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Einstein Lagrangian as the translational Yang-Mills Lagrangian*
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The gauge theory of translation with a Yang-Mills —type Lagrangian quadratic in the field strengths is shown
to be precisely Einstein's theory of gravitation and the corresponding gauge transformation is identified as the
general coordinate transformation. The gauge potentials of the translation group are interpreted as the
nontrivial part of the vierbein fields and the gauge field strengths are given in terms of the anholonomity of the
local orthonormal basis one starts with.

I. INTRODUCTION II. THE GAUGE THEORY OF THE TRANSLATION GROUP

Gauge theories of the Yang-Mills type and Ein-
stein's theory of gravitation have a common fea-
ture: the self-interaction of the fields. Then one
is led to ask whether Einstein's theory itself is a
gauge theory. Of course this is an old question
and many people' ' have suggested that Einstein's
theory can be viewed as the gauge theory of the
four-dimensional translation group T,. Unfortun-
ately certain features seem not to have been fully
clarified so far, and it is precisely these features
that bear out the complete relationship between
the Yang-Mills and Einstein theories.

In this paper we show that if one only applies the
gauge principle (this includes a Yang-Mills —type
Lagrangian quadratic in the field strengths) for the
group of translation T, of space-time, the gauge
theory that one obtains is unique and becomes pre-
cisely Einstein's theory of gravitation. In this 'T,

gauge formalism of Einstein's theory the transla-
tional gauge potentials are identified as the non-
trivial part of the vierbeinfields and the gauge field
strengths are given in terms of the commutator
coefficients (i.e. , the anholonomity) of the local
orthonormal basis one starts with.

To prove that the unique gauge theory of the
translation is Einstein's theory, it is important to
observe that although the gauge group T, is Abeli-
an, it is not an internal-symmetry group and acts
on space-time itself. Fortunately the geometric
meaning of gauge theories has been well understood
by now in terms of the bundle picture. ' ' The
power of this bundle picture has been appreciated
by Cho and Freund" in unifying gauge theories
with gravitation and also recently by Wu and Yang.
In the following we will first prove our claim in a
formal way constructing the eight-dimensional
bundle of the translation group T4 over space-time
and then will give a precise physical meaning to
this translational bundle. For the details about
the bundle formalism of gauge theories we refer
the reader to Ref. 5.

I et us assume that the structural group G of our
bundle I' is T, with four commuting generators
(„( o=1, 2, 3, 4),

and that the base manifoldM is the four-dimen-
sional space-time with an orthonormal basis at
each point, i.e., four orthonormal vector fields
e, (i =1, 2, 3, 4) with the commutation relations

[e„e~j = T,, 'e, . (2)

e; =h,"-8„,

and correspondingly we have

z'„» = (s,h," -s,k,")h„..
Here 8, =h";0 is the directional derivative in the
direction of e& and A„are the inverse vierbein
f ields

(3)

p 0 k~ i y v'

Observe that due to the commutation relation (2)
of the basis e, , the directional derivatives 8& do not
commute either.

At this point we would like to emphasize that all
the above expressions are just a matter of a for-
malism and we have not assumed that our space-
time is curved. Eventually we will create a curva-

Of course the basis independence of a theory is one
of the basic principles in physics, and one can
choose any other basis if one wants to, but for
obvious reasons the local orthonormal basis (2) is
the natural one to start with in our problem. Notice
that this orthonormalbasis is not in general a coordi-
nate basis since the basis vectors do not commute. If
we introduce a coordinate basis 8

& (p = 1, 2, 3, 4)
with

[sp ~svj

then e& can be written in terms of the vierbeinfields

/gal
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ture by introducing gauge fields associated with T4
symmetry, but we start with a flat space-time and
so far our h& remain trivial.

Now, given a connection form' ~ = ugly„ in the
bundle P, the gauge potentials B," are as usual
given by the connection coefficients of e„ the lift
of e; into a four-dimensional gauge-defining sub-
manifold 0', i.e., a cross section of P:

"(e,)=«B, , (4)

where we have introduced a dimensional constant a
(of dimension of a length) to give the canonical di-
mension to the gauge potentials B& . This K will
serve as the coupling constant for the gauge group
T, and will be related to the gravitational constant
later on.

Withe, (i=1, 2, 3, 4) as the horizontal lift of e,
and Eg (+=1,2, 3, 4) as the fundamental vector
fields which are vertical, we clearly have

e& =e& —~B& (g,

sf 1 [ef «B ' sf «Bf(5]
= T„e,—«(s,Bf —sfB;)$g

k Ot tX

= T;f eg —«[(9;Bf"—sfBf") —T;f B~]$g. (5')

Thus one has

[~„*,e,] =0,

[e„e,] = Tc, "e, —«G, ,"(„*,
where G„are the vertical components of the com-
mutator coefficients of the horizontal lift vector
fields e&. The first two equations come from the
definition and the third is due to the fact that the
projection of [e„0,] down to the base manifold is
the same as [e, , ef]. Notice that because of the
Abelian character of the $g's the group action on
the bundle space is really a translation and there
is no "rotation" whatsoever. Mathematically this
means that the holonomy group of P is T, and not
the Lorentz group.

Let us recall that in the bundle picture the gauge
field strengths are given by the vertical commuta-
tor coefficients of two horizontal vector fields,
i.e., by G;; . To find the gauge field strengths in
terms of potentials B;, notice that from Eq. (4)
and from the definition of u

""(e,.) =0,

""(~$)=~s,

it follows that

the gauge potentials B,"- as the nontrivial part of
the vierbein fields

hj' = ~I,'+ ~a~.
This means that we now have createdthe curvature of
space-time by introducing the gauge potentials B",
for T, and making the vierbein fields hf" nontrivial.
Notice that the decomposition of h;" into 6," and B,".

is basis-dependent since 6; is not invariant
under a rotation of the local orthonormal basis e;.

From Eqs. (3), (6), and (7) one finds that

Tff"(hP— «BP)—

1= —T]~ 5k.a (6')

From Eq. (7) this means that under the gauge
transformation we have

h,"- -h'I-' =h~ +g, e"

=h,"(6„"+8 8")

hi Xa
where

x~ =a~ +g„e",
and now the gauge transformation is unambiguously
identified as a general coordinate transformation
in the coordinate basis 8&.

sq- a~q =(5~+a~8 )s„

The gauge field strengths G„- are thus determined
by the commutation coefficients T&; of the ortho-
normal basis vectors that one starts with. We would
like to emphasize here that once the connection e
(i.e. , the gauge potentials inphysical terms) is given,
the gauge field strengths G;,. are uniquely determined
from the geometrical structure of the bundle and
are not something that one can define otherwise
as sometimes suggested. '

Gauge transformations in this picture are
changes of bundle cross sections. " If we change
the cross section@ to a'' by a four-translation
8"(x) (~ = 1, 2, 3, 4) in the four-dimensional fiber
space [geometrically 8 (x) are simply a set of
transition functions that relate o' too], we clearly
have

e,'=e, +(8,8")~g

(6)

Now following Kibble's suggestion we interpret
Notice that gauge transformations (or equivalently
general coordinate transforma, tions) do not change
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4-g =det(h „)'
a, b, and c are for the time being arbitrary con-
stants, and we have used the fiat metric q 8 for
the fiber space. Notice that in our formal-
isrn we do not need a Riemannian metric a Priori.
The crucial question now is whether the constants
a, 5, and c are really arbitrary. To answer this ques-
tion let us point out that the above Lagrangian is basis
dependent as it is obtained using Eq. (6'). Now, if the

theory is going to have any meaning at all, it should not

depend upon which orthonormal frame one starts with.
This means that if one chooses a different set of

e,. 's, the Lagrangian should differ only by a total
divergence. We now show that this consistency re-
quirement removes all the arbitrariness in a, 5,
and c.

Notice that under an infinitesimal change of or-
thonormal frame, one has

h~(x) —h("(x) = h~(x) + (u, »h»~(x),

where ar, »(x) = —&u„.(x) are six infinitesimal func-
tions so that

5$ = v'-g (2aT,.»5T,»+ 2b TI»5 T,»+ 2c T;»6T;»).
g~2aT g»(s. ~g» sp~ »)+2hT s»(s. ~»g

+2cT 8 (d ]

+ 2cT,,qs»(u»,).y» h &y»»4'g

,» i y»
—( +c) ~»»~i&]

—2cs„(h",g gs»(u„)--. (12)

Here the last equality comes from the following

identity:

s„(h,g gs»m», ) = —g- -g( ,' T...s„co;,+ T, ,&s co„,). —

the orthonormal basis e, : They change the coor-
dinate basis 8„. Also notice that under a local
gauge transformation one has

G. ' =(s B'" —8 B' ) —T B'"
= G;; + —(9; s~ —s; 9,)8 ——T;; s»8

Q CX

41

i.e., |";& are invariant under gauge transforma-
tions as expected for an Abelian gauge group.

Once we have the gauge field strengths G&z", we
can write in the manner of Yang and Mills the most
general Lagrangian quadratic in these 6„. . Using
Eq. (6') we have

& =&-g
Ggg

"G»& '(aq'"q" qa s+~g"~'n~'8 +c7)' "&',6'g)

-1
2 0—g (aTu»Tu» +5 Tu»Tg~ +cT&~y T»»)

K

where

Now in the last line of Eq. (12) the third term is
explicitly a total divergence. But each of the first
two terms cannot be made into a total divergence
and one is forced to choose ~:5:c = 1;2: —4 to
satisfy the consistency requirement. So the La-
grangian should have the form

l.,.~-g (.T;,»-T; J»+ .Ti,»-T(», —T;;g T;»»). (»)
We would like to emphasize that any other linear
corn&ination in I'does not yield a meaningful theory.

Now it is readily seen that 2z is (again up to a.

divergence) precisely Einstein's Lagrangian. This
completes our argument. that the four-dimensional
translational gauge theory with Lagrangian quadra-
tic in the field strengths is precisely Einstein's
theory of gravitation. The fact that the Lagrangian
(13) is equivalent to Einstein's one is of course
well known. But the geometrical meaning of this
Lagrangian does not seem to have been fully under-
stood. We nozv understand it as the translational
gauge formalism of Einstein's theory of gravitation.

At this point one may wonder whether we have
required a Lorentz gauge invariance by imposing
the independence of the theory under the local Lo-
rentz transformation (11)of the orthonormal basis
e;. Even so, however, one does not need to in-
troduce Lorentz gauge fields in one's theory if one
has only scalars and internal gauge fields as one' s
source fields. ' This is so because scalars are
singlets under the Lorentz transformation and also
the internal gauge fields do not couple directly to
the gauge fields of the Lorentz group owing to the
gauge invariance of the internal symmetry. In any
event it should be made clear that the independence
of the theory under the local Lorentz transforrna-
tion (11) is a consistency condition that one has to
require for one's theory. " In the presence of
spinor source fields, of course, this consistency
condition naturally leads us to introduce the gauge
fields of the Lorentz group to the theory and one
obtains the Einstein-tartan" theory of gravitation as
has been argued by Kibble. In this case the
translational gauge group is replaced by the Poin-
care group. '

III. PHYSICAL INTERPRETATION

We now wish to make clear how in the presence
of source fields the translation group T, acts on
them. By doing so we will give a precise physical
meaning to our bundle of translation group. Re-
member that we have treated our bundle just like
a principal fiber bundle of an internal-symmetry
group except for one crucial difference, i.e. , the
identification of Eq. (7). This equation interlc. cks
the fiber space of the translation group T4 with
space-time and allows us to speak of our T4 as a
space-time symmetry rather than an internal sym-
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metry. We will first justify this basic equation and
clarify the meaning of the translation group T,.

Let us consider a scalar field P(x) as the source
field for simplicity and start with an action integral
written in the usual coordinate basis of a global
Minkowski frame:

2g"'~„~, —-m' ' d4X. (14)

Clearly under a global translation of the coordinate

~~- x'~ = e+~", (15)
where &I" are four infinitesimal parameters, one
has

6'iti —= it (x') —g(x) =e "a„p(x). (16)

This suggests that one may view the generators $„
of T, as the coordinate derivatives 8„. For the
moment let us take this point of view. Now under
a local translation one has to introduce a covariant
derivative to keep the action integral (14) invariant.
But since the covariant basis is the one in which the
components of the metric remain flat, it is quite nat-
ural to identify 8& as the covar iant derivative of 8„, .
Then one is led to the following equation:

I= ~(2q a itiai, g ~z Q )Q gd x (14')

In this case one is led to have the following co-
variant derivative D,. for the bundle of T,:

(20)D; = a;+ B'$„.

This is dictated by the geometry of the bundle"
since the covariant derivative of 8,. in the bundle
formalism is given by the horizontal lift 8,. of 8,
Also in this picture the group actions are inter-
preted to transform the field components along the
fiber space keeping the physical space-time points
invariant. This means that under the translation
(15}one should have

we started from the usual coordinate basis of a
global Minkowski frame. But clearly one should
be able to start with any other basis as well. In-
deed it may be more desirable to construct the
theory in abasis-independent way. So let us start
from the beginning with a local orthonormal frame
e,. and write down the action integral (14}as

8,. = A&)8„ = y'(x') —y(x) =0, (21)
= (P,. + iiaI')a„.

In short, interpreting $ as a and identifying the
local orthonormal basis as the covariant basis one
easily obtains Eil. (g). In fact this rather intuitive
interpretation has been given by Kibble. '

Now one can easily write down the action integral
which is invariant under a local translation and in-
dependent of a choice of a local orthonormal basis.
Including the kinetic term of the translational gauge
fields one has"

where 0" (p, = 1, 2, 3, 4) are the fiber-space coordi-
nate variables as before and we have identified the
generators $* as a/aei', which is again dictated by
the geometry of the bundle. ' Notice the difference
between this eiluation and Eil.. (16). Thus in this
bundle picture t„* annihilate the source fields as
the fields remain invariant at each physical space-
time point and do not depend upon the fiber-space
variables. Qbserve here that this fiber-space de-
pendence of the source fields has been derived,
not assumed, from what one means by the trans-
lational invariance. The way the gauge fields of T,
couple to source fields is then given by Eq. ('I):

+ 2 (& ~ijkTijk+ 2 Ti jk~ikj TiijTilA}
K

D, p = (a; —iiBg„")p

= a, p = (5i'+ ii 8&)a i'. (22)

Clearly the Lagrangian (18) describes Einstein's
theory of gravitation in the presence of the scalar
source field it (x) provided

x' = 16pG,

where G is the gravitational constant. Thus the
coupling parameter z of the group T4 is indeed re-
lated to the gravitational constant.

Now we will give another interpretation, i.e. , the
one for our bundle formalism of the translational
gauge theory, which allows us to keep the
complete parallelism between a gauge theory of an
internal symmetry and that of the space-time sym-
metry T4. Notice that in the above interpretation

Thus the gauge fields of T, couple to source
fields as if the generators of T, were the
coordinate derivatives B„and one arrives at the
action integral (18) as before due to Eil. (7).

Qne can choose either of the interpretations
above. The first one emphasizes too much the us-
ual global Minkowski coordinate frame but gives an
intuitively clear meaning to the translational sym-
metry, whereas the other has the merit of treat-
ing the theory in a basis-independent way and al-
lows us to keep the pa, rallelism between the gauge
theory of the space-time symmetry T4 and that of
an internal symmetry, with the identification of
Eil. (7).
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IV. CONCLUSIONS

We have shown that the gauge theory of the four-
dimensional translation group is unique and be-
comes precisely the vierbein formalism of Ein-
stein's theory of gravitation as far as one chooses
the Lagrangian to be the lowest possible combina-
tions, quadratic in field strengths. The gauge po-
tentials of the translation group are interpreted as
the nontrivial part of the vierbeinfields and the cor-
responding gauge transformations are shown to be
the general coordinate transformations.

Yang" has recently proposed a GL(4) gauge theo-
ry of gravitation of a Yang-Mills quadratic type
which differs from Einstein's theory and may con-

flict with observation. " A Yang-Mills —type gauge
theory of gravitation which gives Einstein's theory
is, as we have seen, the gauge theory of the trans-
lation group T,.
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