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A class of exact solutions to the source-free Brans-Dicke Maxwell field equations is obtained which reduces to
the Majumdar-Papapetrou class of solutions when the Brans-Dicke scalar $ = constant. It has been observed

that these solutions are important from the viewpoint of verifying Penrose's suggestion which states that the

black holes in the Brans-Dicke theory are identical to those of Einstein's theory.

I. INTRODUCTION

—gs4 = 4ttg'+A/+ 8, (1.2)

which was obtained by Majumdar, states that this
is the only functional form dependence of g44 on the
electrostatic potential (. With the particular form
of this relation as

—g„=4tr(P+ v' K)', (1.3)

it is observed by Majumdar' and Papapetrou' inde-
pendently that the source-f ree Einstein-Maxwell
field equations reduce to a Laplace equation. This
suggests that a class of solutions of the source-
free Einstein-Maxwell field equations, correspond-
ing to the solutions of Laplace equation, exists
which represents the external fields of static
sources where charge and mass, in the units
t" =c =1, are equal. This class, known as the
Majumdar-Papapetrou (MP) class of solutions,
has received in recent years thorough and critical
attention by many authors mainly from the physical
point of view.

Anticipating a useful astrophysical role of these
solutions, Perjes' and Israel and Wilson' have in-
dependently generalized them to the stationary
case. Later, Hartle and Hawking' extensively
studied the physical character of these solutions
and found that the solutions of the MP class cor-
responding to monopoles can be "analytically ex-
tended and interpreted as a system of charged
black holes in equilibrium under their gravitational
and electrostatic forces. " They have observed
that these may be the only stationary, asympto-
tically flat, black-hole solutions obtained by
Majumdar- Papapetrou- Israel- Wilson techniques.

The black-hole solutions of this class are quite

In the study of the electrostatic fields in Ein-
stein's theory with the static metric

(ds) g~sdx dx +g4g(dt)

where g44&0 and Greek indices run from 1 to 3, an
important relation

distinct from the already known black-hole solu-
tions, viz. Schwarzschild, Reissner-Nordstrom,
uncharged Kerr, and charged Ker r solutions. Prior
to the findings of Hartle and Hawking, ' it had been
conjectured' that the charged Kerr solution to the
Einstein-Maxwell field equations —or any one of
the three special cases of charged Kerr solutions
(Schwarzschild, Reissner-Nordstrom, and un-
charged Kerr solutions. )—is the exterior field
of the black hole necessarily produced due to rela-
tivistic gravitational collapse in three dimensions.
Penrose' suggested that this conjecture is also
true in the Brans-Dicke (BD) theory of gravity. '

With the finding of the MP class of black-hole
solutions, the above-mentioned conjecture should
be generalized; and in view of Penrose's sugges-
tion the uniqueness of Schwarzschild, Reissner-
Nordstrom, uncharged Kerr, charged Kerr, and
the MP class of black-hole solutions should be
verified in the BD theory. Thorne and Dykla, ' in
this line, have verified only the uniqueness of
Schwarzschild and Kerr black-hole solutions in
the BD theory, along with certain other significant
observations in support of Penrose's suggestion.
They found Schwarzschild's solution to be unique
because none of the solutions given by Brans' with

Q 0 constant was found to possess an event hori-
zon. But still the question of proving the unique-
ness of black holes represented by the Reissner-
Nordstrom and Majumdar-Papapetrou classes of
solutions remains. One has, therefore, to depend
on the corresponding exact solutions of the source-
free BD Maxwell fields. The analog of the Reis-
sner-Nordstrom solution to the source-free BD
Maxwell field has already been obtained by Buch-
dahl. " We feel that this solution will be useful
in proving the uniqueness of the Reissner-Nord-
strom black-hole solution in the BD theory.

The analog of the Majumdar-Papapetrou class
of solutions to the BD theory, however, is not
yet known. With an objective to prove the unique-
ness of the black-hole solution of the Majumdar-
Papapetrou class, in this paper we have found
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first the corresponding solutions of the source-
free BD Maxwell fields. The solutions, thus ob-
tained, reduce to the MP class of solutions when

Q
= constant. For P o constant we have two differ-

ent classes of solutions depending on the restric-
tions on the BD coupling parameter &. The physi-
cal study of these solutions and the problem re-
garding the uniqueness of the black holes of the
MP class will be reported elsewhere.

V-=V(Q, P), (2.10)

where P and P are independent of each other. This
mutual independence is in the spirit of the Brans-
Dicke assumption that the Lagrangian density of
matter is not functionally dependent on Q. In view
of the assumption (2.10) and the field equations
(2.8) and (2.9), (2.7) reduces to

II. FIELD EQUATIONS AND THE SOLUTIONS

The source-free BD Maxwell field equations are ~~we+
Vg

and

8' 1R . . = — E. . ———P .P . ——P. . .ij ij 2,i,j 'ij&

(3 + 2 z) P'. ", = 0,
s' =Q

(2.1)

(2 2)

(2.3)

(2.4)

(2.11)

where VO=BV/Bp, V~=BV/B(, V =B'V/BQ', V,~
= B'V/BP, and V~„=B'V/BPBP

This equation is identically satisfied when the co-
efficients of g'"Q, g „, g'"g, g „, and g"P,g, are
simultaneously zero. This suggests the functional
form of (2.10) to be

with V'=
Q '(4wg'+2)+8), (2.12)

(2.5)

where latin indices run from 1 to 4 and the sub-
scripted comma and semicolon denote partial de-
rivative and covariant derivative, respectively.
With a choice of the skew-symmetric electromag-
netic tensor I',.j as

(2.4) is identically satisfied. Here P,. is the elec-
tromagnetic four-potential. For the electrostatic
case, P, = g survives and the field equations
(2.1)-(2.3), for the metric (1.1), become"

where A and B are arbitrary constants of integra-
tion. Comparing (2.12) with (1.2), we find that for
Q

= const = 1, they agree with each other. Thus, in
view of (2.12), (2.7) is identically satisfied. We
now express (2.12) as

V'=y '4~(y~ v2 )', (2.13)

—k. g+k ~k g
—g~~g'"k, k „, (2.14)

by a proper choice of the arbitrary constants A
and B. In view of (2.13), the field equa, tions (2.6),
(2.8), and (2.9) reduce, respectively, to

R ~= —ph, „q- (e+-', )h h ~+ —,'(h Bh +h qh, )

1 8p 1R.&-=R.&+
V V.,=-

& ~.(.g.,g'"0,„0,-. P, .4, ,)— g h + ~ h h +g k k —Q (2.15)

(d—
~a 4,.4, g

—
~ 0; g (2.6) (2.16)

R«=-- Vg'"V;..= g'"l, .l,.+-—g'"V, .4... —(2 7)

where e'" = 4v(P s V 2)' and e"= Q.
By defining a three- space conformal transforma-

tion as

gI —~ 1g+2kg (2.17)
OVg'"P.,„+—g V,P „=0 for all values of &u, (2.8)

the equations (2.14)-(2.16) reduce, respectively,
to

2'.,=- (~+-,')h .h „
Vg ttt, ,„—g'"V,g „=0, (2.9) +l 01' g —

Q

where R ~ is the Ricci tensor corresponding to the
spatial metric (ds)' =g,~dx dx~, g«= —V', and P
is independent t.

To solve these field equa, tions, we assume a
functional relationship between V, Q, and g, as

and

which, by substituting P =(2&v+3)' 'h and
h = —ln (1+ W), further reduce to
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and

—I 1Rq 2p P,
gIO'V p

—
Q

g""W. =0.
~ O'V

(2.18)

(2.19)

(2.20)

where the subscripted colon denotes covariant dif-
ferentiation with respect to g', z. It can be seen
that for P = constant, (2.18)-(2.20) reduce to a
single Laplace equation and hence admit the
Majumdar- Papapetrou class of solutions. Other-
wise they suggest a more general class of solu-
tions. For 2u&+3&0, the equations (2.18) and
(2.19) correspond to Einstein's vacuum field equa-
tions for the metric

(ds)' = e ~g' zdx 'dx~ —e~ (dt)', (2.21)

where (2.20) suggests W to be behaving as a test
field in the conformal space associated with the
Einstein vacuum spacetime.

Thus, we can always obtain a class of electro-
static solutions of the source-free BD Maxwell
field equations for the form of the given Einstein
vacuum fields with the help of the following theo-
rem:

Given any Einstein vacuum field solution
(e~g'~, e~) the source-free BD Maxwell field equa-
tions for electrostatic fields always admit, for
2&+3&0, a solution

[s-0/ (2&v+3)1/2{ (1+ W)2gI (I+ W)-2}]

with the BD scalar Q =e/' """"/' and the electro-
static potential P=(1/2v z)(1+W) 'vM, where W

satisfies

gl Og ~ —
Q

Another class of solutions arises for & = —-', . In
this case (2.18) suggests g'„= q z(+ I, + I, + I), so
that (2.19) and (2.20) reduce to two Laplace equa-
tions determining the scalar field and the electro-
static field, respectively. The metric (1.1), in

this case, reduces to

(ds)' = e ~[(1+W)'(dx '+ dy'+ dz') —(1+W) '(dt)'],

Papapetrou metric. Thus given any Majumdar-
Papapetrou solution [(1+W)'(dx '+ dy'+ dz')
—(1+ W) '(dt)') with the electrostatic potential
P = (1/2~m(1+ W) '

w v 2, the BD electrostatic field
equations admit, for &= ——,', a solution e"[(I+W)'
x (dx'+dy'+dz') —(1+ W) '(dt)'] with the electro-
sta. tic field P=(l/2v m )(1+W) '*M and the BD
scalar P =e", where h is the solution of the Laplace
equation.

III. CONCLUSION

Thus, with a well-defined motivation we have
generalized the Majumdar-Papapetrou class of
solutions to the BD theory to obtain two different
classes of solutions depending on the restrictions
on the BD coupling parameter . For 2~+3&0,
the BD Mmnvell field equations admit a class of
electrostatic solutions which are generated from
the known solutions to Einstein vacuum fields. For
~= —-', the solutions of these equations are con-
formal to the Majumdar-Papapetrou class of solu-
tions with the conformal factor given by Q ', where
In/ satisfies the Laplace equation. We observe
that (2.13) plays a key role in obtaining the exact
solutions of the highly nonlinear field equations.
To cite an interesting consequence of (2.13), it
should be mentioned here that its validity in the
interior of the static charged dust leads to the
ratio of charge to mass density as

This suggests a possibility of explaining the struc-
ture of a finite electron in the domain of the BD
theory of gravitation. " However, the solutions
obtained are to be studied further in the light of
the suggestions given by Penrose. This requires
us to find if any of these solutions possesses an
event horizon. This aspect of the study is in prog-
ress and will be reported later.
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