that the substitution

p, (p, k, " k, )e, (k, )-p, ,(p, k, "k, ,)e,.(k, ) (c22)

is justified, by virtue of the low-frequency limit of p„Eq. (C20). Then making use also of the substitution
(C15) applied to a final photon variable one obtains after a brief combinatoric exercise

~(o):=f dPgp ;dk, ''—'d)',9„„4~,)., '''k„;P;)q„(P~, k, '"k)S„,(p„)., '
, 0„;p,)l!'(D) EP, +rk)-

n-o +
(C22)

This formula may be given an explicit form using Eqs. (A60) and (A61),
OO |

o(p)=
~

dp~e ~" ' Q —, t (dk, )~''' (dk„)~S„*o(py,k, '' 'k„;p;)p„(p~, k, ' ' ' k) S„,,( py, k,
''' k„;p;),

n"-0

(C24a)

where (dk~) ' ' ' = ——,'dkd&u in((d/&)(8/S(d) ' ' ' and

z (~)= —.
' dS~ '~~' (-g „)~- '"~'

(2m)" ~E, —p k '" ~E, -p, 5 m, l

Here a is an index that ru'ns over all initial and final charged particles and q, is a sign function with gf +1,
g;= -1. This is the quantum electrodynamical cross-section formula obtained earlier. "" gt is notable,
however, that if the initial or the final state is not diagonal in the charged particle momenta, then the
cross section does not have a well-defined limit as the support of f(k) shrinks to zero.
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