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A method known as covariant geodesic point separation is developed to calculate the vacuum expectation

value of the stress tensor for a massive scalar field in an arbitrary gravitational field. The vacuum expectation

value will diverge because the stress-tensor operator is constructed from products of field operators evaluated

at the same space-time point. To remedy this problem, one of the field operators is taken to a nearby point.

The resultant vacuum expectation value is finite and may be expressed in terms of the Hadamard elementary

function. This function is calculated using a curved-space generalization of Schwinger s proper-time method

for calculating the Feynman Green's function. The expression for the Hadamard function is written in terms

of the biscalar of geodetic interval which gives a measure of the square of the geodesic distance between the

separated points. Next, using a covariant expansion in terms of the tangent to the geodesic, the stress tensor

may be expanded in powers of the length of the geodesic. Covariant expressions for each divergent term and

for certain terms in the finite portion of the vacuum expectation value of the stress tensor are found. The

properties, uses, and limitations of the results are discussed.

I. INTRODUCTION

In the past few years the study of quantum field
theory in curved space-times has grown at a rapid
rate. This growth has been stimulated partly by
investigations of particle production in the gravi-
tational fields of black holes and various cosmo-
logical models and partly because it seems natural
to consider situations where the gravitational field
is fixed before proceeding to more difficult prob-
lems in a full quantum theory of gravity.

Consider some quantum scalar field propagating
on a fixed curved background. If the background
gr avitational field is strong and time-varying,
particles may be produced. (In some cases it is
better to talk about the flux of energy rather than
particles. A particle is not always a well-defined
concept in a curved-space setting. ) We may cal-
culate the vacuum expectation value (VEV) of the
stress tensor for this flux and use it as the source
in Einstein's field equations. The new field equa-
tions are then solved (exactly, if possible; nu-
merically otherwise). This will give a new (semi-
classical since the gravitational field has not been
quantized) approximation to the metric structure
of the space-time.

Unfortunately, as is almost always the case, the
VEV of the stress tensor diverges and hence some
method of regularization must be found. The
method of regularization one chooses to use de-
pends on how the VEV of the stress tensor is
originally calculated or, as is often the case, on
one's personal taste, that is, on which method
seems more physical to the individual doing the
calculation.

%hen calculating a VEV of the stress tensor,

one must normally do a separate calculation for
each background geometry. Usually, some com-
plete set of mode functions is found by solving the
scalar field equations and is used to express the
scalar field operator in terms of creation and
annihilation operators. The stress tensor is
written in terms of these field operators and its
VEV taken. The result is a sum over products of
the mode functions and their derivatives (see Sec.
VII). If possible, the sums are done and the pieces
which diverge are isolated and disposed of in some
fashion.

In many interesting cases, such as the Schwarzs-
child metric, the mode functions cannot be written
in terms of known functions, or, if the functions
are known, the integrals or sums which appear
cannot be evaluated. One must normally resort
to approximations which rarely give all the de-
sired information.

The work presented here w'ill focus on the prob-
lem of calculating the VEV of the stress tensor
for a massive scalar field in an arbitrary curved
background in a covariant manner without resort-
ing to mode sums. Using a method proposed by
DeWitt, ' known as geodesic point separation, co-
variant expressions for the divergences in the
VEV of the stress tensor are found. Also, valu-
able, but incomplete, information (no knowledge
of real particle production is found) about the
finite portions of the VEV will be given.

The point-separation procedure is presented in
Secs. II through VI. In Sec. II, we define the
stress-tensor operator and note that it is con-
structed out of products of field operators eval-
uated at the same space-time point. It is this fact
which causes the VEV of the stress tensor to di-
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verge. To avoid these divergent quantities, one
operator in each product is moved to a nearby
point. The point-separated object which results
is expressed in terms of the so-called Hadamard
elementary function.

Section III presents the Schwinger-DeWitt coor-
dinate-space method for calculating the Feynman
Green's function, and from it Hadamard's func-
tion. It is found that through the use of biscalars,
the Hadamard function may be written in terms of
the distance along the geodesic between the sepa-
rated points and purely geometrical quantities
constructed out of the Riemann tensor.

Sections IV arid V are a summary of the proper-
ties of bitensors. We find that the two-point func-
tions in the Hadamard function may be written as
functions of one of the points and a tangent vector
to the geodesic between the points by using co-
variant expansions in terms of the tangent vector.

In Sec. VI, the information derived in the pre-
ceding sections is brought together to form the
VEV of the stress tensor. The results show that
as the length of the tangent vector goes to zero
(that is, when the points coincide} there will be
quartic, quadratic, logarithmic, and linear di-
vergences in general. These are also finite tan-
gent-vector-dependent and -independent terms.

The last section discusses the properties, uses,
and limitations of the results of Sec. VI. We see
that there are serious problems when one attempts
to use the results in the limit of zero scalar field
mass.

In an appendix, we present the proof of a valuable
theorem on bitensors introduced in Sec. IV.

T""==2
5S

&g~v
(2.3)

and

Qg1/2 I gy/pea gg

« = -~"'~g.s +a"'g"'(-~g.
t ., „.+~a., ; 8.},

we find that

T'" =g'"(-'(1-2&)[e'" e"] +'(2(--')~"'[~ y" ]

—5[4'"",0].+ 4'"[4,.', 41.

.'~(R"" '.g"-"f-t)[e, e], .' -'~-""[e,e],],
(2.4)

where [, ], is the anticommutator. T"" is sym-
metric and by virtue of the field equations (2.2}
satisfies T"'., =0. Also, T"„=0when m =0,
and Eq. (2.2) hoMs. The transition from classical
to quantum fields is made by replacing the classi-
cal field P by a field operator Q. We then note
that Eq. (2.4) is constructed from products of field
operators or their derivatives at the same space-
time point. These quantities diverge when their
vacuum expectation value is taken. With a little
foresight, we rewrite the fourth term in Eq. (2.4)
as

II. THE POINT- SEPARATED STRESS TENSOR

The action functional for a scalar field in a
curved background is'

Sr/I=- —,fg' (y, „p'"+FBQ +m'g')dx, (2.1)

where P(x) is the scalar field, g is minus the
determinant of the background metric, g„„, 8 is
the curvature scalar, ~ is the scalar field's
mass, and $ is some constant which is —', for a
conformal scalar field and 0 for an ordinary scalar
field. Varying Q infinitesimally in Eq. (2.1}, we
obtain the scalar field equations

pp )
(ou'ty vac i T i tny vac )

(out, vac
~ in, vac )

Terms such as

(2.6)

where we have employed the field equations (2.2).
This change makes Eq. (2.4) manifestly trace-free
[independent of Eq. (2.2)] when $ =—', and m =0.

The systems we consider will be required to
have some initial in-region and final out-region
with vacuum states ~in, vac) and ~out, vac), re-
spectively. ' All dynamics occurs in the region
separating the in and out regions. As De%itt
(Ref. 1) has pointed out, all information on the
divergences in the expectation va, lues
(in, vac

~

T""
~ in, vac ) and (out, vac )

T"'(out, vac )
may be found by studying

0 = = g'~'[P " —-((8+m')y], (2.2)
(out, vac~ [P(x), P(x)],~ in, vac)

(out, vac ) in, vac )

where &/&P indicates functional differentiation.
The classical stress-tensor density' is defined

appear and are divergent. The point-separation
procedure consists of replacing one of the Q(x)
by Q(x'), where x' is some point near x. The
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finite quantity obtained is called the Hadamard
elementary function, G"'(x,x'). We have the
def inition.

(out, vacua [&(x), p(x')], ( in, vac &

(out, vac
~ in, vac)

(2.7a}

&out, vac~ [P'&)', P'], ( in, vac &

(out, vac~ in, vac &

&out, vac~[&&))')', Q' v ],~in, vac &G&"')'"=—- -- —
= 2 7c

&out, vac~in, vac&

(out, vac~[&t), &i)'&"'v ],~in, vac)
&out, vac~ in, vac &

where the pr ime on the indices indicates that the
derivative is taken at the point x'. Note that G"'
and its derivatives are bitensors; they are func-
tions which transform as tensors at two different
points. For example, G"""' transforms like the
product of two vectors, one at x, the other at
x', 2"( x)B"(x')

We now take the first Q in each bracket in Eq.
(2.4) [modified by Eq. (2.5)] to x', take the result,
and sandwich it betw'een vacuum states as in Eq.
(2.6). We then do the same for the second It) in
each bracket and average the two results. Using
Eqs. (2.7), we get

(T"v) =lim g)i2[-'() ()(G«'" v+G«'&v }+($—-)g)'vG'
x'~x

) ((G&1); ))v + G&&); ))' v
) ~L (g)lv (G&1) a

+ G&&) a
) +

& (g))v ((P ~m2)G&l )

'((R &'" —--'g"R)G &) ) —-'m'g)" G&"] (2.8)

III. GREEW'S FUNr T&OWS

Because we are doing calculations in a curved-
space setting, all of the procedures we adopt will
be carried out in a fully covariant (as opposed to
merely Lorentz-covariant) manner. This requires
that we use coordinate-space methods. The meth-
od chosen here is DeWitt's' curved-space general-
ization of Schwinger's' proper -time technique for
finding the Feynman Green's function, G(x, x').
Using the relation

G(x, x') = G(x, x') ——,
' i G&"(x, x'), (3.1)

where G is the principal-value function (equal to
one-half the sum of the advanced and retarded
Green's functions), G"' may be found by studying
G. The Feynman function satisfies

Equation (2.8} is a purely formal expression.
Terms such as G('}'"'+G(')'" " are meaningless.
Each term transforms differently as a bitensor,
so they cannot be added. These terms w'ill be given
a well-defined meaning in Sec. V. ( 7"'&d,.„ is sym-
metric and, when ( = —', and m = 0, trace -free.
However, a "conservation equation" such as
(7'"'&d;„, =0 has no m. eaning. (T"')d;„ is not a
stress tensor in the strict sense since it is a bi-
tensor rather than a tensor at one point. In the
end, of course, the object we construct using
(T~"

& ~ danput in Einstein's equations as a source
will satisfy conservation equations.

where E(x,x"}is some differential operator.
We introduce an abstract Hilbert space whose

basis vectors ~x&, ~x'&, . . . are eigenvectors of a
coordinate operator x", whose eigenvalues are the
coordinates themselves, i.e.,

This allows us to write Eq. (3.2) in matrix form

(3.3}

where

G(x, x') = (x~ 0~x'&,

F(x, x') =(xiFix'&,

5(x, x') = (xilix'& = (xix'& .
We may assure ourselves that G is the Feynman

function by adding a small positive imaginary num-

ber, i0„ to I'(x, x'). Formally,

gl/4G gl/4
gl/4E g-1/4+2 0

The g' =g' (x) factors are added to maintain the
transformation properties of the matrix elements
of G. Now using

~ ~

&)0 1i (z-ip+)s d~ i(z —i0, )
'

F(x, x")G(x",x') d4x" = -5(x, x'), (3.2) we have (dropping the i0, 's for the moment, but
remembering that we will need to reinsert them
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later)

xg '/4(x') ds.

We define the "transition amplitude"

(x, s~x', 0& -=(x~exp(ig '/4F g '/4s)~x'&,

which when operated on by is/Bs gives

(3.4)

g ~+gg ~ = j exp jg ~+Pg ~s d$
p

or after taking matrix elements,

&(*,*') =( J ~ "(~)(~l~ ~(~g '"+2 "~)l"')
0

Q(x, x', s) =pa„(x, x')(is)",
n=p

which results in a set of recursion relations for
the a„'s,

a. 0'"=0
pip (3.11)

o' "a„„.„+(n + 1)a„„=6 (» (A'»a„). „~ —g Ra„,

(3.12)

We try to solve this equation by a power series
in (is),

i —, (x, s)x', 0& =-F(x, s~x', 0&. (3.5)
where b. (x, x') = g'/'(x-}D(x, x') g '/'(x'). ~en
S=0

For a scalar field Q(x, x', 0) = a, (x, x') =1, (3.13)

I =v„v I' —(Z -~',
where ~" is the covariant derivative operator.
When s =0,

(x, Oix', O& = (xix'& =&(x, x'). (3.6)

for all x and x'. Equation (3.11) is satisfied im-
mediately. As we shall see, we will not need to
solve the recursion relation for the a„'s, but will
use Eq. (3.12) to find the a„'s and their derivatives
in the limit that x' coincides with x.

Now substitute Eq. (3.7) into (3.4) to get
Thus (x, s~x', 0& satisfies a Schrodinger-type equa, -
tion with the boundary condition (3.6).

In the context of a WEB expansion, which is
sufficient to give all the divergences, Eq. (3.5) has
a solution of the form

G(x, x')=, —,exp -i m's—
(42)2, s' 2s

x Qa„(is)"ds.
n=p

(3.14)

D'»(x x')
(x, six', 0& = —

),

o(x, x'}
x exp i ' —im's Q(x, x', s),2s

(3.7)

where Q(x, x', s} is some function to be deter-
mined. The boundary condition (3.6) forces
Q(x, x', 0) to equal unity. The quantity o(x, x') is
the biscalar of a geodetic interval' which is equal
to one-half the square of the geodesic distance
between x and x'. The VanVleck-Morette deter-
minant, D(x, x'), is defined by (Ref. 'l)

Exchanging the summation and integration, we
have

x —
2 exp —z vl s ——ds.

S 2S

Using'

""1
(42)2 s' 2sJ

—exp —i m's — — -- ds

D (x, x') =- -det(-o. „, ) .

Geodesic theory (Ref. 7) gives us

(3.8)

we find that

0,")((-2m2(x)'/2}
6v ( 2m2o)1/2

o(x, x') =-,'o' "o,„ (3.9)
G(x, x') = — Q a„(-,)

D-'(D "). =4.
'e P (3.10)

m2If(2)(( 2m2a)1»)
x

( 2m2o}1/2

Now substituting Eq. (3.7) into (3.5), we obtain
a differential equation for 0,

Q+ —Q'2g = D-)»(D(»Q) 2 + (RQ
9

es s

(3.15)

where H,"' is the Hankel function of the second
kind of order one.

We may write H,"' as an asymptotic series,
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m'H'2'((-2m o)' ) 1 i 1 [ 2m o (2m'o)+2m' [y+-,' ln(-,'m') +-,' ln(o+ i0„)] —,'+, y, , p ~ ~ ~

(-2M 0') 7Tz ( 0 + zQ+

2~x4 ( +') 2'x42x6 (1+2 ~) (3.16}

where we have reinserted i0, 's. The constant y is Euler's constant. We now substitute Eq. (3.16}into
(3.15) and carry out the differentiations and summation. Using

1 1= ——xi&(o), ln(o+ i0, ) = luego) +xi &(-o),0+i0, 0

where

1, o&0
8(-o) =

0, v&0

and Eq. (3.1), we obtain an expansion for G"':
gz/2

G"'(x, x')=, a, —+m'(y+-, ln~-,'m'o~)(1 +-,'m'o+ ~ ~ ~ ) ——,'m' ——,', m'o+ ' ' '

—a, [(y+ —,
'

ln~ —,'m'cr~ )(1+-,'m'o+ ~ ~ ~ ) ——,'m'o — ]

+a,o[(y +-,' ln~-,
' m'o~)(-,' + —,' m'o + ) ——,' — ] +

1 1+, [a, + ]+,[a, + ]+ ~ ~ ~ ). (3.17)

Equation (3.17) includes only those terms which
will contribute to the divergences and certain
finite terms in ( T"')d;„. The divergences in
G"'(x, x') appear as o ' and 1n~ —,'m'o~ terms which
blow up when o-0 as x'-x.

IV. BITENSORS

In Sec. II, we introduced the term bitensor. A

general bitensor,

~ ~ ~ Q 8 ~ ~ 0 8I n 1 m

transforms like the product of two tensors, one at
each space-time point,

A„... (x)BB ... 8 (x').
So far we have introduced the biscalars, o(x, x'),
b''(x, x'), and a„(x,x'). We will also need to
study the bivector, g", , which is called the bi-
vector of parallel displacement. This object,

v'
when acting on a vector A' at x', gives the vector
A", which is obtained by parallel transport of
A' to x along the geodesic connecting x and x'.
So

We can find the properties of g", by studying the
action of g", on 0'', which is tangent to the

geodesic at x', has length equal to the geodesic
distance between x and x', and is oriented in the
x -x' direction. We have

(4.1)

8 ... g ]=llmT~ ...~ 8 ... 87 rl $ m
g g g I 71?

X ~X

where we have adopted Synge's bracket notation
(see Ref. 9).

We will start by finding the coincidence limits
of o(x, x') and its derivatives. As x' approaches
x, the length of the geodesic goes to zero, so that
by definition

and

[o]=0

[o.„]=0.

(4.2a)

(4.2b)

Turning to Eq. (3.9) and differentiating at x re-

When a tangent vector is parallel transported, it
remains tangent and keeps the same length. So.v'
the action of g", on 0'' must give -0'", which is
tangent to the geodesic at x and has the same
length as O' ' . The minus sign comes from the
fact that a'" is oriented in the x'-x direction.

The key property of bitensors is the coincidence
limit, defined by
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peatedly, we find

«p

'«p «p0'.
lJ. V

=g vg Plf
+0' O'Plfv

«p «p «p(X. pv~
—0 v

0'.
Pp +(T v(X. P~o +(T o+. p pv

«p+0 0; ppv

(4.3a)

(4.3b)

(4.3c)

[pl/2 ]

2([o pnBy6] 2Rnp R Byb ORB p R nyb

1 p 1 p 1—3R pR „Sg ——,RgpR „8 + —,R„$
+3RBP $ z~$ +3R&p$ &pp +3R&p $

——R„sR g
——Rn Rsq ——RngRB ).

(4.8d)

and so forth. From Eq. (4.2b) and Eq. (4.3b), we
get

[~ pv] =8'pv ~ (4.4a)

[o.„,] =0, (4.4b)

Taking the coincidence limits of Eq. (4.3c) and the
higher-derivative equations, we have

[a".',.) =0,
h'"",.8] =--'R'. 8,

(4.9a)

(4.9b)

and higher derivatives whose most important
property is

For g"„, we use Eq. (4.1) and [g"„]=»„ to
obtain

[O'pupae'] Spva«2( Rpav «+Rpv«a) « (4.4c)
[g". . ..] o' "o'8 =0 (4.9c)

3
[o;pva«p] =4(Spvaw; p+Spv«p;a+Spv pa;«)«(4 4d)

and a six-derivative limit which has 36 terms in-
volving $&„„."

Next we look at 6'/2. From Eq. (4.1), we get

;0 ;a
0;l v' =-gv'o;lfo —gv'aa'

P P

where the dots denote any number of unprimed
lndlce s.

Finally, we will need the coincidence limits of
the a„'s and their first few derivatives. We al-
ready know that

ap(x, x') =1,
which gives

which, when we note that [g„„]=g„„, gives

(4.5)

[a,] =1 (4.10a)

Definition (3.8) then says that

[D] = -det(-[&; „])
= -detg„, =-g(x) .

Now we have

[/(x x')] =[g &/2(x)D(x x')g «»(x')]

(4.10b)

[n, ] = (-,
' —5)R,

[a, .„]=-,'(-', —()R.„,
(4.11a)

(4.11b)

[ay p ] (2'p 2 $)R p ++tpRp p
+ R Rpp

[a,.„,...] =0.
These limits and those of o and 6'' allow us to
use the recursion relations (3.12) to show that

or

[n «./2]

Equation (3.10) may be written as

a '(ao'p). =4
« lf

(4.6)
and

[n2] ygpR Rp + $2QR Rp

+-,' (-', —g)R. , P +-', (-', —[)'R'. (4.11d)

or

4g&/2 2g&/2 & P + g&/2g«P
«p P '

(4.7)

Once again, we differentiate Eq. (4.7) repeatedly,
take the coincidence limit of each equation, and
then use the o-coincidence limits. This gives

In later calculations, we will need coincidence
limits of biscalars with primed derivatives. These
may be found most easily by using a generaliza-
tion of a theorem proved by Synge (Ref. 9) origi-
nally for v(x, x') only. The general theorem, which
we prove in the Appendix, is

[~1/2 ] 0 (4.8a) -n ~ ~ n 8' ~" 2' "'] [Tn " n8' 8'~ ~
n f, w« l" g rf f m«l-'

[a' '.n8~] = «'2 (Rns. ~+R„~.8+R~~.„),

(4.8b)

(4.8c)
where

~g 4 ~ ~ D| 8~ ~ ~ 4 g«
J

+[T„...„8 ... ],„, (4.12)
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is any bitensor whose coincidence limit and deri-
vative coincidence limits exist .Consider [o.u„,.]:

0 pvaIT' = —&. pvaIv- + & pvaI T

=-(-[o,,...) +[o,„.,],.)

+ (-[o.„„]+[o.„,].,).,
=[+;uvula) = Suvra = Suvar ~

and [g", ,„):
[g 8,.) =-lg" 8., „.)+[g"8,„).

8 pv ~

This technique saves a great deal of time when a
large number of primed indices is involved. Once
we have the coincidence limits of quantities with
no primes, a simple application of the theorem
gives all other primed-unprimed combinations.

V. COVARIANT EXPANSIONS

In the expression (2.8) for ( Tu")8;„, the
G"'(x,x') quantities diverge in the limit x'-x.
We can avoid this problem by simply not taking
the coincidence limit. This presents us with a
nonsensical equation. On the left side of Eq.
(2.8), we have a tensor at x, while on the right,
a mixture of quantities with various transforma-
tion properties. V~e need to express the right-
hand side in terms of quantities at x with the cor-
rect transformation properties. At the same time,
we want to isolate, in a covariant manner, those
quantities which diverge when x'-x. We accom-
plish this by expanding all bitensors in terms of
functions at x and the tangent vector, v'" =—0".

Consider some bitensor T n, " n„8, "8 which,
along with its derivatives, has a known finite
coincidence limit. We note that an expansion such
as

T„...„g ... 8 =t„... 8 ... 8 (x)
1 n1 IIt 1 nz

+t„...„8 ...8 u(x)ou + ~v (5.1)

is meaningless because again the two sides have
different transformation pr oper ties. We must

transform

~ ~ ~ n 8 ~ ~ ~ 8n 1 m

into a tensor at x and then try to expand it. We
do this by using g.a, constructing

Tn8 =—g8 Tnp ——tn8 + tnsp(x"

1
gag ye ~ ~

2 f n8pv

where the t coefficients are functions of x only.
Differentiate Eq. (5.2) repeatedly and take coinci-
dence limits of each equation. We find that

(5.2)

[T.gl=[gg'T. , ) =t 8,

[T 8.,1=[gg', ,T., +gg' T., '. „)
=tn8;) +tnHV &

and so forth. Using the properties of g 8, we ob-
tain

t„,=[T„,, ],
tngu [Tag'u) tn, g;u ~

—t„».„+[g„gi»] ter.ms,

tngu I
T 8'u) , 8; u ngu;

nav;pa nsa; pv n8pv;a

cp
n8 va; p tnaa p; v nap ~ pva

+[g„, „„,] terms,

and very long higher-coefficient expressions.
Owing to Eq. (4.9c), the [g„g.„„...] terms vanish
when the coefficients are put into Eq. (5,2), so
we ignore them. To illustrate the use of these
expressions, we will calculate the expansion for
a„s =gap a.„, . We have

I I
pmv

~ ~ vn 8 ~ ~ ~ 8 g8
Z n 1 m &8 n" n p'"p'n z m

and then expanding as in Eq. (5.1).
To avoid writing so many indices, we will find

the expansion for a bivector Tna . The method we
use is applicable to any bitensor with known coin-
cidence limits. Suppose we know the coincidence
limits of Tn& and its derivatives. We assume that

tag [;Oa)ggag ~

t»u [a ag'u)+gag u

aguv [ ~ ng'uv) +gng uv auvg ~

and

nguvv [~lag'uvv] gagi uvv nuvg; v nvvglu avug;v

3(C
4(~nuva', 8 auvg;v nugvia) nuvvlgi auvgsv avcrglu avv Blvd
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where we have used Eqs. (4.2)-(4.4), (4.12), and g„,.,=0. Putting these and higher terms into Eq. (5.2),
we get

n&& ~ aB o avov 12 av&&v'q (qo av8v, pr 26 vnv up8r)

Applying this method to the other bitensors, we get

(5.3)

(yP —gP o2'V — gPv'

'"—(—' '' + —''" ")3 0, g 12 & g;y 60 n g;y6 45 e g py 6 7

gti2;vv 1Rvv+ 1 (2R(v 'v& Rvv )Oa
6 12 e )$

+( R". +——R ' " ——R '" + —R R""+—R R" + RR—+ —R P R40 ' eg 40 0,'g 15 e g 72 0!g, 36 0! g 180 p ~ g 90 Pn 7'g

Rp&»& )gng2+ ~ ~ ~
90 0, 7' pg 90 0. p vg 180 n p g

(1, =(—', —g)R —2(—', —&)R, g +[- ,', R PR—P2++R"R,,2+112oR„„R""2+121oR„B.,P+(~t- ', g)R —2]ga.g + ~ ~ ~,
&v —1 (1 P)R&v + [ I Rv RP + 1 RpyRP + 1 R PRPya + 1 Rv P+ 1(( 1)R a ]o'n 4. ~ ~ ~

0& 2P

&' "=——g" g" + —R g "+—g g "+—g" +(———ehg'
1 45 p 90 p T 90 ping 60 'p %20 39/

The primed derivative expansions can be obtained by differentiating the series above and using Eq. (5.3).
Finally, we will need to expand objects such as (g ')""which diverge in the coincidence limit so that we

cannot use Eq. (5.2) directly. However, if we carry out the differentiations

(g 1)ivv 2g SO&vg&v g 2 gv&v

we can expand 0""to get
V 0, g g e g y 6

(g ) I p ~2 g 4 ~ p ~ +2R n ~&&p ~2 2 a t&'y I p &2+ (oo n 1&'yo+42R a t&Rpy 5)
~O 0,) ~O' 0' )

We now have all the information we will need to find (T'")dt„.

VI. THE RESULTS

We begin the expansion of the right-hand side of Eq (2.8) by .considering G(1&(x,x') in Eq. (3.17). Sub-
stituting the series for 0, &' ', g„and g„and collecting together terms in like powers of 0", we get

4&(2G "&(x,x') = + [m' —(—', —$)R][y+ 2 ln
~ 4 m'(o'g, )

~
] —2m'

P

n g

(6.1)

G"' has a quadratic and logarithmic divergence as well as direction-dependent (g"-dependent) finite terms
and finite terms with no g dependence at all. O(1/m') implies that there will also be finite terms propor-
tional to 1/m', 1/m', and so forth.

We now differentiate Eq. (3.17) to form G"'v", G"'2", G"'", and G"'v . In the expressions we ob-
tain, we substitute the series expansion from Sec. V. Finally, after much algebra, we form (T ")4,, using
Eq. (2.8) and collect equal powers of g". The results are

(Tupik
A' 1 vv 4

g g
)quartic 2+2 (~g )2 Z (gpg )

(6.2)
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g' ' 1 ( (1"'o (r (r (1"a'"
Tp VQ 2R (u 2R &~2 ~v'-' "-"""=4

46 V 0. 8
g 1 QV g QV pv

(8 $) R 2R g
(

p
)

2R 6
(

p )
+ 2R s ( p )g ]I (6.3)

1/2

)logarithmic g+2 Gsp ( p 4 P g ) 180 {R R g )+120 ip 3 0 720R;p g 8 g ]

—2(—,
' —$)[mg(Rv" —2Rg'")] —4{—,

' —()2[- 2R {R'" «R-g'")+ 2R'" —2R ,Pg'". ]J

'( ' ,)l],
1/2 i at 8r 0 8rg 1 V 1 V 0 1 ( ) 1 g 0'g 1

0' g g g 0'
(7 )„...,=

4 . l
—,.(8 --.84 ),.. . , --.(8 .4", --.8.,4 ),.. . ,. , 8.0;, ,~——r (g gp)

o. g"0' Cg /I V

~g gpss P

(6 4)

(6.5)

)fiaite 6712 l~ 16 g 3 (ffp& )
+ 38(){

4. (-'- ~) —,'m'R g" —2 12 2P (gpg )

V

(g gp)

1 pv 1 (p v) 1 gv 1;(gv) p gv 1 g v 1 p uv+ (20 )us 30 uj s 48 lusg 180 ns 72 uslp g + 18 ()I 6 36 u psg

n 8

+ gpR pR 6+ gpR pR '

S + 46R Rpnyg+ 46R ypnR 6+ 46R PrnR 6) p[g gp)
V) C)!R'" + oR 'R' —+ —'oR' "PR ' + —oR

(J gpJ

0:~ v
1 p 1 pt 1 pyK 1 p 1 4 g u gvP

90 ~6 180 puys 180 Pra J 6 120 ns'P 360 'ns) I P & g 9 P~gg j (g gp)

gv) u gu+gvgv
2 ~(V

(o'~) "' (tyc )' I
m) V Vg 1 ~v g+(—, —f) —3(RR n+2R', ) { )

+,RRus{ )
—,R,„s g —2{,

+ —R R'~ ' --'R '~"'+-'R . 'g~" —-R 'R g~"
u p 8 6 ~8 6 0:8&p 3 ~ p8

+ ', R"R 6+m'(R' —"6 Rsg'")-
t, g gp)

0. 8 CE

v) 0'~ y
(~ 1 l (u 4 p(v 1 (u 1 p (w+ 5R;8y 30R 8 y 45R R p8vy 9 R 8y 45R e P8 r ~ x2

U gp)

8 r 6 V

1 1 p ~g go'g ~v
0' g—(72R uS rs+ 9OR n 6 pr76+ 2ORuS; ysj

U gp) ~g gp~

1 g v 1 p g v 1 pv 1 gv 1 p vcg ugg
+(goR n s rs 43R u s py 6+18Rns rsg +36RusRysg +36R u sRpy, sg ) ~ p(g gp)

(6 ~) (3R u s)ys+ 3 u s Py 6+ 3RnP. y 6 3Rus;y6g 3Rn y6g 3R n PPyysg ) I P %2(g gpj
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VII. DISCUSSION

Now that we have ( T"")d,.„, how do we use it'?

Suppose we are given some background gravita-
tional field and are able to find some complete set
of mode functions, "u, (x), by solving the scalar
field equations with some given boundary condi-
tions. The field operator, Q, is written in terms
of these functions as

P(x) = Q [a,.u,. (x) +a fu,"(x}], (7.1)

The various orders in (T~')d, , have been written
so that the conformal scalar field's stress tensor
may be found easily. It consists of those terms
independent of (

—', —g}. In the finite term, when
the trace is taken we will get terms with no o''s,
terms with o o~/(o'o, }dependence, and terms with
o "o~o"on/(o'o, )' dependence. (T~")«„.„has been
written so that those terms which give each type
when the trace is taken are grouped together. As
many symmetrizations as possible have been done
to shorten the lengthy expressions. We have also
grouped terms so that as many trace-free com-
binations as possible are presented. Finally,
those terms of order 1/m' and higher in
(T'")„.„,„are o -independent.

chosen. Unless errors have been made, the mode
sums for the divergent and direction-dependent finite
parts (with one exception to be explained below)
should be identical to the answer obtained by the
general method.

At this point, we can ask a practical question:
How do we choose x' most efficiently so as to
shorten what is almost always a long calculation~
There are two possible ways to choose x' given x.
First, there may be some natural vector such as
a Killing vector which when plugged into the gen-
eral expression for (T"")~;„in Sec. VI gives a,

simple expression for each order. The point x
and the vector at x will define a geodesic and if
the length of the vector (chosen to be non-null)
is given, some point x' along the geodesic will be
fixed. This is the point we use to separate the
mode sum. However, this choice may be a bad
one since even though it gives simple results, it
may make the mode sums very hard to do. So a
second method is to choose a convenient point x'
which permits one to do the mode sums. The re-
sult may not be as simple as in the first method
but at least an answer has been found. Details
of the application of the results in this paper to
practical calculations will be given in a future
paper.

Suppose we consider the Schwarzschild metric,

where a,. and a*,. are creation and annihilation
operators. The choice of a particular set of mode
functions in, say, the in-region will define the
~in, vac) state. Using Eq. (7.1) and the fact that
T"' is constructed from products of the form P',
we find that

(in, vac~T"'~in, vac) = g T"'(u,.(x), u*, (x)},

where the summation may include integrations if
the i index is continuous.

DeWitt (Ref. 1) has shown that

(in, vac~ 7"'~in, vac) = ( "T')~;„+finite terms.

Hence, any divergences in (in, vac~T"'~in, vac)
also appear in (T"')~;„.

We take Eq. (7.1}and perform a point separa-
tion on the u&(x) and u*;(x} in the mode sum and
then express the x'-dependent quantities in terms
of the tangent vector at x to the geodesic between
x and x'. All of this is done in some convenient
coordinate system so the explicit form of the
result will be highly coordinate-dependent. It is nor-
mally extremely difficult to put the various diver gent
and direction-dependent terms into any covariant
form. It is at this point where results (6.2) through
(6.6) become important. One takes these expressions
and specializes them to the particular metric one has

d$ = — y — dt + ] — dy'

+ &'(d 8'+ sin' 8 d P'},
where R„,=0. Calculating the divergences in Eqs.
(6.2)-(6.5) for a massless conformal scalar field,
we find that there is only a quartic divergence.
If we choose the vector o" =(e(1 —2M/x) '', 0, 0, 0}
so that 0 0& =-e', then the quartic term is

0 0 0

3g
& /quartic 2 2 4

0 3 0 0

0 0-,'0
0 0 0

(7.2)

which is identical to the usual zero-point fluctua-
tion term found in the stress tensor for a scalar
field in flat space with Minkowski coordinates.
There is also a finite term which will be discussed
elsewhere. Had we chosen a different vector, the
meaning of the quartic term might not have been
so transparent.

The point-separation method has recently been
used by Davies and Fulling" for calculating, via
mode sums, the VEV of the stress tensor for a
massless conformal scalar field in a spatially flat
Robertson-Walker background. They report agree-
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ment with all divergent terms. Agreement with
the finite direction-dependent terms is not com-
plete because of problems in the massless case
to be discussed below.

Now let us investigate some of the general prop-
erties of the results for (T~')d;„. If we take the
trace of ( T"")d,„and set $ =—', and m =0, we find
that it is trace-free except for the finite term.
There we get a trace

X/2

2uu0 n'

(7.3)

Something is wrong. We started with a manifestly
trace-free object (even when x'Wx) and now we
have an object whose trace is nonzero when $ =—',
and rn =0. Looking back we find that the trace
above arises from a 1/m' term in G"'. Clearly,
when m =0, this term diverges. Looking at the
integral for H,"', we see that when m =0, the in-
tegral is undefined. The asymptotic expansion in
powers of 1/m' is not valid. Also, we see that
the trace in Eq. (7.3) comes from a direction-
dependent term in ( T"")r .„, namely,

p P

(R'""R„„„-R~'R„+R., '), ,'o &p(

This term is not correct in the massless case,
so some of the direction-dependent terms in

( T"")d;„will not be found in (in, vac~T~'~in, vac).
We must take care to remember this when we do
a calculation.

The massless limit also presents problems for
the direction-independent terms in the finite part
of (T"')d;„and in the logarithmic term. The terms
of order 1/m' and higher are divergent in the
massless limit and cannot be used. The logarith-
mic term also diverges when m =0, except in
certain cases such as for the massless conformal
field in a conformally flat background (as in
the Fulling and Davies calculation) or when the
background field satisfies the vacuum field equa-
tions, 8&„-—0. In each of these cases, the logarith-
mic term is zero.

There is another problem which we must re-
solve. In Eq. (6.3), for example, we find terms
of the form

gn 8
R KB (oPo. )

9

P

which may be written as

gags
(R„8——'Rg„8), p, +~R.

~{X (XP)

We see that some direction-dependent terms can
be written as the sum of other direction-dependent

terms and direction-independent terms. How do
we determine which way to write such terms' We
will fix these terms by demanding that the direc-
tion-independent terms satisfy the covariant con-
servation equations, (T ),,=0. This restriction
is reasonable since the direction-independent
terms remain when the length of the tangent vec-
tor goes to zero. The divergent terms have been
regularized away in some fashion and so we ex-
pect what remains to satisfy the conservation
equations. If we look at the direction-independent
terms in the results in Sec. VI, we see that they
do satisfy the conservation equations already so
no separation of the direction-dependent terms is
called for.

Next we see that the linear term is completely
direction-dependent. We can eliminate the linear
term altogether if we average over a separation
in the a" direction and one in the -o" direction.
An alternative method is to originally separate
one g&&(x) to p(x') and the other &f&(x) to p(x")
along the geodesic between x and x' an equal dis-
tance in the opposite direction. This "symmetric"
point separation eliminates the linear term that
appears in the "asymmetric" method described in
Sec. II. The two methods will give different finite
direction-dependent results. This difference will
be discussed in Ref. 14.

Finally, we look once again at the logarithmic
term. It is obvious that we could absorb Euler's
constant term into the logarithm. What looked
like a finite term is now part of the logarithmic
divergence. Actually, it is possible to add any
multiple of the coefficient of the logarithmic term
into the logarithmic divergence as long as we sub-
tract it from the finite term. This ambiguity is
well known. It simply corresponds to the am-
biguity that is always present when a logarith-
mically divergent quantity appears in a theory.
Only in the cases where the logarithmic term
vanishes (as in the cases discussed earlier) will
this problem not present itself.
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APPENDIX

We will prove the generalization of Synge's theo-
rem stated in Sec. IV.
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t Ta ~ ~ ~ a S~ ~ s& p&] Ta~o ~ a Sf ~ St p]I n m~ 1 n mo

+[Ta ~ ~ ~ a s' ' s'1 p ~1 n 1

where

T~ o o o~ 8So oo 8S
1 n 1 m

is any bitensor whose unprimed derivative coinci-
dence limits are known'.

Py'oof. We are given

[~;p] =[&;p J =o

[o;p.]=[&:p.]=[ &;-~"J=g~.

where the g's are functions of g only. Now differ-
entiate Eq. (A3) with respect to x",

pT~ o o o 8 op t~ o e ~ 8 op S ~ o o os popo1 m ~ 1 m~ m

+tQ ~ o o 8 po p+

and take the coincidence limits using properties
(Al) to get

r
e8

TN ~ o o g oP) tcf o ~ ~ 8 ~ P fg ~ o o 8 P o
1 m' m' m

Doing the same for g ", we find

i & "s p]--» "s ~.
1 m~ m

[~"s]=&"s [Z"s"J=.[. g s;~]=o [7' " s )J+[~ "s p][T' s ] p ~

We hOmOgenaxe T~ .~ ~ + Ss ~ ~ 8& 9
n 1 m

pl p
~ ~ O g 8 O ~ ~ 8 =ga j, ] ~ ~ Ogs m gg ~ ~ ~ f)f PS ~ O OPS 9

n 1 m m 1 n 1

and expand

EVp& o ~ oTg ~ ~ o g 8 ~ ~ o 8 vf)f ~ ~ ~ 8 +op o ~ o 8 ppr +
1 n 1 m 1 m 1 m 9

since t . . . s =[7„,. . . s ]. Substituting definition
(A2) into (A4) and using the g"s. properties in
(Al), we have

l Ta ~ .a S' S" ~ p'] [~a ~ ~ a S' ~ s' ~ y J1 n m' 1 mo

+[ & " s ~ ~ ~ s l pn

which is the result we wanted.

*Work supported by Science Research Council Grant
No. B/BG/68807 and the National Science Foundation.

$ Present address: Physics Department, University of
Utah, Salt Lake City, Utah 84112.

~B. S. DeWitt, Phys. Rep. 19C, 295 (1975).
2We use the sign conventions of C. W. Misner, K. S.

Thorne, and J. A. Wheeler, Gravitation (Freeman,
San Francisco, 1973).

3A tensor density naturally arises when the action (2.1)
is varied with respect to the metric. We shall, use the
density throughout this paper but will omit the word
density in the text.

4See B. S. DeWitt (Bef. 1) for a detailed discussion of
vacuum states in curved spaces. He shows that exis-
tence of the in and out regions is not essential to the
final results.

~ I
We could write G '~ " since indices at different points
commute freely.

6This symmetrization is done so that the expression for
(T" )a&, is symmetric when the points are separated.

7B. S. DeWitt, The Dynamica/ Theory of Groups and
I'ie/ds (Gordon and Breach, New York, 1965), pp. 147-
159.

SJ. Schwinger, Phys. Bev. 82, 664 (1951).
9J. L. Synge, Be/ativity: The Genera/ Theory (North-

Holland, Amsterdam, 1960). Synge calls 0 (x, ~')
the world function and writes it as 0 (x,x').

' G. ¹ Watson, Theory of Besse/ I'unetions (Cambridge
Univ. Press, New York, 1944). See pp. 178 and 179.
Bars over a tensor denote a quantity obtained from an
object at x' by parallel transport.
S. M. Christensen, Ph.D. dissertation, University of
Texas at Austin, 1975 (unpubl. ished). This contains
all necessary coincidence limits and expansions as
well as shortcut calculational techniques.

SSee Bef. 1 for details of how these mode functions are
chosen.

~4This work wi11 be reported in a paper by P. C. W.
Davies, S. A. Fulling, S. M. Christen, sen, and T. S.
Bunch, in preparation.


