PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Canonical vierbein form of general relativity*

S. Deser! and C. J. Isham
Mathematics Department, King’s College, London, England WC2R 2LS
(Received 17 February 1976)

The Einstein action is expressed in canonical form using the vierbein fields as basic variables. In addition to
general covariance, it exhibits the local Lorentz invariance associated with the freedom of choice of the

orthonormal frames.

I. INTRODUCTION

The Lagrangian of general relativity is usually
formulated using the components of the metric
tensor as the basic field variables. The feasibility
of expressing it in canonical form! is important
when considering the quantization problem even
though practical perturbative calculations usually
employ covariant, rather than canonical, methods.

Although the metric formulation is appropriate
for pure gravity or for gravity plus bosons, the
presence of spinors requires the introduction of
a larger set of variables. These are the vierbein
fields which describe local orthonormal Lorentz
frames at each space-time point and with respect
to which the spinors are defined.? In order to
treat quantum gravity in the general case it is
therefore important to obtain a canonical form
for the Einstein action using the vierbein fields
as basic variables. While the equivalence of the
vierbein and metric schemes has been formally
established within the covariant path-integral
quantization framework,® a complete canonical
vierbein formulation has not been exhibited to our
knowledge.

In this paper we construct such a formalism di-
rectly from the corresponding metric formalism
and discuss its properties with particular refer-
ence to the freedom of performing local Lorentz
rotations. We also consider a “more three di-
mensional” variant in which only the three-rota-
tion invariance of triads defined on constant-time
surfaces is involved. Finally, we comment on the
coupled Einstein-Dirac system.

II. THE VIERBEIN FORMALISM

We begin with a brief résumé of the definition
and properties of vierbein fields. The latter are
a set of four orthogonal vector fields I%(x), a
=0,1,2,3, defined on the space-time manifold.
The index o (and, in general, letters from the be-
ginning of the alphabet) labels the independent vec-
tors, each of which also carries a coordinate in-
dex u in the form I§(x) when expressed in compo-
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nent form. The noninvertible relation between
these sixteen components (the use of vierbein
fields as basic variables in the usual second-order
form of the action principle does not, of course,
yield any information beyond the Einstein equa-
tions; one obtains immediately the set G**I% =0,
which when multiplied by the nonsingular quantity
I? yields G*?=0) and the ten metric components
2,,(x) is embodied in the equations

lﬁlgnuﬂzguu? (2.1)

g™ =1t (2.2)

We will adopt the usual convention of raising or

lowering space-time and “label”(a, B,...) indices
with the metric tensor and Minkowski metric
Ngg= (+++ =), respectively. Clearly the verbein
fields are only determined by the metric up to an
arbitrary “label”-space rotation by the local
0O(3, 1) Lorentz group. The redundant components
of I¢ specify the relation between the orthonormal
frame and the local coordinate system. Corre-
sponding to the 40 components of the metric af-
finity are the 24 spin connection “rotation coeffi-
cients” B, ,; satisfying

Buas=lala ot lgola,u s (2.3)
BuaB= lv[ol[auluﬂl - (“’ g V) - lu,ylg]avl:] 9 (2'4)

where the square brackets in the subscripts denote
antisymmetrization in the indices. Parenthesis
will denote symmetrization.

In the metric case the first-order (Palatini)
action

z=fd4x V=2 [g**R,(T) - A] (2.5)
yields both the Einstein equations and the affinity-
metric relation when g,, and I'/, are varied inde-

pendently. This is a very useful starting point for
deriving the canonical form'

I=./dqx[”ijé}ij‘NuR”(”m,grs)] (2.6)

in terms of the six pairs of conjugate spatial vari-
ables (n%/,g;,) 7,j=1,2,3, the Lagrange multipliers
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N, (which are simple functions of g,,), and the
four constraints R*. The actual calculations lead-
ing from (2.5) to (2.6) are rather complicated and
we wish to avoid carrying out the vierbein analog
[such a procedure has been used successfully by
Schwinger® in the triad SO(3) formalism discussed
in the next section]. Instead we shall take advan-
tage of the known metrical results and obtain the
desired canonical variables and action directly
from them. From (2.1)

g;;=1;,1F and s0 g;;= liai? +iial? s (2.7

so that a natural first choice for the vierbein ac-
tion is

I= f Ao p®l,, — N, (L )R (g(), 7 p, )]

(2.8)

in terms of the new set of conjugate momenta
p* related to 7t/ by

=2 +p1) 2.9

The constraints are simply rewritten as functions
of p*® and I, but it should be emphasized that
since the 7} are the space components of the four-
dimensional inverse 7, the R* now depend on
both 7,, and [, as do the N, so that (2.6) is not
yet the desired form.

We note that the relation in (2.9) is not invertible
as pi®=p'(7) in analogy with the impossibility of
expressing /,, as a unique function of g,,. Indeed,
in the present form (2.8) all twelve pairs of
“canonical” variables (p,! ;) are indisputably
present as are the four multipliers /,,. The price
for transforming to a redundant set of variables
is clearly the need for adding an additional set of
six constraints to the action (2.8) since we know
that the pure Einstein action can be written in
terms of only six pairs of variables (indeed, faced
with our final vierbein canonical form, a clever
student would notice that six pairs sufficed and
might even obtain them explicitly). Theorems on
Pfaffian forms* can be invoked to show that six
constraints are both necessary and sufficient, as
can the observation that (2.8) is not SO(3, 1) gauge
invariant (because of the pi term), whereas (2.6)
is trivially so.

The simplest way of constructing the specific
form of the new constraints is to insist that the
field equations generated by the action integral be
equivalent to Einstein’s. Their general structure
may also be deduced from the SO(3,1) argument.
Indeed, the pi term transforms under local
Lorentz rotations

P =pHPuw 1, (2.10)

- B
i liBw

¢4

as
(pimlia) -'piml.ioc +pi8li7wﬁa d’ra ‘
Since w? w;* =058, only the skew-symmetric part

Wy %W,y contributes, and invariance can be re-
stored if and only if its coefficient vanishes:

J[&B] Epi[allg] =0.

(2.11)

(2.12)

This motivates the addition of a constraint term
Mqsp* 1§ to the action with = —mg, a Lagrange
multiplier. Indeed the combination pi7,, +m,zJ*
is SO(3,1) invariant if M, transforms inhomogen-
eously as

P =y (0 Yo
Mep= Wy W' My — W W, . (2.13)

Such a transformation is natural geometrically
since we expect from the I[7, B] form of the action
that m,, will be related to B,,, which has precise-
ly this property.

The consistency of the action (2.6) when aug-
mented in this way may be verified by demonstrat-
ing the closure of the Poisson-bracket algebra
generated by the constraint terms p'*8? and R*.
Now the action leads to the classical Poisson-
bracket relations

{1 R), p()}= 61686 (%,¥) ,

which incidentally imply the correct metric re-
lations

(2.14)

{g,,X), ™M(F)}=064616(%,7), (2.15)
while for example

{p:,E), Fp ()} =0. (2.16)
The quantity

szdsxw"‘e(x)JaB(x) , W= _ B (2.17)

may be identified as the generator of “infinitesi-
mal” local Lorentz relations by virtue of the
Poisson brackets:

{l?(i)’ Q}: l?(i)wﬁ a(§) )

{p (), @} =p"X)w, * ().
The consistency and closure of the J,, and R*
algebra can now be easily checked. Indeed, since
the R* are SO(3,1) scalars {JaB,R“}= 0 whereas
the {J,J} relations are just those of the Lorentz
algebra:

{JaB(SE),J,,G(y)}= [na[GJr]B(i) - T)BWJ,,M(§)]63(SE, ).

(2.20)

Finally, the closure of the {R*, R*} relations fol-
lows at once from the metric formulation since

we have verified that (2.15) still holds.
After this excursion into the local group struc-

(2.18)
(2.19)
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ture we proceed to the field equations. The dis-
cussion is greatly simplified by first showing that
the four R* =0 constraints still hold. These should
arise by varying the [, as the latter correspond
essentially to N,. We have

N;=g0:=161% . (2.21)
N=N,N,®gt _ g =N,N,®gti 1 1% (2.22)

where g%/ is the matrix inverse of g;; and is
therefore independent of [,,. Variation with re-
spect to [,, leads to

(8N, /81y )R* + N, 6R"/8ly, =0, (2.23)
where

6N;/8lo, =12, N 8N/bly, =N, ®gii1s —12.

(2.24)

From (2.12) we have in general

AR LA T (2.25)
and in particular

8199 /6lys= — 10178 . (2.26)

Thus 87'//6l,, is always proportional to p**13,.
Fortunately, we shall see below that the J,, =0
constraint (which we have yet to include) implies
the vanishing of this quantity. Anticipating this
result we drop the 5R*/6l,, terms in (2.23) and,
after multiplying by I% and using (2.24), recover

the desired equation
R*=0. (2.27)

We now turn our attention to the conjugate pairs

(Z;4,07®). Varying pi® and using (2.27) gives
l,, =8N, R"/5pie

=3N,6R* /5nHl] (2.28)

since the R* depends on pi* only through 7.
Likewise, varying [,, leads to

—pi®=N,6R*/0l,,
=3N,(41°6R* /6g;, — p™I*I}6R" /571" ,
(2.29)

where (2.25) has been used. Let us now compare
(2.28) and (2.29) with the corresponding Einstein
equations:

(2.30)
(2.31)

£:;=N,8R* /571,
-7t'=N,6R*/bg;;.

Multiplying (2.28) by I{ (and hence projecting from
twelve to nine equations) gives

191, = 3N, 6R* /671 , (2.32)

the (i) symmetric part of which is precisely
(2.30). Next multiply (2.29) by IJ to obtain the
nine equations

_i)ialg‘l:_% (pie1l)+ pieis

=2N,0R"/bg,; - 5N, p™li WgIssR* /67" .
(2.33)

Using the i,.a equation, we obtain after some sim-
ple algebra

d
-—E(p“‘lé)=2Nu6R“/6g“

+ 3N, (R /6n75)(pie1, — pr1i) W gis
+ (P, (2.34)

This equation is unacceptable for two reasons.
Firstly, its (ij) symmetric part is not the Einstein
equation for 7'/ because of the last two terms on
the right-hand side. Secondly, it involves the
l,s which are not dynamically determined, being
essentially Lagrange multipliers like the N,,.
Clearly the antisymmetric bracket in (2.34) must
be made to vanish (its coefficient is nonsingular)
as must the coefficient of iOB. Thus the require-
ment of reproducing the Einstein equations forces
these additional constraints on us. One can easily
show that the J,,=0 requirement (2.12) is pre-
cisely the correct one. Indeed, multiplying (2.12)
by 1il% leads at once to the six desired constraints,
namely

Pl —p™1L =0, pi*Ig=0. (2.35)
o o o

It is also necessary to check the consequences of
adding the appropriate Lagrange multiplier term
AI=f Mo *Bd *x (2.36)
to the action (2.8). Only the equations of motion
(2.28) and (2.29) are affected since AT is indepen-
dent of I, [thus justifying a posteriori our deriva-

tion of (2.27)]. The additional terms on the right-
hand sides of (2.28) and (2.29) are respectively

(2.37)
(2.38)

Aliaz'_maﬁl?’
A(‘i’ia) =’maepi8 .

Correspondingly (2.32) acquires the term
= - I$13m,, which is (i) antisymmetric, leaving
the (already correct) symmetric part unchanged.
The skew-symmetric part determines the three
projections m;; and, as we remarked earlier, the
Lorentz transformation properties of this relation
are consistent with Eq. (2.13).

Let us now turn to the modified equations (2.35)
in which, by virtue of (2.35), the last two terms
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may be dropped. Two m-dependent terms are ac-
quired on the right-hand side: the direct contribu-
tion Al¥ =, 17p™ from (2.38) and that due to

A = - pi ALl = peIBILL, o= p BRI g,
= PP mg, = — PP mg, = — AV,
(2.39)

Thus the two additional terms cancel, leaving pre-
cisely the correct Einstein term on the right-hand
side of (2.27) and nothing else. The symmetric
part of the left-hand side of (2.34) is just —7%,
while its antisymmetric part (d/dt)(p**1i - p?®1L)
is required to vanish. This, however, is pre-
cisely the consistency condition on the first of our
constraints (2.35), namely, that if it is initially
satisfied it remains so at later times. The con-
sistency of p*®l,, =0 is also explicitly demonstra-
ble:

Lper)=preas+pieiy. (2.40)

From (2.29) and (2.38)
lg%a - %NM(GR“/éfr's)p’“lggos _ loamaﬁpiﬁ ,

(2.41)
while from (2.28) and (2.37)
looiia ==li i
=N, (6R" /57H)g % — 1°m o617 . (2.42)
Multiplying (2.42) by I} gives
0+ Lo 1900 = — 13— 13°%],
=3N,(8R*/677)I7 g%
— 1% g+ %P2 My, (2.43)

Finally, multiplying by p®*,
piﬂig: _ %NM(GRM /Gﬂrs)p iﬂlgg()s_*_ PA maﬂpiﬁ .
(2.44)

Adding (2.41) and (2.44) we find that the right-hand
sides cancel if the first of Eqs. (2.28) is used to
eliminate the N, terms. This consistent con-
straint propagation (the above proof is laborious
but instructive; the same conclusions may, of
course, be arrived at by looking at the time de-
rivative of the unprojected J,; rather than J,
and J,, separately) is of course just another as-
pect of the underlying gauge invariance (via the
Bianchi identities) or, equivalently, of the alge-
braic closure of the Poisson brackets of the con-
straints (J*#, R*).

To see that the m,, constraints do indeed reduce
the action to Einstein form consider the kinetic
term:

pia.liazpis'lia(lglg) . (2-45)

Decomposing (. into its space and time components
and into symmetric and antisymmetric parts gives

pile= (i pm 715)(iislfn+ Lol
+z(pi7 Iy —Pmyl‘;')lﬂm'lis + (Piyl?')lgzis

= ﬂiié“
on using (2.35). The m,,J*® term vanishes for
J*8=0 while the R* were always functions of
(1%7,g;;) only and the N, are independent variables.
This completes the verification that the action

I=fd4x(pi“iia ~N,R* +moapielf) (2.47)

is locally SO(3, 1) invariant, that the six new con-
straints precisely match the redundant pairs of
variables and are consistent with the equations of
motion, and of course that the field equations are
precisely Einstein’s. Naturally we could also
have introduced six appropriate SO(3,1) gauge-
fixing conditions into (2.48) to get the Einstein
equations. An intermediate case in which the SO
(3,1) symmetry is reduced to SO(3) by “locking”
the timelike vierbein field into world time is in-
teresting in its own right and is treated in the next
section. As stated in the Introduction it should
also be possible to arrive at (2.47) from first
principles using the verbein/spin-connection form
of the action with the appropriate geometric com-
ponents such as B;,, and B,,;. However, we feel
that the technique above is physically clearer, be-
ing obtained directly from the already familiar
metric form.

III. TRIADS AND SO(3)

Our derivation has been carried out in terms of
all 16 vierbein components 7,,. Within the spirit
of the “3+1” approach of the canonical form (2.4)
it might seem more natural to reflect the basic
role of the spatial metric g;; by introducing only
the 9 triads e;, (@,b,...=1,2,3) satisfying

8357 Ligl ;0. (3.1

ia®jb

However, the g,, dependence of N, necessitates
a hybrid formalism in which the g,, are not de-
composed into vierbein fields. In the pure vier-
bein framework, which is mandatory if fermions
are involved, the presence of the g,, requires the
introduction of the full set /,,. The problem then
is the relation between the purely spatial ¢;, and
the space-space components [ Recalling
that

w=i, ¢=a*

10855817 Ll 5 = Lioljo » (3.2)
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the natural way of accomplishing this is to remove
three of the six SO(3, 1) degrees of freedom by im-
posing the gauge conditions

(li)a=o= 0 ’ (3'3)
leaving just the SO(3) group of spatial rotations.
From Eqgs. (2.8) we can see that the Lagrange mul-
tipliers take the particularly simple form

Ni=efly, N=-ly, (3.4)
where the natural square root for N has been

taken.
The action now becomes

l=f dqx[piaéia - (loae?Ri - lOORO) + Vn[ab]piaeg ] ’
(3.5)
in which only the spatial components m,, contri-
bute since 7;,=0. The legitimacy of this action®
integral may be ascertained precisely as in the
SO(3,1) case. The explicit relations between our
(p**,m,,;) and the rotation coefficients may be com-

puted by comparing Eq. (3.5) with its geometri-
cally derived equivalent.® Thus

Mpe= = By (3.6)
and

pie=(dete)(ePe’® —ze%e)B,, . (3.7)
Finally, we note the curious fact that if the sym-
metric three-scalar density

pab Epi(be(iz) (3.8)
is used in R° in place of 7?7 then the quadratic
part becomes metric independent:

T ™(G118 i — 581381m) = 4D g -2p5p}) . (3.9)
Unfortunately, this is no great advantage since the
R' constraints 7'%,;=0, being a three-vector, can-
not be expressed in terms of the p® alone but read

(eleip™),;=0, (3.10)

which, since efl,i# 0, seems no easier to solve than

the original form.
IV. THE DIRAC ACTION

The Dirac action for a spinor coupled to a vier-
bein gravitational field is

1= [ d(@etd)| £ 142y 9,0 - 9, Tyo) -mBp ],

(4.1)

where
Vud): (au _éi‘BuaBO’aB)d} . (4.2)

Here v* and 0%7=(i/2)[ ¥®y* ] are the usual con-
stant Dirac matrices while B, ., [ Eq. (2.4)] is the
spin connection. As a natural extension of the
formalism in the preceeding sections, a canonical
form for the coupled Einstein-Dirac system would
involve varying I“* and B, ,; as independent vari-
ables. Weyl” noted long ago that this leads to a
slightly different result than that obtained by in-
serting the geometrical relation between B and [
in (4.1) and varying the resulting action with re-
spect to [,,. The difference, which arises from
the derivative nature of the fermion-gravity cou-
pling, manifests itself by the appearance, in the
independent 7,,, B,;, case, of anadditional torsion-
al contribution to the spin connection proportional
to l;_;-z/;'yyo"y ¢. Similar differences arise in electro-
dynamics when a Pauli term Yot’yF,, is introduced.
In either case, these extra terms can be compen-
sated if required by adding to the action suitable
contact terms essentially proportional to the square
of the torsion. Our interest lies notinthis aspect but
rather in the way in which, in principle, the canon-
ical form is to be achieved for the coupled sys-
tem. Since we have not carried out the detailed
calculations relating B, ., to (p**,mys) Wwe cannot
write down the canonical Dirac action explicitly
[ such a calculation was successfully performed
by Kibble® using the time-gauge condition with a
residual SO(3) invariance], but there is clearly no
obstacle (other than the tedious nature of the cal-
culations) to constructing such a form. Firstly,
the metric dependence in the 8, terms must be
removed by absorbing (dete)y*l} into the conjugate
of .

The remaining terms will depend on the product
of 7, and the spatial gradients of the spinors,
and on nonderivative terms involving p** and m,,
linearly as well as terms involving spatial deriva-
tives of the vierbein fields. The combined sys-
tems’ constraints will include extra contributions
to J,5 and R* and the pi® — 1, relation will be
altered by a torsional term. This situation is for-
mally not dissimilar to that holding for higher-
integer (>1) spin fields in the metric formulation,
where derivative coupling is also necessarily pre-
sent, although in the present case the absence of
matter-field constraints removes the serious prob-
lems present in the former.
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