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Generation of harmonics in gravitational waves
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Exact plane-wave solutions of the Einstein equations which correspond to monochromatic superpositions of
plane waves in the linearized theory are studied. The metric involves solutions of the Mathieu equation, and it
is shown that it can be interpreted in terms of harmonics of the linearized solution.

INTRODUCTION

An essential feature of general relativity is the
nonlinearity of the Einstein equations. While the
theory certainly predicts the existence of gravita-
tional waves, these waves cannot be treated in the
same way as can those of a linear theory such as
Maxwell's electrodynamics. The principle of
superposition, and with it the use of such tech-
niques as Fourier analysis, can no longer be
used. One can, of course, restrict attention to
the linear approximation, but this loses many
features of the theory.

It is of interest to examine the possibility of
combining exact wavelike solutions of the Einstein
equations. Solutions representing, in some
sense, combinations of gravitational waves pro-
vide classical analogs for processes of graviton-
graviton scattering, including possible absorption
and production of gravitons. I have suggested
previously that such processes may have been im-
portant in the very early universe. ' Exact solu-
tions representing colliding gravitational waves
have been given by Szekeres. '

The present paper deals with combinations of
gravitational plane waves moving in the same di-
rection, with particular attention being given to
the frequencies and amplitudes of the waves,
rather than to geometric considerations. While
the equations involved are nonlinear, the non-
linearity is of a quite simple type. Judicious
choices of the wave form reduce the problem to
one involving standard linear differential equa-
tions, and allow easy conta, ct with the results of the
linear ized theory.

PLANE GRAVITATIONAL WAVES

A metric for plane waves traveling in the posi-
tive z direction can be written

ds' = L'[exp(2P)dx'+ exp(- 2P)dy']

+ dz2 dP

in the notation of Misner, Thorne, and Wheeler, '
to be followed here. I, and P are functions of u= t

—z, restrit:ted by the only nontrivial Einstein
equation

Lll + (Pt)2L 0 (2)

MONOCHROMATIC WAVES

Solutions of (2) with P having the form P
=Fcos~u, where F and co are constants, will be
called monochromatic waves. (This terminology
differs from that of Avez. ') If we set Q =- ~u and

g(P) =—L(u), our basic equation (2) becomes

d'P/dQ'+ E'(1 —cos'Q)g = 0,
which is the special case of the Mathieu equation,

a prime indicating differentiation with respect to
u. Such metrics, and especially the geometric
properties of plane-wave space-times, have been
studied, extensively. 4 Here I want to discuss the
consequences of particular choices for the function
P(u}, in which the nonlinearity of Eq. (2) primarily
resides. If (P„L,) and (P„L,) are pairs of func-
tions satisfying Eq. (2}, (p, + p„L,+L,) will, in
general, not be a solution. But once P is chosen,
we need only solve a linear equation for L.

For P'«1, Eq. (2) becomes just I."=0, and we
take I.= 1 so that (1}will become the Minkowski
metric when P=O and space-time if flat. The
metric is then

ds'-- (1+2 p)dx'+ (1 —2 p)dy'+ dz' —dt' .
The deviation from flat space-time is thus de-
scribed by a transverse, traceless tensor h„„
with h» ——2P, h» ———2P, and all other components
zero. The fact that P is a function only of u (and
not of v= (+ z) means that it automatically satis-
fies the wave equation O'P/Suev = 0 in flat space-
time.

Any function P of u which is not too pathological
will describe linearized gravitational plane waves.
Functions of the form cos+u and sin~u provide a
complete set of solutions, and much of the treat-
ment of waves in linear theories has been in terms
of these functions. It is natural to proceed in the
same way, as far as possible, in dealing with the
exact equation (2).

14 2487



2488 GEORGE L. MURPHY 14

d'pldp'+ (b —b' cos'Q)r/~=0, when b =O'=E'. 6 We
may study the form of solutions of (4) for different
values of I', corresponding to monochromatic
superpositions of maves in the linearized theory.
It would be possible to consider more general
superpositions, with P a Fourier series in cosruu
and sin~u. This would lead to a linear differential
equation for L, of the general type of Hill's equa-
tion. ' However, I restrict myself to monochro-
matic waves.

To solve (4), one looks for solutions having the
form

g= e"~g a„exp(2in&f&),

where s and the a„'s must be determined. In gen-
eral, s will not be such as to make these solutions
periodic in $. The real and imaginary parts of
(5) will then give the real solutions for the metric
amplitude I.. Such solutions mill be stable —will
not blow up exponentially for large values of
+P—if s is real. Examination of the stability chart
for the Mathieu equation' reveals that the solutions
with b =h' are stable for sufficiently small values
of b and h. However, as b, and A increase we will
eventually reach the value s = 1 and a periodic so-
lution for g, an odd Mathieu function, will exist.
Further increase of b =k' introduces an imaginary
part of s, and consequent instability. (This
shows, in passing, that flat space-time is stable
with respect to small perturbations of the plane-
wave type. )

Since a three-term recursion formula for s
and the a„'s results when (5) is substituted into the
differential equation (4), we cannot write down

general solutions in a very neat form. The solu-
tions are most surveyable if we now assume I' to
be small. In this case, a few terms in the general
series (5) will give a fairly good picture of the
solution-. To lowest order, we find s=2 '~'F and

a, =a, = —E'a, /16. The real solution of (4), with

the omission of terms of order I' ' and higher,
yields

L (u) = [A cos(2 ' 'E (ou)+ B sin(2 '~'E (uu)]

x [1 (E~/8) cos2(ou] . (6)

I shall set B=O for simplicity and A=1, so that
L(u) =—1 when F =0. One can easily work to higher
accuracy in I'. More harmonics of the basic fre-
quency co would have to be considered, and the

formulas for s and the a„'s would change. How
ever, the simple approximation (6) already pre-
sents some interesting features.

Since E is small, L(u) is a, long-period oscilla-
tion multiplied by a function which oscillates with
small amplitude about unity with frequency 2+.
The long-period oscillation can be thought of as
the average curvature of space-time produced by
the effective energy-momentum tensor of the
short-period oscillations. ' The metric compo-
nents g», g» are

I' exp(+2P) = [(1+E ') + 2F coscuu+ (3E'/4) cos2&ou]

xcos'(2 ' 'Emc).

As expected from previous experience with non-
linear oscillations, the primary effect of nonlin-
earity is the production of harmonics (here with
angular frequencies 0 and 2&v) of the fundamental
frequency of the linearized theory. These har-
monics will show' themselves in the curvature
tensor, which produces differential accelerations
of test particles in the x-y plane, and in the for-
mulas for energy transport.

The I.andau-Lifshitz pseudotensor' gives, for
the flux of power across a surface in the x-y
plane,

( +)t 03 L4P12/4v

(in units with c = G = 1) for the general plane wave
described by the metric (1). If we neglect the long-
period variation of the metric, the power flux
averaged over a linearized period &t= 2m/&u is, to
order E4, consistent with our approximation,

(—gt )= Eicos (2 &—F(ou)[(o /2+E~+ /6]. (6)
1

The first term in the square brackets is that for
the oscillations with frequency e, while the second
term gives the power Qux for the first overtone.
In general, a combination of oscillations with fre-
quencies co, and ~, would give harmonics with
frequencies ~, a ~,. In our case, the ~, —~, term
gives merely a static field, which of course does
not contribute to the energy flow.

Things mill be much more complicated for more
realistic wave solutions, such as those with curved
wave fronts or those representing colliding waves.
However, the ideas discussed here may be of
some interest in dealing with such solutions, and
in determining some features of the graviton-
graviton interaction in the semiclassical regime.
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