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In the relativistic canonical formalism of Bakamjian and Thomas describing direct particle interactions the

generators are defined in terms of the total momentum, the center-of-mass position, and a complete set of
additional intrinsic canonical variables. In the interaction region of phase space the transformation linking

these variables to individual particle coordinates and momenta is not determined by basic princi. ples. In this

paper canonical transformations to single-particle variables valid to order c ' and the corresponding

approximate Hamiltonians are constructed for a two-particle system; approximate many-body Hamiltonians

are then constructed from the two-body ones, maintaining the Lie algebra of the Poincare group to the same

order, If, and only if, the nonrelativistic limit of the potential is velocity independent (except for a possible

spin-orbit interaction) it is possible to require, to order c, transformation properties of the position operators

corresponding to the classical world-line conditions. This requirement implies restrictions on admissible

canonical transformations to single-particle variables. The cluster separability condition is then automatically

satisfied. In the classical limit the class of approximately relativistic Hamiltonians for spinless particles is

identical with that obtained by Woodcock and Havas from expansion of an exact Poincare-invariant Fokker-

type variational principle automatically satisfying the world-line conditions, Conversely, direct quantization of
their classical Hamiltonians is shown to lead to the approximate quantum-mechanical ones resulting from the

Bakamjian-Thomas theory. The relation of these results to various approximately relativistic Hamiltonians

built up by several authors starting from the nonrelativistic theory is discussed, as well as their implications

for phenomenological nucleon-nucleon potentials.

I. INTRODUCTION

"The nature of interactions between nuclear par-
ticles is understood at present rather poorly. "
This opening sentence of the classic paper on ap-
proximately relativistic equations, ' written in 1937
by Hreit to explain the motivation fol his study of
wave eqnatlons Lorentz lllvar1ant only to ol der 5 /
c', is still appropriate, even though an enormous
amount of detailed knowledge of properties of the
interactions has been accumulated. In spite of its
central importance for nuclear physics the prob-
lem seems less fundamental now since the notion
of point nucleons without internal structure is, at
best, an approximation, the validity of which must
be tested. The presumption "that a completely re-
lativistic theory must involve a fieM"' underlies
the conventional description of the two-nucleon
system in terms of Bethe-Salpeter amplitudes. "'

This presumption is challenged implicitly by much
work on the relativistic theory of direct particle
interactions" (which, at least to order v'/c', in-
cludes the particle interactions following from
field theory). Three general schemes allowing
large classes of interactions have been developed.
The first one, due to Hakamjian and Thomas, '
makes use of the special properties of the center-
of- mass frame of ref er ence to develop a canoni-

cal formalism, classical as well as quantum me-
chanical. The second one, due to Havas, ' takes a
classical Poincare-invar iant "Fokker-type" vari-
ational principle as its starting point; the general
form, to order v'/c', of the approximately rela-
tivistic Lagrangian corresponding to this principle
has been found recently by %oodcock and Havas'
for all interactions which for c -~ reduce to a
static Newtonian potential. The third scheme is
based on the relativistic generalization of New-
ton's second law with two-body forces. ' These
three approaches correspond to the nonrelativistic
formalisms of Hamilton, Lagrange, and Newton,
respectively, but while the nonrelativistic ap-
proaches are equivalent for the usual case of two-

body interactions derivable from a potential, in

general no such equivalence exists in the relativ-
istic cases discussed above.

All three general methods suffer from various
fundamental difficulties that stand in the way of
many applica, tions in nuclear and particle physics.
No satisfactory methods are known to quantize
either the Fokker-type theory of Ref. 6 or the New-

ton-type theory of Ref. 8. The BT theory, on the
other hand, poses difficulties of interpretation.
Initially„ there was no indication that the corre-
sponding classical canonical formalism would be
compatible with the existence of invariant world
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lines; indeed, Bakamjian and Thomas abandoned
this requirement at the outset, long before forma].
proofs were provided that the "world-line condi-
tions" implied vanishing interaction. ' However,
for strongly interacting nuclear and subnuclear
particles, positions are in fa.ct not observable in
the interaction region. Therefore, it seems rea-
sonable to relax the world-line conditions in that
region while maintaining the weaker requirement
of cluster separability. ""

Nevertheless, the relation of particle position
operators to observations remains an important
problem in the BT theory. Bound-state wave func-
tions are useful only if they can be used to calcu-
late form factors. Since the particle interaction
modifies the representation of the Poincare group,
covariant current densities must acquire inter-
action terms. The proper determination of these
terms is an unsolved. problem that inhibits the ap-
plication of the theory to such problems as quark
models. In the context of the classical BT theory
Pauri and Prosperi' require particle positions
(defined as functions of the canonical variables)
that satisfy the world-line conditions. These posi-
tions cannot satisfy canonical equations of motion.

The essence of the BT theory is the construction
of a unitary representation of the Poincare group
as a direct integral of irreducible representations.
The generators are defined as functions of the to-
tal momentum P, the center-of-mass position X,
and a complete set of additional intrinsic canonical
variables. The canonical transformation linking
these variables to individual particle coordinates
and momenta is well defined for free particles, but
there are no principles that prescribe what this
transformation must be in the interaction region
of phase space. The BT construction is particular-
ly simple for two particles. For many particles
the cluster separability requirement" "presents
a serious complication.

Equivalently it is possible in principle to write
the generators as functions of individual particle
coordinates and momenta and then to construct in-
teraction terms such that the Lie algebra is main-
tained. It is then easy to verify cluster separabili-
ty. This construction has been attempted only in a
formal expansion in inverse powers of c," in par-
ticular for electromagnetic interactions. "" The
mathematical convergence and domain problems
associated with such expansions have not been in-
vestigated. Approximately covariant Hamiltonians
are obtained from a realization of the Lie algebra
of the Galilei group by adding correction terms in
various orders of c ' to obtain realizations of the
Lie algebra of the Poincare group to the desired
order. Recently Stachel and Havas" obtained the
most general classical solution that reduces to a

Galilei-invariant theory with a static Newtonian
potential for e -~. The world-line condition was
automatically satisfied to order c ', and no dif-
ficulty was encountered in satisfying the cluster sep-
arability condition to this order (as indeed none was
encountered in all earlier work on approximately
relatlvlstlc Laglanglans or Hamlltolllans "). The
corresponding quantum-mechanical problem was
treated by Foldy and Krajcik, "who did not require
a static potential in the nonrelativistic limit and
made cluster separability their main consideration.

The approximate equa, tions obtained by Stachel
and Havas" reduce to those of %H' if it is required
that they be compatible with the expansion of an
exact theory. The equations of WH, by definition,
give a covariant description of world lines' as do
the equations of. Ref. 8 obtained by a relativistic
generalization of Newton's second law. The re-
sults of Foldy and Krajcik" (for particles with-
out spin) may appear, at first sight, to be less
general, but after constructing a particular solu-
tion they indicate how the most general form can
be obtained.

The BT theory has been useful in generating re-
lativistic corrections to order c ' to the nonrela-
tivistic treatment of the deuteron' and of nuclear
matter ' and the interaction charge density in the
deuteron required by Lorentz covarianee to that
order has been determined.

In Sec. II we review the quantum-Dsechanical BT
formulation for two particles and discuss sufficient
conditions for the validity of the approximations.
In Sec. III we construct a special canonical trans-
formation to single-particle variables and the cor-
responding approximate Hamiltonians. The wor ld-
line conditions and consequences are discussed in
Sec. IV; it is shown that transformation properties
corresponding to the approximate world-line condi-
tions considered in Ref. 18 can be required of the
quantum-mechanical position operators provided
the nonrelativistic limit of the potential is velocity-
independent, except for a possible spin-orbit in-
teraction of the form s if(x). This requirement
restricts admissible canonical transformations re-
lating intrinsic coordinates to single-particle co-
ordinates. The cluster separability condition is
then automatically satisfied. In the classical limit
the class of approximately relativistic Hamilto-
nians obtained for two particles in Sec. IV and for
N particles in Sec. V is the same as that obtained
by %H, as is shown in Sec. VI. Conversely, the
approximate quantum-mechanical equations (for
spinless particles) can be obtained by direct quan-
tization of the equations of WH. " Section VII con-
tains a discussion of our results and their implica-
tions for phenomenological nucleon-nucleon poten-
tials.
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II. TWO-PARTICLE SYSTEMS h=h, +c 'v, (17)

We first review the BT quantum theory for two
particles with masses m, and m, . The generators
of the Poincare group for a multiparticle system
have the same form as for a single particle if they
are written as functions of the total momentum P,
the canonically conjugate center-of-mass position
X, the total spin j, and the mass operator h. That
ls)

J=Xx Pyj

where v is an interaction operator and

h = (C 2k2 tm 2)& 2+ (C 2k 2+ 2222)& (18)

To choose the total momentum as one of the ca-
nonical variables is not the only way in which the
generators may be expressed as functions of cen-
ter-of-mass variables and intrinsic variables. If
we define canonically conjugate variables Q and

by232 24
Q

Q= O'Pd

for the angular momentum,

(P2C2 + h2C4) 1/ 2

for the Hamiltonian, and

K= 2jX, H].—

(2)

(3)

and

Xq-—g Xg,

where the unitary operator P is

g = exp[- —2' i(X, Pj in(k/M) ],

(20)

(21)

for the generator of the Lorentz transformations.
Here a,nd in the following the bra. ces (A, B] denote
the anticommutator of two operators A and B. It
follows from the commutation rules

it follows that

Q = PM/a.

Here

(22)

[X„P,.] = in„„

[i, P,]=[i,X,]=0,
(4)

(5)

M = n7, + v)~, (23)

and in the anticommutator of any two vectors the
scalar product is understood. The Poincare gen-
erators are now linear functions of the mass op-
erator h. We have

[j, f2] = [X,h] = [P, n] = 0,

that the ten generators of the Poincare group P, H,
J, K satisfy the commutation relations

P = QI2/M,

a=E, h/M,

(24)

(25)

[P,, P,.) =0,

[P,, a] =0,

[J,,a] =0,

[J', ,J,.] =i&,,,J„
[J', , P,]=ie, ,,P„.
[J', , K,.) =i@,,,K„,

[P, , K,.] = —ic 'a, ,e,
[K,, K,.] = —ic 2e, ,2 J2,

[K„a]= iP„

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

where all indices can take the values 1, 2, or 3,
summation over repeated indices is understood,
and the units are such that 5= 1.

The mass operator h and the total spin j are
functions of intrinsic canonical variables that com-
mute with X and P. They are the intrinsic relative
momentum k and position x, and two spins s, and s,.
We have then

and

J=Xq &&Q+j, (26)

K='&X E]-EF.,+Mc' '

where

E -(Q2c2+M2C4)~~2

(27)

(28)

In this representation the Lorentz generator K
does not depend on the interaction operator v.
Note that while h commutes with f the separate
terms h, and v do not, and the intrinsic momentum

q=g kg

differs from k except when the interaction v van-
ishes.

The approximations discussed in the following
are based on the assumption that the particle ve-
locities are small compared to c. Specifically we
approximate

j =x x k+ 8~+ s2 (18)
E —= Mc +

2M 8M'c' (30)

and It is easy to verify by Taylor expansion that for
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any sta.te g

Q' Q' ( 1 Q'
2M 8M'c' 16 .!IPc'

(»)

ables are well defined. For interacting particles
ambiguities arise which will be explicitly exhibited
in Sec. IV.

III. SINGLE-PARTICLE VARIABLES

"M
I

(32)

and therefore the approximation (30) is justified
if the right-hand side of Eq. (31) is sufficiently
small. We also assume that

For noninteracting particles the relation be-
tween Q, q and p„p, is determined by the require-
ment that Poincare generators be the sums of the
individual particle generators; in particular P
=p, +p, . We have"

We have therefore the following approximation for
ga

M
Q (Pl +P2)

@0
(41)

/=1 —pilX, Pj (33)

where

i(- -
)

Q Q (P, —P2) i —
2 (42)Mc2 E c2+ 0

For 00 —I we will use the approximation

q2 1 p1 +$2
8 »2' C

where m is the reduced mass

(34)

u)» = (p„'+m»'c')"',

for K=1, 2, and

P2) &/2

(43)

Pl PJ22

M

and

for K = 1, 2. Since

(35)

(36)

=c '[((u, + ~,)' —(p, +p,)'j ' ' (44)

(45)

is the two-particle mass operator defined in Eq.
(5) expressed as a function of p, and p, . The spin
operator sl, of particle K is related to the canoni-
cal spin 0~ by"

s»=@(p» Q)o»

2m c ' 8 i~' c

m(p, , +—p, , ) —~~, (37)1, , q

the approximation is justified for states P for
which

L(q)q =(M, o, o, o),

N (p», Q) = L(L (q)P„)L(q)L '(P»),

where

(46)

(4V)

where S is the Wigner rotation corresponding to
the rotationless Lorentz transformation L (q) that
tra, nsforms the four-vector q = (c 'E„Q) to rest,

27

(38)
p» (c M») p») ' (48)

These conditions for the states legitimize the for-
mal expansion of the generators in powers of c '
to first order. Convergence of the infinite series
is not neces'sary. The approximate generators are
in our representation

K =MXq+ (39)

and

Q, xg q X, S S2 Pl) 1)P2& 2& 1& 2& (4S)

and clearly there exists a further canonical trans-
formation to variables

1
2(p, —p2), r, —r„p, +p„2(r, +r, ), c,y o2.

Equations (41), (42), and (45) determine a. canoni-
cal transformation

Q
2 Q4

H=hc 1+2 (40)

There exists therefore a unitary transformation U

such that

The crucial step for many applications and for the
generalization to N-particle systems is the tran-
sition to single-particle momenta p, and p, and the
conjugate position operators r, and r, . For non-
interacting par ticles these single-particle vari-

0~ = Us~U,

for K=1 and 2,

—,'(p, —p,,) = UqU,

r=—r, —r2=Ux U,

(5o)

(51)

(52)
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P -=p, + p, = UQU ",

~(r, +r, ) = UX@U .
(53)

(54)

K=K, +K +K' (65)

The transformation U gives us a.ll the variables Q,
XQ p q xq) 8 1f s2 and hence the generators explicitly
as functions of the single-particle variables. It is
clear from Eqs. (41), (42), and (45) that for P =0
the transformation U reduces to the identity. The
transformation for noninteracting particles was
designed to yield

H =H, +H2+H', (66)

Xo ——R + iIR, (40+ 4,)],
where

(67)

where a prime denotes the interaction part of any
operator. To order c ' we have from Eqs. (54) and

(64)

(55) R —P, 111+P2I 2. (68)

B =(p 'c'-+m 'c")"',

K — K~,
E

r H z
It. —

2 2L Z~ III-H
IC+ E

(56)

(57)

(58)

The transformation (p, . r„p„r,) - (P, Rp, r,) is
canonical.

It follows from Eqs. (39), (67), and (64) that

K' = iMIR, 4 ',]

(69)

We now reinstate the interaction by replacing h, by
k in Eq. (41), and retaining the other relations (42)
and (45) unchanged. There are no principles that
prevent us from introducing other interaction-de-
pendent terms into the transformation U. We will
discuss this ambiguity at length later.

To order c '- it follows from Eqs. (22) and (42) that

Q = P P(a M)/M, (59)

ancl

where

V =lim n

is the nonrelativistic limit of v, and thus

4', = —P K'.

From Eqs. (40) it follows that to order c '

(7o)

(71)

VOP2H' =v(r, p) ii[ V, 4,] i+,4,' +it V', 4,] ——

q = 2(p, —p, ) + 2(v, —p, )Q

&

Q
Q'p p2 —py
(Mc)' 2mMc'

where p is by definition

p =-'(p. —p:)+-'(~, —v, )(p, + p.)

~2 Pl ~1P2'

Let the operators 4 „and 4, be defined by

1 P ~2 ~l ~2
(Mc) 2mM

@ye
~ P X pE

2m~Me

(60)

(61)

(62)

We now assume that the nonrelativistic limit of
the potential is velocity-independent, i.e., that

[r, v'] = o, v' = v 0(r). (74)

(72)

In Eq. (40), the ma. ss operator h was a. function of
q and x„whi1e in Eq. (72) it has been expressed as
a function of r and p defined by Eqs. (51), (52),
(61), and (64). Equation (59) wa. s used to obta. in the
last term.

The operator @, was defined by Eq. (63) to meet
the requirement P =p, +p„and hence

t/' PP' =iIP, C',]+,=o. (73)

and

C, = —8 IP, (r, +r,)j,
h —M]

(63)

It is then easy to verify that the operator

eiP ~ r(u2-u~) 2[1 i(4, C, )] (64)

has all the required properties.
If we express the generators K and H given by

Eqs. (22) a.nd (25) as functions of the individual
particle variables defined by Eqs. (50)-(54), then
it follows that

The significance of this restriction will be dis-
cussed in the next section. The assumption im-
plies that the momentum-space kernel (p' ~v ~p)

depends only on the difference p' —p in the non-
relativistic limit, i.e. ,

lim(p' ~v ~p) = V'(p' —p), (75)

where V'(p' —p) is the Fourier transform of Vo(r).
We assume further that the relativistic corrections
to V' are obtained by expansion of (p' ~v ~p) in pow-
ers of (p'+p)/(2mc). We can then write
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(p'~v tp) =(w'u)' 'V(p' —p)

p +p

1 (p'+p) r '~, ,

where r denotes -iV;, ; and

M~M2 C
2

[(p2+~ 2ca)(p2 m 2c2)]lf2 ~

(76)

(77)

p, p,.g(.r)f(r) or p, g(F)p, f(F. ) for —,'fp, , jp, , g(F)f(F)}}.
This unambiguous convention is precisely the Weyl
prescription" for the quantization of the classical
Hamiltonian.

The form of the i'irst term of Eq. (76) was chosen
for later convenience; expanding (zv'w)'f' in pow-
ers of c ' we obtain

v= V(~)+,+ 1—

The last two terms in Eq. (76), which involve two
arbitrary functions A and 8, represent the most
general spin-independent expression that may arise
in the expansion of v. There is no term propor-
tional to (p'+p) ~ F/(2mc) in Eq. (76) since we do
not wish to pursue the possibility that v might not
be time-reversal invariant. The function V(p' —p)
need not be equal to the limit V'(p' —p). There is
no advantage in a formal expansion of V(p' —p), or
its Fourier transform V(r), in powers of c '.

For any function f(p' —p) we define

[V(-).~(.-)]--1�'1pr'
2 &le 2 tp2c

(81)

Without loss of generality we can change the defini-
tion of V(x) to include the term proportional to
V2V. Since this term is of order c ', this change
in definition does not affect the terms that are al-
ready of order c ' and the net effect is to delete
the |7'V term from Eq. (81). For the same reason
we may replace V' by V in Eqs. (69), (71), (72),
and (73) without affecting their validity.

From Eqs. (62) and (63) it follows that

f(r) =
(p ),r, f d. '(p' —p)f(p' —p)e'"'

Momentum-space kernels of the form

(p,'+p;)f(P' —p)

(78)

(79)

i[V Clo] =
2 2 2 + P rp ~ )p'V

p r p Vp p, IL(,

2C2 2mMc2

i[(p, ,o, —l), ,o,) P xp, V]
2ypgMc2

and

(82)

(p;'+ p;)(p,'+pf)f( p'- 0) (so)

thus represent operators (p, ,f(r)] and

(p, , ip, ,f(F)}},respectively In orde. r to simplify
the notation it will be convenient in the following to
have it understood that complete symmetrization
of operator products is implied. This means that
we will write p,f(r) for —,(p, ,f(r)} and either

, p, ,[ ~] P pV(F)(u. -u, )

In the absence of tensor forces we have

vv= —', ~= fF/. - (84)

From Eqs. (72), (81), (82), and (83) it follows that

( )
i[(p,o, —tu, o,) (Pxp), V]

2mMc2

l )p, p, p, Pp, r ld'V
(p) ( m) (p r) (

re ldP)I (85)

=K'+K"int (ss)

II. =II' g H"int (87)

The relatively simple expression (85) has been
obtained by assuming V to be a central velocity-in-
dependent: potential. The expressions (69) and (70)
are independent of these assumptions. A more
general form would have resulted from the addi-
tion of an arbitrary interaction term 4, to 4, + 4,
in Eq. (64). The interaction terms in K and H
would then be

where, in analogy to Eqs. (69) and (72), we get

and

2"= iM[It, C,]

H" =i[(p~/2m+ V), 4,].

(88)

(89)

In order to preserve the conditions that P and J
have no interaction term, i.e. , that P'=0 and J'
= 0, we must require that C, be invariant under
rotations and translations. Since me want H" to be
time-reversal invariant, 42 must be odd under
time reversal. In the next section we examine
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possible additional restrictions on 4, imposed by
the assumption that r, and r, are observable par-
ticle positions.

IV. THE WORLD-LINE CONDITIONS

[rzo+j j =2 21're~~ [&rid+]].
1

(9o)

The obvious generalization to noninteracting par-
ticles with spin is because of Eq. (58):

The world-line condition for particles without

spin can be stated as the requirement thai the
commutation relations of the individual particle
positions r~ with the Lorentz generator K are the
same with and without intera, ction, "namely

[~,,z,"]= o.

In any case it follows from Eqs. (96) and (97) and

the Jacobi identity that

(98)

[R,, K,". ] =iM[R, , [R,, 4,]]0 0. (100)

If we consider either spinless particles or aver-
ages over all possible spin orientations, then the
world-line conditions imply the conditions (74),
(98), and

(99)

Hence V can depend at most linearly on p. As a
consequence of the assumptions adopted in Sec. III,
there are no terms proportional to p r. Thus, the

only nontrivial scalar quantity that is linear in p is
a. spin-orbit coupling of the form s lf(x), where
l = r & p. If such a nonrelativistic spin-orbit cou-
pling is present, then Eq. (96) requires that

& ~~a'Yz~
2HE+ Alp C

[R, , K,". ] = 0. (101)

(91)

Even for interacting particles the last term in the
approximate form is independent of the interaction.
It is well known that the classical condition cannot
be satisfied exactly for interacting particles. '
However, it can be satisfied approximately to or-
der c '. The requirement that Eq. (91) be satisfied
to order c ' implies restrictions for both V and U.
From Eq. (69) the interaction term K'+K" of K and
the nonrelativistic limit of the potential must satis-
fy the relation

We must find the most general form of 4, which
is translation and rotation invariant, odd under
time reversal, and consistent with Eqs. (97) and

(101). Terms in C, containing higher powers of the
momenta than the first would lead to terms in H"
of third or higher powers in the momenta. If we

assume that the interaction terms of H contain the
momenta. only through the velocities P/M and p/m,
such terms will be of order c ' or higher. Thus the
most general form of 4, satisfying all our require-
ments is

(102)

[~„,(K'+K"),]=,[~,, (~„,v]].

Since by definition (68)

r, =B+ p, ,r

(92)

(93) (102)

and

where the factors are chosen for later conve-
nience, and W(x) and Z(x) are arbitrary functions.
Then it follows from Eqs. (88) and (89) that

K" = —.'Rv(~)

r2 = P —JLltl r,
it follows from Eq. (92) a.nd

[R, v]=o

(94)

(95)

a =",VZ(.)
P p, Wmc' 2m''

P ~ rp rldW 1 p
' 1 p ~ r'1dZ

2mMc' x dx 2 mc 2 n~c x dh

(104)

[R,, R',". ] = ', '[~, , (~„v]] (96)

and

(p, , —g, )[R,, K,". ] = —p, ,p, ,[~,, (K'+K" —c 'RV), ].
(97)

If K" commutes with R it follows from Eqs. (96)
and (97) that the potential V is velocity-indepen-
dent, i.e. , [r, V] =0, and the. t

The first term in Eq. (104) is a. function of x which
can be included in the definition of V(x) as dis-
cussed for Eq. (81). The last two terms are, re-
spectively, of the same form as the terms pro-
portional to 4 and 8 in Eq. (85). As long as A and
& are arbitrary functions, the further arbitrary
function Z does not lead to more general results.
Thus we have for spinless particles (or after tak-
ing averages over spin)
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1dVH'+H" = V(r) — p p p'(~) p r p ~ r--
2c vl Sz

+ —' — ' V+X + '-—' r Y+—'

p,. ~ r p, r p, r ldW(
m, m, m, r d~J' (105)

where by definition

X=A ——V+X — 2%'= -M -M' ~

m 1dV 1dZ pn, 1dS'Y=B- + +MxA xdh M x A'

(106)

PK~
K

J= JK,
K

H = HK+ HIK

(109)

(110)

V. N-PARTICLE SYSTEMS KK+ KIK~
I&K

(112)

As noted in the Introduction, the cluster separa-
bility requirement is not readily satisfied in the
BT theory. Therefore, instead of proceeding with
an expansion of the exact BT theory, we shall con-
struct an approximate many-body Hamiltonian
from the approximate two-body Hamiltonians ob-
tained in Secs. II and III, maintaining the I ie alge-
bra to the order required.

For any cluster of two particles I and K we adopt
the notation V- V,K and similarly for all other two-
body operators. From Eqs. (86), (69), (87), (72),
and (89) if follows that the two-body interaction
terms in the generators K and H are

[&;,It,]=Z[p; ff;]

+.QQ[(p1+ p»); K1»,1
I&K

=-ii, , E ii, +pgii„),
r&K

and thus Eq. (13) is satisfied. Furthermore,

(113)

then the cluster separability requirement is mani-
festly satisfied, as are the commutation relations
(7)-(12). However, we have to verify the remain-
ing relations (13)-(15). We have

K1» = H(r1+ r»» ~1»lf+ K1'» (107) [fc,, Ic,.j =g [sc„., ff„,.]

and

HI» +1»(r 1» PI») + f[~1» o1»]

2 2
~ prK PIK VrK+ I» & ( ll»+ 21») 2M 2 2

IK IK t-"
and since

+ 2 Kr+ KK i, KIK~

(114)

(108) I» I»[HI»& (@11»+ 21»)]i (115)

If we tentatively assume that the Poincare genera-
tors are of the form

it follows from the Jacobi identity that the second
term in Eq. (114) vanishes. Equation (14) is there-
fore verified. On the other hand,

[H, K] =g[H, K ]+/ /1[(H +H„), K „+[H„,(K +K„)])
I&K

IK& IL + IL& KL + KI & IK + IK& KL (116)
I&K, ICL

K&L
ICL, K&L I&K&L

Since the single sum equals —iP and the double
sums vanish, Eq. (15) is satisfied if and only if all
triple sums in Eq. (116) add up to zero. This is the
case if the V's and W's are only functions of the
particle positions. Otherwise they must be can-

celed by adding a suitable three-body interaction
of order c ' to the Hamiltonian H."

It should also be noted that independently of these
considerations any three- (or more) body terms in
H which only depend on the various particle sep-
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arations and are of order c ' are compatible with
the commutation relations (7)-(15) to that order,
and thus could be introduced in Eq. (111)as possi-
ble relativistic corrections. However, it ~ould be
more appropriate to consider such terms only if
many-body terms are already included in the low-
est order. We shall. therefore not pursue this

pos sibility her e.
Summarizing our results, for the case in which

the nonrelativistic interactions are velocity-in-
dependent and spin-independent (or averaged over
spins), the ma. ny-body Hamiltonia. n to order c ' is
given by

II=+ „c'+,P P',. =, +Qg V,.
K 'K 'K C I&K

1 v ~ v ~ d«, ~ u )«,«), v, «)-«) 2 +, — IK+~C I(K M I'Hl K 'fI'l I BlK 'VIK dX'IK &&'l I &&'l K '0'l I 'M
K

2 2PI PI PK ~ PK IK PI IKPK IK IK+ IK
~~~K +l I ~K +IK d+IK

(117)

VI. APPROXIMATELY RELATIVISTK HAMILTONIANS
RELATED TO POINCARE-INVARIANT VARIATIONAL

PRINCIPLES

The Hamiltonian (117), constructed to provide
an approximate realization of the Lie algebra
(7)-(15) of the Poincare group, was based on a
two-body Hamiltonian obtained by an expansion of
the exact two-body BT Hamiltonian (3).

Results that are equivalent to order g ' follow
also from a different exact theory proposed by
Havas, 'which, in contrast to the BT theory, is
formulated in terms of physically significant
single-particle variables from the outset. It
starts from a Poincare-invariant "Fokker-type"
var iational principle

5I=5(I,+I, ) =0,
where I, is defined by"

(119)

Jf ] «v, dv «, (s,",H, "),
I&K (120)

&z~=~i (Ts) ~P~z»
where zI" is the world line of the Ith particle

[see Eqs. (66), (85), (87), and (105)]. The cor-
responding i,orentz generator K is according to
Eqs. (65), (69), and (104)

p 2

«=p(, , *,);
+ —2 rl+rK VIK+ rI —rK ~IK

(118)

We have treated all particles as distinguishable.
Note that in a theory of direct particle interactions
there is no spin-statistics theorem, and thus for
identical particles the symmetry (or antisym-
metry) of the wave function under interchange of
a pair is an independent assumption. "

parameterized by the proper time 7I in the Min-
kowski space of metric

'gyp 0 pw v

-2
goo +y ggg f22 f33

and vI is the four-velocity defined by

p d P

dTI

Since from Eqs. (121) and (122) we have

VIP VI —1) VI OVID —0
P

P

(122)

ZI =0,

dtL rK t, VK t, K=1, . . . , &

(125)

with

T =--,' rn KVK',
K

drK
dt

(126)
V'= VIK +IK ~ +IK= rI t rK t

I&K

then, as shown in WH, ' the variational principle
(119) is equivalent to a variational principle of the

the variations of the components of each world
line are not independent; the term 5I, is intro-
duced to maintain the conditions (123). It is de-
fined by

51, = —P t dqzlVI~(7x) -c'vz5vz» (124)

where the Mx(rz) c' are Lagrange multipliers.
Since the gI" are four-vectors under the Poincare

group, the world-line condition is automatically
satisfied, but no exact canonical formulation of the
form (7)-(15) is possible. If the interaction is
such that it possesses a Newtonian limit in the
sense that for c-~ Eq. (119) is equivalent to
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form (125) to order c ', but with a Lagrangian
differing from that of (126) [see Eq. (WH75)]. This
approximately relativistic Lagrangian is equiva-
lent to an approximately relativistic Hamiltonian
[Eq. (WH105)] of the form

(128)

~ is given by (125), and the "post-Newtonian" in-
teraction Ip~ is given by

~p' p~y p» 'r»z pE r»~ d~IL
»~z rz

»&E

» E » E

Here V»~ is the Newtonian potential, which can be defined from the relativistic function A«by a, procedure
described in WH. Szmzlarly, X»x, F»z, and ~»g are functions which are defmed by A»» and ~ general are
independent of V»E. The particular form of their dependence on A»„ is not needed here; indeed, the prob-
lern for any application of this formalism would be to determine a possible A« from the four experimen-
tally found functions rather than to calculate these functions from a known A»~.

The total momentum and angular momentum are

(130)

~=+ rz "px ~

K

II and the components of P, J and the center-of-mass quantity

p6=K —Pt= mz+ z, +, Z (Vlr+ Wzr) rr —I' t, W~z=———Wl~, I&K
2&1»c 2c gg~

(132)

are ten constants of the motion, whose Poisson brackets satisfy the Lie algebra of the Poincare group to
order c '.'&"

In Eq. (132) a definition of antisymmetry for Wz~ was introduced purely as a matter of convenience to
obtain a K or 6 of the same general structure as in the Newtonian case, i.e., with a sum of terms each
multiplied by an individual position vector (which is the form previously found for all particular approxi-
mately relativistic theories investigated by various authors"). Whether such a definition (which is not
needed anywhere in the considerations of WH) is introduced or not, Eq. (132) can be written

~ 2

Q —Q zzzl+ —I
2 rz+ =z QQ [(rz+r~)Vz~+(rz —rr)Wz~] —Pt.

» 21%»C 2C»(E (133)

Since the components of 6 satisfy the same Lie
brackets as those of K, all the results of the pre-
ceding sections can readily be transcribed from
K to 6, and conversely for the results of %H and
of Ref. 18. To obtain the classical limit of our
earlier results, we just have to replace all (pos-
sibly noncommuting) quantum-mechanical opera-
tors by the corresponding (commuting) classical
quantities. It is then immediately apparent that
our Eqs. (117) and (118) reduce to the classical
results of WH [our Eqs. (129) and (133)].

Conversely, if we restrict ourselves to spinless
particles, the classical Hamiltonian (127) differs

from the nonrelativistic one only by a. more com-
plicated dependence on positions and momenta,
and thus the corresponding quantum-mechanical
Hamiltonian can be obta, ined as usual by replacing
the classical positions and momenta by the corre-
sponding quantum- mechanical operators. The
only difficulty in this procedure lies in finding the
proper order of these noncommuting operators
for the various terms in Iz,„, given by Eq. (129),
which are products of the momenta and of various
functions of z«and the components of r»~. The
question of the correct order is an old one, and
various schemes for resolving the ambiguities
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'H~==, -&», ),P, )
~(P»i 0'+2&»tPP»i+ &P»i ) i

'(4, PI.)-, -f „)
= 4 (PI&&»r &+PI& &&»a+ &Ki &&ra

+ WPI~P»i}

(135)

(136)

= ~ (Pra &+ ~&Ia &&r~+ &'PI& )

(without summation over repeated indices),
. where the braces have the same meaning as in Eq.
(3). These rules correspond precisely to the sym-
metrization rules introduced in Sec. III, and thus
the quantum- mechanical operator corresponding
to the classical Hamiltonian (127) becomes for-
mally identical with the operator (117) based on
the BT theory.

The approximate classical Hamiltonian (127) as
well as the corresponding quantum-mechanical
one are not symmetric under interchange of the
particle variables rI(t), pI(t)lmI and r»(t), p»(t)/m»,
unless W~~ vanishes, just like the approximate
Hamlltonlan {117}.. However~ this lack of sym-
metry of (117) arose from the relation of the
variables describing the system in the exact Ham-
iltonian (2) to the single-particle variables rather
than from any immediately recognizable property
of the exact Hamiltonian, while the lack of sym-
metry of the approximate Hamiltonian (127) re-
flects a corresponding lack of symmetry of the
exact relativistic action (120) under interchange

have been suggested. One method, based on
group-theoretical considerations, is due to Acyl";
explicit results for one dimension were obtained
by Mccoy ' aod for an arbitrary number of di-
mensions by Daughaday and Nigam. " An alter-
native, generally lneqUlvalent, method ls due to
Born and Jordan, "and was also generalized in
Ref. . 32. However, Weyl's method appears pref-
erable, -'~ and we shall not consider any others
here.

It is sufficient to state the quantization rules
only for the case of two particles I and E. Fur-
thermore, because of the form (129) of I~N, we
need only state the rules for terms whicharebilin-
ear Ul the components of p~ and pg~ ol quadratic
in the components of either. Wherever we have a
classical expression

f P( IKI Is K)PI% P»l

(134)

the corresponding quantum- mechanica, l operator
E "" [following from Eq. {22) of Ref. 32] is given
by

of the particle variables»z" (rI},II"(r,) and K"(y ),
II~K(7'K). It should be noted that this interchange
in the exact interaction involves an interchange
of times as well as positions, as required in a
manifestly I,orentz-covariant formalism.

vier. 0&ScUssroz

In this paper we investigated the problem of
finding the most general form of Hamiltonians
which are invariant under the Poincare group to
order c ', and which represent approximations
to theories which are exactly invariant under this
group. We showed thai both the classical and the
quantum- mechanical approximate Hamiltonians
following from two exact theories (the quantum-
mechanical canonical theory of Ref. 5, and the
classical "Fokker-type" theory of Ref. 6), for
spinless particles, "are formally identical to or-
der c '. The approximate Hamiltonians are char-
acterized by the appearance of three independent
functions of the separation ~ for each pair of par-
ticles in addition to the Newtonian potential energy
V.

While the Hamiltonian are formally identical,
physically some differences remain. The classical
theory started from an action integral in which the
integrand was a function of the four-coordinates
and four-velocities of the particles, which are the
correct physical quantities transforming appro-
priately under the Poincare group by assumption;
the four independent functions V, X, P, and W

followed unambiguously from the exact relativis-
tic interaction A (and any nonsymmetric contribu-
tion to the approximate interaction IpN was a con-
sequence of an absence of symmetry in the exact
interaction). The BT theory, on the other hand,
started from a Ha.miltonian with an interaction
term which was written as a function of variables
describing the entire system without a clea, r phy-
sical interpretation; the appearance of the inde-
pendent functions W and Z in the approximate in-
teraction was a consequence of the ambiguity of
the unitary transformation relating the original
variables to single-particle variables (and any
nonsymmetry in the approximate interaction is a
reflection of this ambiguity), i.e., the physical
content of the exact theory is only determined
through this transformation.

In lowest order c' both theories yield the fami-
liar velocity-independent Hamiltonians of New-
tonian or Schrodinger theory. However, this is
by no means the only possible nonrelativistic (i.e.,
Galilei-invariant) Hamiltonian even for spinless
particles. The restriction to this particular form
was arrived at differently for the two theories.
For the theory based on a Poineare-invariant
variational principle, the class of relativistic in-
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teractions was restricted in its dependence on the
relativistic two-body invariants so as to ensure
the existence of the desired Newtonian limit, as
discussed in detail in WH. For the BT theory, on
the other hand, this limit followed from requiring
the validity of the world-line condition, as dis-
cussed in Sec. IV. As noted above, this condition
is automatically satisfied in the relativistic La-
grangian theory. The reason that this does not
restrict the nonrelativistic limit in the same way
as in the BT theory is that in the latter the world-
line condition operates in conjunction with the
canonical formalism (i.e. , the requirement of a
realization of the I.ie algebra of the Poincare
group) from the outset, while in the former this
requirement is not imposed automatically.

Recent work by Pauri and Prosperi" on the
classical BT theory for two particles illuminates
the same problems from a different point of view.
Because they consider the classical theory they
naturally insist on the definition of particle posi-
tions x, and x, that satisfy the world-line condition
everywhere. It follows that, for interacting parti-
cles, these particle positions cannot be obtained
by a canonical transformation and do not satisfy
canonical equations of motion. Instead they satisfy
Newtonian-type equations of motion that, to or-
der c ', can be derived from a Lagrangian. There-
fore, to order c ' there exists a Hamiltonian func-
tion of x„x, and the canonically conjugate mo-
menta p, and p, . To order c ' their definition of
xy and x, involves two arbitrary functions that
correspond to our functions Z and 8'. From the
expansion of v they obtain four functions com-
pared to our three because they expand V(x) in
powers of c ' and we do not.

Various authors" "have given special expres-
sions for interactions in approximately relativistic
Hamiltonians within the framework of the canoni-
cal formalism, sometimes claiming to have ob-
tained the most general expressions. Their re-
sults do not include our nonsymmetric R' terms.
For the comparison it is important to note that
when the nonrelativistic two-body potential VN" is
defined to be a rotationally invariant operator that
commutes with P and R,

[P VNR] [ H VNR] (138)

then it may include our X and F terms.
In Secs. II-IV we considered particles with spin,

and then dropped further consideration of spin to
facilitate comparison with the results of WH.
There are two ways in which the results of WH
could be made to include spin: first, considera-
tion of a classical variational principle for parti-
cles with spin, "and second, by introducing spin
only through the direct quantization of the WH

(140)

where A,
' is an arbitrary parameter, with

0 ~ A.
' ~ 1.4' The method of Blankenbecler and

Sugar ' yields X'= 0. Another widely used pre-
scription gives A,

' = 1.42'~ Hamiltonians with dif-
ferent values of the parameter X' are canonically
equivalent; they can be transformed into each
other by appropriate choices of Z4 0. The clas-
sical result follows for

Z= 4 (X'+ l)v. (141)

It ean therefore be obtained only by an additional
canonical transformation, Z t 0. This situation is
well known in the context of electromagnetic in-
teractions, "but generally ignored in the litera-
ture on nucleon-nucleon potentials. "

Thus we have the following observations about

Hamiltonian for spinless particles (127)."
As shown in WH, no terms in c ' can arise in

the approximate interaction Hamiltonian (129) even
if the exact interaction (120) is not time-reversal
invariant. However, such terms are not neces-
sarily absent if the interactions depend on spin or
isospin. " They could have been included in our
approximate interaction Hamiltonian (105) through
terms in v that are not time-reversal invariant
or through 4,.

We now turn to the question: What eanbe learned
from our analysis about nucleon-nucleon poten-
tials? Are the approximate world-line conditions
a physically reasonable requirement? Clearly it
makes sense only to the extent that we have struc-
tureless point particles. The notion of a pion
world line in the vicinity of a nucleon seems in-
appropriate since the pion-nucleon interaction
involves absorption of the pion. For nucleons it
is possible and reasonable to satisfy the approxi-
mate world-line condition, but the requirement
is not necessarily compelling. It is violated by
most phenomenological potentials, but it is satis-
fied by the one-boson exchange potentials.

The approximate world-line conditions do not
impose any restrictions on the velocity-dependent
terms. For simple field interactions the classical
theory predicts the unambiguous result 8'= 0,
Y=0, X=0 (- V) for scalar (vector) fields in Eq.
(105).' On the other hand, conventional potential
constructions from quantum-field theory are am-
biguous. For instance, the folded diagram method

yields one-boson potenti. als for equal masses
(m/M =-,') and scalar bosons such that W=0 and

Z =0 in Eq. (104), and such that in Eq. (85)

(139)
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nucleon-nucleon potentials. (I) If the approxi-
mate vrorld-line condition is imposed the nonre-
lativistic limit of the potential must be velocity-
independent. (2) If the potential is derived from

simple covariant fields the velocity-dependent
terms of order c ' are unambiguously determined
by the classical correspondence as functions of
the nonrelativistic potential.
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