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Pressure and composition of a weakly degenerate nucleon gas
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The equation of state and species concentrations of a hot neutral gas of neutrons, protons, electrons, positrons,
and muons are determined in the temperature range 5 )( 10' -5 X 10"'K and density range 5 X 10' —10" g/cm'.
The gas is considered to be in local thermal and chemical equilibrium under the effect of weak and strong
interactions. A virial expansion is constructed to include second-order statistical and dynamical terms, the
latter through experimental nucleon-nucleon scattering phase shifts. Decreases in pressure and increases in
electron number densities are found to be quite modest.

I. INTRODUCTION II. THE VIRIAL EXPANSION

Since the early work on noninteracting models
of completely degenerate neutron-star matter, "
considerable work has gone into the effect of nu-
clear interactions on the equation of state and com-
position of that matter. '~ While the most inter-
esting physical situations do arise when sufficient
cooling allows the matter to pass into a state of
extreme degeneracy, there are situations in which
it is of interest to know something of the nature of
neutron-star matter in a condition of partial de-
generacy. " Such partially degenerate neutron-
star matter has been given some attention in the
noninteracting nucleon approximation. For ex-
ample, the important question of the relationship
between the deposition of neutrino energy and
supernova explosions involves a knowledge of the
constituent-particle humber densities (electron in
particular) in a state of low nucleon degeneracy.
Although this problem of the role of neutrinos in
producing a supernova explosion has gone through
a varied history, the related problem of the effect
of nuclear interactions on the equation of state of
a weakly degenerate nucleon gas in the presence
of weak interactions has not been considered, al-
though finite-temperature many-body theory has
been applied to a purely neutron gas. ' In the pres-
ent note we construct a virial expansion of the
grand partition function, and explicitly calculate
the second virial coefficients of the nucleon gas.
These virial coefficients contain both quantum
statistical corrections and dynamical corrections.
The dynamical corrections can be related to ex-
perimental information on nucleon-nucleon scat-
tering and are thus model independent. The effects
upon the equation of state and particle number den-
sities can be expressed, at sufficiently low den-
sities and high temperatures, in terms of these
virial coefficients. The interaction turns out to
give corrections at most of about 20%%u() in the range
of densities and temperatures considered in this
work.

Z(N N ) T - (()8,)(.. . . ,) (2)

In the above H(N„. . . , N, ) is the Hamiltonian for
a system containing N,. particles of the ith species.
The Hamiltonian can be written as

H Ho+Hc+H g r

where H, is the kinetic energy of the various
species, H~ is the Coulomb interaction energy,
and H~ is the nuclear interaction energy. We next
decompose Z, as

~( v;+ vj)+ ~Z g
i~j

where the prime on the sum in the first term in-
dicates a restriction to those species that undergo
nuclear interaction. Equation (4) then defines 5Z, .
The quantity Z, , is the appropriate two-particle
partition function which will be given below in de-
tail. We next subtract from Z„. the two-particle
partition function for a pure Coulomb interaction,
Z,.„and add it into 5Z, . If at the same time we
neglect all nuclear interactions in 5Z we then
have

(4)

z =z'+~'(z -z') ""'"'
g g ~ &j fj

i~j
where Z is the grand canonical partition function
for a system with only Coulomb interactions. We
have estimated, on the basis of the random phase
approximation, the effects of the Coulomb inter-
action on the equation of state and species con-

The grand canonical partition function for a sys-
tem containing s species is given by

Z, = P exp (QN, w;) Z(N . . . N„), , (1,)
mrs

where P =1/kT, g, is the chemical potential of the
ith species, N,. is the number of particles of the
jth species present, and Z(N„. . . , N, ) is the ca-
nonical partition function
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centrations and found these effects totally negligi-
ble for the conditions of temperature and density
of interest in the present work. Thus we finally
write

where Po is the noninteracting gas pressure (as
a function of temperature and the various chemical
potentials) and 5P is a correction given by

5P = kT Zc ) e8(u;+u;)
V

The species number densities can then be deter-
mined from the relation

(8)

where

N; 'dP

V 8 p, ;
=n, +On;,

0 —~P0
8 p. ;

6n = — e (u;+u;)(+ +c)1
(10)tj kj

i~j
We now turn to the computation of (5P in terms of

the two-body nuclear interaction. By separating
the motion of the two particles in question into a
center-of-mass motion and a relative motion, the
two-particle partition function in 5P can be written

6 Z; =Z] -Z;.
V ec

23/a P (
-Se;~ -Be;z )

40~ .

where

= (g2/2p~ . . QT)3&2 (12)

and m, , is the sum of the masses of a particle i
and a particle j. The states labeled by n are in-
ternal states and the quantities e,", and e,", are
the allowed relative energies for the nuclear plus
Coulomb interaction and pure Coulomb interaction,
respectively. Equation (11) may be further written
as

AZ = 2 g e
V

ij CX

CO~j

+ dE dgj E —d;j 6 e

z, =z,'+Q (z,, -z )e '"''"", (8)
i~j

where Z' is the grand partition function for a sys-
tem of noninteracting particles.

The pressure can now be calculated by standard
means from Eq. (6) as

P = lnZg =Po+5P,uT

III. AN INTERACTING NUCLEON GAS

When the two species labels i and j represent
protons and neutrons, hereafter labeled p and n,
we are dealing with an interacting nucleon gas.
We assume that the neutron and proton masses
are equal. The rapid convergence of the virial
expansion in Sec. II depends on the quantities Pg„
and P p ~ being large and negative, i.e. , on the nu-
cleons being essentially nondegenerate (and also
nonrelativistic). We define a degeneracy factor

D = (n„'+ n,') (u,

where + is defined in Eq. (12) for nucleons. If
D«1, then the conditions of nondegeneracy are
met. The scattering data of Mac Gregor, Amdt,
and Wright" may now be organized for inclusion
in Eq. (14). The experimental phase shifts are
nuclear bar phase shifts, "i.e. , phase shifts using
the bar parameterization with the direct Coulomb
effect removed,

=&~ =& —&c. (15)

The bar and subscript Ã will be suppressed in
future discussion. The Mac Gregor et al. data
are for neutron-proton scattering in the spin sing-
let-odd parity and triplet-even cases and proton-
proton for the singlet-even and triplet-odd with the
exception that 'S, neutron-proton is also included.
The following groupings can thus be made, with a
degree of approximation noted below:

where n is now a bound state of the ij nuclear
system, g is its statistical weight, B„is its
binding energy, and d, , (e) is the density of con-
tinuum states in the presence of nuclear and Cou-
lomb interactions, while d;, (e) is the density of
continuum states in the presence of only the Cou-
lomb interaction. Finally, from the work of Beth
and Uhlenbeck, ' the difference in the density of
states, d, , (e) —d~~(e), may be written in terms of
the scattering phase shifts of the species in ques-
tion with both nuclear and Coulomb interactions
present and those with just Coulomb interaction
present. The result is then

d, , (e) -d, ', (e) =Q' [&„,(e) —5,'„(~)],
SI J

(14)
where we have made a partial-wave decomposition
in terms of the orbital, total, and spin angular
momentum quantum numbers I,J,S. The prime
on the summation indicates that only those states
allowed by the Pauli exclusion principle are to be
included. We now turn to a discussion of the de-
termination of the sum over states from experi-
ments, and the subsequent evaluation of the pres-
sure shift and concentration shifts.
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S",,(E) = [5( S ' e) + 55 ( 'D", ; c) + 95 ( 'G", ; c)] /~,
gnn (&) ~nP (e) [5( SnP. ~) + 55( DPP. &) + 95( GPP e).] /&

~",'(&) = [35('P",'; e) + 75('F",', &) + 115('a",'; e)] /~,
an~(e) =[35('Sn~ e) +35('D ~ne) +75('D"~ e)+ 75('Gn~ e)+95('Gn~ e)+115('Gn~; e)] /n, '

(16a)

(16b)

(16c)

(16d)

6",' (t ) =6"," (e) =6", (E) = [5( 'Po', e) + 35( 'P', j ~)

+ 55('P", ; f) + 55('F", ; E) + 75('F", ; e) +95('F", ; c)

+ 95('If", ; ~) + 1.15('H", ; e) +135('e", ; e)] /~ . (16e)

Substitution of n-p data for g-g and p-p data for yg-pg and g-p is not serious because of the charge independ-
ence of nuclear forces and because of the inclusion of the important 'So~ phase shift in Eq. (16b). The ex-
perimental data cover the relative energy range 0.5-230 MeV. The S-wave phase shifts 5('S",~), 5('So~),
and 5('S, ) are taken from the effective range"'" theory below 0.5 MeV, while the others may be interpo-
lated linearly in that range. The temperature range of interest is 5x10'o-5x10'~ 'K (4.3-43 MeV) so the
scattering-data energy spectrum is more than adequate to ensure accuracy in calculation of quantities such
as Eq. (12).

We can now write

y 230
n, Z„p = —2 (Be & —3) +p de (a",+(e) +a"~ (c) +a"~(e) +&"' (e)) e

CO 0

230

b, Z~~= —2'~2p de(s„(e) a+~(~~))ee s',
0

(17a)

(17b)

230
b. Z„„=—2'~'P

J de(b. ""(e)+b,""(e)) e
0

(17c)

In Eq. (17a), &„ is the deuteron binding energy of
2.225 MeV. Equations (17a) through (17c) can be
evaluated by numerical quadrature so that the nu-
cleonic pressure and number densities can be
found as a function of temperature and chemical
potential, and the corrections due to nuclear in-
teractions can be determined.

The nucleon gas, as defined here, includes all
other particles in statistical equilibrium through
the weak interaction with each other and with the
dominant neutrons and less populous protons.
However, for the temperatures and densities of
interest, the only particles with significant number
densities are e+, e, p.+, and p, . The leptonic
number densities and partial pressures of these
constituents are taken to be those of an ideal rela-
tivistic Fermi-Dirac gas with spin 2 throughout:

then, is the sum of the nucleonic pressure and
the leptonic partial pressures. Chemical, or
statistical, equilibrium is imposed by minimiza-
tion of the Gibbs free energy with the result

p.„=p, p+ p.~

&e+
= I"e- ~

Pp =Pe

(20a)

(20b)

(20c)

(20d)

Pz, n, =q=o. (21)

Total specification of the six-component gas re-
quires two more constraints, which are the speci-
fication of the total charge and mass density

P = — ln(1+ca "~ s~ )
2 d'p

Tj (2n'5) n

d p
(2~h)' 1+e~'~~ "~'

wherei =e+, e, p, ', and p, and E,=(c'p'.
+m c~)' '. The total pressure of the system,

(16)

(19)

(22)

where p is the total mass density and the system
is taken as neutral. The pressure and number
densities are then calculated, for a given tem-
perature, subject to the six constraints. The



14

38.p

375

PRESSURE COM p IT&ON O A WEAK «EN ERATE.

—35.p 36,5

2529

Io 37p
E

C
—36,5

o 360

35,5

34 5

-34p E

C

335-Q
Q

33p

35,p
12 2 12 4

I

12,6

32,5

I

12.8 13,2
~ 'I'log~em&)

'

FIG. 1 p '"' d

=5x ]0&&
»es sure

are to base 10.

o nucleo
rong interactionactions. Logarithms

13.6 13.8 14( 32,Q

IV. RESULTS

For the three tern

, mass dens' '

nucleonic d
sities p are ch

y actor D is legenerac fa
e c osen so th

t tut o of th
is less than

an be calcu-
an e nuclea inter

rx utx r e noninter t
essure an

eractin c
e shown

q at o of st t
s are just

ae, asthec

esults fo
e effectiv l

logarithm ic nature

e cannot
0 S) owlIl

in pressu

o, '
g to their

ure and the in
e ractional d

c &on of total m
c &on P/P' is sxs shown

a ion r
i y, whil

e quantity n, /n,'

potentials arare varied anar '
and an iterative r

convergence to ar a-
o 1 r conditions in Es m Eqs. (21) and

36.0

—32.p

rn 355
E
V
C

35,p

C

O

33.5
10.7 IO 9 I I. I

I

11.3 11.5 11.7

p (Io in gicms)

31,5

29,5

Eg

—31 p E

C

305--
Q

I

12.1 12.3 12.5

34 0

Q

3Q p

FIG. 3. ompositioion and presssure of nucleon
c ions. Logarithms

In all graphs
nucleonic de e

s, for eachh temperature esow e

ons are fairly deo sa eI;e e ateatthe
y egener ate t

1 .
d a theu e

e lower den-

Fi

d pper density

figure 1 is for g =5x1 "
t ome abund . w'in at least s

g consider

e or all thr
ance. As w'

lower dens't

a res, the nucl
ifference wh e

compositi
o I

i con and re
es changes i

p ssure at th
erefore f

e higher d
ocus our att

end, insofar
ention on the

actions

ctions have

interac tin
ressure, meas

0 de
ressu, sured from

pressure d

m the non-

ng

r the en-

t this densitA
raction

er d
'

own by less than 1/.
h. -mber ddensity of the

37.0-

36.5

A 360

- 35.5-

o 35,0

34.5

—33.0

32.5

32.0 cJ

C

31.5

Q

31.0 g

30.5

1.00

0.95—

0.90—

0
Q 0.85—

0.80—

0.75—

34.0
11.2 11,4 11.6

I

11.8 12 0 12.2

FIG. 2. Com o ' '

1204 12.6 28 130

pressure of nucl
strong interactions.ions. Logarithms are

0.70 I

10.4 10.8 11.2
I I I

11.6 12.0
I

12.4 12.8

FIG. 4. Effect

Iog p (p inglcms)

garithm
sons

is to base 1().

13,2 13.6 14.0

on pressure in



2530 RUSSELL W. EVANS AND PETER B. SHAW 14

1.30—

l.25—

1.20—
I0 4P

C

1.15—
C

1.10—

1.05—

1.00
10.4 10.8 11.2 I l.6 12.0 12.4 12.8 I 3.2 13.6 14.0

log p (p in q /cm&)
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dominant particle; at this temperature, the pres-
sure rises slowly at low densities because elec-
trons are dominant and their number is increasing
slowly with density, but when the neutrons emerge
and climb rapidly in number, the pressure also
increases quickly. At the other two temperatures,
the neutrons will dominate the other species com-
pletely at all densities shown and the pressure
and neutron number density will follow nearly
parallel tracks. The fractional increase in the
protons is, here and at the other two temperatures,
almost exactly the same as that for the electrons,
owing to charge neutrality and the relative scarcity
of the other charged particles.

At T = 10" 'K, or kT =9.6 MeV (see Fig. 2), the
muons and positrons are much less important over
the entire density range, so that the gas is essenti-
ally just neutrons, protons, and electrons. At

log p = 13.0, the pressure is down 20% from the
noninteracting case, the electrons are up 18%,
and the neutrons are down by less than 1% again.
The neutrons are so dominant that their abundance
cannot change much for a given overall mass den-
sity. The picture is similar at 5&&10" 'K, or kT
=4.3 MeV (Fig. 3), as the muons fade completely
and the positrons are several orders lower than the
electrons and nucleons, making no appearance on

the plot. Again from the pressure and electron
number density graphs (Figs. 4 and 5), we see

that at the high-density end (log p = 12.5) the total
pressure is down 18% from the noninteracting
case, while the electron population has increased
27% owing to the shift in chemical potentials
caused indirectly by the nuclear interactions.
Again the fractional change in the neutron popu-
lation is almost nil and the proton increase matches
that of the electron.

Caution must be exercised in reading the pres-
sure and electron number density graphs. Owing
to the logarithmic nature of the density scale, it
is dangerous to extrapolate any of the curves to
higher density. At higher nucleonic degener acies,
third- and higher-order terms in the virial expan-
sion are necessary to prevent a fictitious pressure
collapse. When the virial expansion fails to con-
verge rapidly, the techniques of reference must
then be employed.

However, a pattern does emerge from the graphs,
in their region of validity. At high densities, which
is the area of interest, there is complete neutron
dominance, unchallenged by any proton or electron
growth owing to the presence of the nuclear inter-
actions. There is a pressure decrease of about
15-20% when the nucleon degeneracy factor is
unity and this decrease is due almost entirely to
the self-attraction of the nucleons, not to any re-
shuffling of the leptonic populations. Indeed, since
the weak interaction which allows statistical equi-
librium to be achieved conserves the sum of neu-
trons and protons, while the number of electrons
has increased, the pressure drop will be even
greater in a pure neutron gas of the same overall
mass density. The electron and proton growth is
about 3.5—27%, depending on temperature and

density, and is caused by the changing chemical
potentials, i.e. , the changing constitution of the
gas is an indirect effect of the nuclear interactions,
transmitted by the mechanism of the weak inter-
action. In view of the strength of the nuclear in-
teractions and the small mean nucleonic separation
at these high densities, the equation of state of the
nucleon gas is very modestly affected by the in-
teractions.
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