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The sensitivity of a resonant-mass gravitational radiation antenna coupled to a motion detector with given

noise properties is calculated in detail. It is shown that the quantum-mechanical limit of linear amplifier

performance implies an important restriction on the sensitivity for any system using a linear motion detector.
For a signal frequency co„ this fundamental limit requires that the gravitational radiation pulse be capable of
driving the antenna from rest to an energy level exceeding 2hco, .

I. INTRODUCTION

In recent attempts to detect gravitational radia-
tion, several workers have failed to observe sta-
tistically significant cross correlations between the
outputs of separated pairs of antennas. ' ' These
and other measurements"' have placed upper limits
on the flux of radiation incident in the form of
brief pulses to which the antennas would respond.
These limits contradict the results of other exper-
iments. " In view of such results, it is desirable
to consider in detail how the sensitivity of the an-
tennas can be improved, and make a comparison
with the available predictions of the ambient radi-
ation flux.

A resonant-mass gravitational radiation antenna
takes the form of a damped harmonic oscillator
exhibiting a vibrational mode with nonvanishing
mass quadrupole moment. "" Coupling to the ra-
diation field results in a driving force proportional
to the oscillating components of the niemann ten-
sor. The eigenfrequency of the mechanical mode,
typically in the approximate range 10' to 10' Hz,
is chosen to lie within the estimated spectrum of
the radiation. " The interaction between a gravi-
tational radiation flux and a massive body has been
discussed in detail. "" A resonant antenna is
most useful for detecting radiated energy arriving
in a time 7'~ of order 1 msec, which is very much
shorter than 7„ the damping time of the mechani-
cal oscillations. If an antenna of given mechanical
properties is exposed to an incoming pulse of ra-
diation described by an energy spectral density
E(&u) per unit area, a quantity U, may be defined
by the equation

U =— X(e)E((u)d(u,
1

2m

where X(u)) is an anisotropic polarization-depen-
dent function determined by the mechanical proper-
ties and size of the antenna. The quantity P, is
equal to the energy which would be deposited by

the pulse in an antenna previously at rest. In or-
der to detect the mechanical oscillations resulting
from signals, the antenna is coupled to a motion
detector whose sensitivity can most generally be
represented by a noise power per unit bandwidth,

If the antenna is used to detect the presence of
a signal pulse during a time interval v„ the re-
quired bandwidth is approximately equal to (2v,) ',
and the noise power is W(2~, ) '. The signal power
is equal to the energy U, divided by the duration
of the experiment v.„and the power available for
detection is known from the maximum power the-
orem to be one-fourth of this, or U,(47,) '. In or-
der for a signal to be detected the available signal
power must exceed the noise power, resulting in
the condition U, & 2W. Heffner has shown, starting
from the uncertainty principle, that all linear am-
plifiers are unavoidably noisy. " Application of the
same argument to a linear motion detector shows
that its mechanical noise power per unit bandwidth
has an absolute minimum value W=h(d„where co,
is the signal frequency. Therefore the fundamental
sensitivity limit for a resonant-mass antenna using
such a motion detector is given by the bandwidth-
independent condition

V, & 26'co, .

This condition, which appears not to have been
recognized in the literature, has important conse-
quences for refrigerated antennas at present under
design and construction.

In order to achieve the noise level defined by the
relation U, & 2W, the signal power t&,(r,) ' must
exceed the noise power k~T, (7,/2) ' associated
with thermal fluctuations in the mechanical dissi-
pation mechanism of the oscillator, assumed at
temperature T, . This requirement is not met in
the room temperature antennas used hitherto, and
a combination of thermal noise and detector noise
controls the sensitivity. Optimization of the sig-
nal-to-noise ratio under these conditions has been
considered by Gibbons and Hawking" and
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others, ""and the performance of these detectors
is well understood. It is reported that the sensi-
tivity of room temperature detectors can eventually
be imporved by between one and two orders of
magnitude. " The corresponding noise level will
still exceed the limit defined by Eq. (2) by about
six orders of magnitude.

In order to improve the sensitivity further, the
antenna may be cooled,"and materials with low
mechanical losses employed, " thus reducing the
thermal noise. At or below the temperature of
liquid helium it is possible to use superconducting
transducer s and amplif iers to minimize motion de-
tector noise.""In calculating the limit of the
sensitivity which can be attained with any given
motion detector, it was first recognized by Brag-
inskii that the effect of detector noise on the mo-
tion of the antenna must be included. " Neglecting
this effect leads to the physically unreasonable
conclusion that sensitivity can be improved with-
out limit by increasing the mechanical Q of the
antenna and simultaneously reducing the measure-
ment bandwidth, contrary to Eq. (2).

In this paper the sensitivity of an antenna coupled
to an ideal linear motion detector with given noise
properties is calculated, and Eq. (2) is derived in
detail. It is shown that the classical treatment
employed is adequate in practice, and the ultimate
sensitivity of the measuring process to the am-
plitude and phase of the antenna oscillation is
shown to be close to the quantum-mechanical limit
expressed by the uncertainty principle. Finally,
the possibility of achieving the ultimate limit in
experiments is discussed.

II. MECHANICAL MODEL OF ANTENNA
AND MOTION DETECTOR

A selected mode of a mechanical oscillator driv-
ing a motion detector can be represented" by the
model shown in Fig. 1. A convenient normaliza-
tion identifies the displacement z(t) in the model
with ((r~, t) the instantaneous, change in length of
the motion detector D due to the chosen mode of
oscillation of the antenna. The value of M, the
model mass, is normalized so that the kinetic en-
ergy of the model corresponds to the integrated
kinetic energy of the antenna in the appropriate
mode, that is,

Mz(t)+ pz(t)+ Kz(t)+ h(t)+ f(t)+P(t) = 0. (4)

Equation (4) represents a harmonic oscillator of
resonant frequency tu, = (K/M)'~' with an amplitude
decay time 7', given by

7', =2M/p, .

In the absence of the noise represented by h(t) and

f(t), the response of the oscillator to a harmonic

$ z(t)
f(t)I(

E(t)

&r

half of the cylinder mass. When the model mass
is correctly normalized, the values of compliance
K ' and damping p are fixed by the requirement
that the resonant frequency and the amplitude de-
cay time of the model should be identical with the
values observed with the antenna coupled to the
motion detector. The mechanical input impedance
of the motion detector is assumed to be in the
form of a simple reactance and incorporated in the
model parameters. The interaction of the antenna
with the radiation field is represented in the model
by the suitably normalized force p(t).

In order to calculate the sensitivity of the anten-
na, it is necessary to model all sources of noise.
Thermal noise associated with the total mechani-
cal dissipation in the antenna and motion detector
is represented by the random force h(t) in Fig. l.
Remaining noise due to the motion detector can be
modeled completely by two effective noise sources
as shown. The series component of the detector
noise is equivalent to a random error in the de-
detected velocity, and is modeled by the fluctuating
velocity error e(t). The shunt component is a
noise force applied to the antenna by the motion
detector, and is modeled by the random force
f(t). These sources are the mechanical duals of the
voltage and current generators which can always
be used to represent the total noise of an electrical
two-port. In an ideal detector, the effective
sources are stationary and uncorrelated. The
equation of motion of the model may now be written

—,'Mg'(r~, f) = 2 p(r)$'(r, t)d'r,

where t(r, t) is the displacement at position r in
the antenna and p(r) is the density. For example,
if a detector senses the displacement of one end
face of a cylinder relative to the center of mass,
the appropriate value of M is approximately one-

FIG. 1. Mechanical model of a single mode of a reso-
nant-mass gravitational radiation antenna. The driving
force p(t) results in a displacement z(t) which is sensed
by the motion detector D. The noise sources h(t), f (t),
and e(t) are discussed in the text.
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v, = (P,r, /2M)r 1 —i(~ —&u, )v, ] ' . (7)

When the Q of the oscillator is very high it is
convenient to express the instantaneous velocity,
which is a narrowband process with zero mean,
in terms of a pair of quadrature components x(t)
and y(t), where

z (f) = x(t)c os &u, t —y(t) sin~, t . (8)

The amplitude and phase of the oscillation are now
represented by a slowly changing vector V(t) which
has components x(t) and y(t) in the x-y plane. The
total kinetic and elastic energy E(f) and phase
Q(t) of the oscillation are given by

I;(f)=-,'M[x'(f)+ y'(f)] (9a)

(f&(t) = tan '[x(t)/y(t)] . (9b)

The response of the antenna to a brief pulse has
been considered in Eq. (1). Since the function
X(&) is only nonzero close to the mechanical eigen-
frequencies of the antenna, and E(&u) must be com-
paratively wide for a brief pulse, the equation can
be simplified by considering only a single mode at
&„so that

U, = o,S'(~,) . (10)

The anisotropic parameter a„which may be re-
ferred to as the cross section for the ath mode for
the wave type considered, depends on the mass
and dimensions of the antenna and the velocity of
longitudinal sound in it. When the energy of the
oscillation is not zero at the time of arrival of the
pulse, the quantity U, given by Eq. (10) no longer
corresponds to the energy deposited, but is re-
lated to resulting changes in the amplitude and
phase of the existing oscillation. The correspond-
ing changes in the model variables can conven-
iently be expressed in terms of the vector V(t) de-
fined above. It can be shown" that

(&V,) = 2U,/M,

wher|, 4V, is the magnitude of the vector change in
the model variable V(t) corresponding to the change
in the state of the antenna caused by the arrival of
the pulse described by I'(e). The quantity U, can
conveniently be used to describe the effect of the
pulse on a given antenna and will be referred to as

force of the form P(t)= -p,exp(-ivt) may be written
in terms of the resulting velocity, z(t) = v,exp(-i+i),
where

So = (-'L(dpo/M)(CO —~ —21(d/T )

In practice the resonance is very narrow and for
frequencies close to &u, one may write Eq. (6) in
the approximate form

the energy equivalent of the pulse. The orienta-
tion of the vector change in the x-y plane cannot be
specified because the energy spectrum E(&u) con-
tains no phase information, and the signals re-
sulting from incoherent signal pulses will be ran-
domly directed.

In practice, the sudden change in V(f) caused by
a signal pulse will be accompanied by random
noise. from the antenna and motion detector. The
spectrum of random antenna motion can be calcu-
lated in terms of the spectral densities S„(&)and
Sz(~) corresponding to the noise sources k(t) and

f(t). If the resulting spectral density of antenna
velocity noise is S,(&u), Eqs. (5) and (7) show that

7~ [Sg(co) + Sg(co)]
2M [I+ (~+ ~.)2~.2] ' (12)

since k(t) and f(t) are uncorrelated.
The output of the motion detector will in general

be an amplified electrical signal. In the case to
be considered below, the output signal ~'(t) of the
linear detector is written in a form proportional
to the instantaneous velocity at the detector input,
which is the sum of z(t) and the series noise error
c(t). It is convenient to normalize the output sig-
nal to the power level at the output, so that the
motion detector power gain need not be considered.
Thus

z'(t) =z(t)+ e(f) . (13)

(14)

where S,(u&) is the spectral density of the velocity
error e(t). Equation (14) shows that the detector
shunt noise is indistinguishable from thermal
noise in the antenna, but that the series noise com-
ponent appears independently. The conditions for
minimizing the overall noise level will be consider-
ed in Sec. III.

III. SIGNAL DETECTION AND SENSITIVITY

A convenient signal-processing technique for
detecting sudden excitations of a resonant antenna
in the presence of noise is wellknown. ' The pre-

In order to minimize the effect of the series noise,
the detector output may be processed by a band-
limiting filter with a response chosen to optimize
the overall signal-to-noise ratio. If it is assumed
for convenience that the filter has a Lorentzian
power response centered at &, and characterized
by a time constant v& «r„ the spectrum S„(&u) of
noise of the detector output will be given close to
e, by

7, ' [S„(~)+S~(~)] S,(~)
2M [1+ (CO 6 (d~) 7 ] [I+ ((d 4 (dz) T& ]
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where the condition ~,= 7& has been assumed. The
first term on the right of Eq. (16) represents the
effect of thermal noise in the antenna and trans-
ducer. The spectral density of the thermal noise
is given by the Nyquist relation in terms of T„
the temperature of the mechanical dissipation
mechanisms. Typical antennas will satisfy the
condition k~T, »h~„and the high-temperature
limit, S„(u),) = 2KsT, p, will be va, lid. If the anten-
na and detector are in internal and mutual thermal
equilibrium, T, will be the antenna temperature.
The second and third terms of Eq. (16) represent
the consequences of motion detector noise. The
relationship between the two terms can be clari-
fied by expressing the detector noise in terms of
two new parameters 8'and Z given by

W= [S&(w,)S,(e,)]' ',

Z = [S~(&u,)/S, (&u,)]' '.

(17a)

(17b)

filtered motion detector output signal is fed to two
phase-sensitive detectors at frequency (d, to re-
cover the quadrature components of the antenna
velocity. These are then sampled simultaneously
at times separated by a chosen measuring interval

In order to minimize the effects of noise while
preserving the independence of successive sam-
ples, the prefilter time constant 7'& should be ap-
proximately equal to ~,. A difference vector &V'

is calculated from successive samples of the en-
velope vector V'(f) whose components x'(f) and

y'(f) are the quadrature components of the antenna
motion contaminated by detector series noise.
The magnitude &V& of the jth vector difference is

~I', =[( ', — '„)"(y', -y'„)']'", (15)

where x& denotes the jth sample of x'(f), etc
A brief signal pulse, causing a certain vector

change in the state of the antenna oscillation with
the magnitude given by Eq. (11), will be detected as
as an equal change in the vector V'(t). If the dura-
tion of the signal v~ is shorter than v'„ the magni-
tude of &V,' of the vector difference which spans
the interval is thus given by &V',= (2U,/M)'~',
where U, is the energy equivalent given by Eq.
(10). More sophisticated algorithms, employing
optimum filtering techniques, can be used to give
an output which is independent of the arrival time
of the signal

The statistical properties of the noise which ac-
companies the signal can easily be calculated from
the noise spectrum given in Eq. (14). It is shown
in the first part of the Appendix that, in the ab-
sence of signals, the mean square detected vector
difference 6', where 4'=((4V&)'), is given by

'= r M-'S„(&u,)+ r,M 'S~(&u, )+ 4r,'S, (&u.), (16)

Z = 2M/r, (19)

The minimum detectable signal pulse is then char-
acterized by an optimum energy equivalent U„„
where

U„o= 2ksT, (r,/r, )+ 2W. (20)

IV. MINIMUM ATTAINABLE NOISE LEVEL

Equation (20) gives U„„ the energy equivalent
of the signal pulse which generates a vector dif-
ference output equal to the root mean square
noise. The sensitivity of an antenna is thus opti-
mized by reducing as far as possible the terms
on the right-hand side. The first term represents
the noise due to thermodynamic fluctuations in the
dissipative mechanisms of the antenna and mo--
tion detector. In principle this noise can be re-
duced indefinitely by using better materials to
increase ~, and by reducing the temperature;
therefore the sensitivity must eventually be limited
by the detector noise represented by the second
term.

Heffner" has used an argument based on the un-
certainty principle to show that no linear amplifier
can have a noise temperature lower than the value

T„,
~

„=her/ks ln2. (21)

A linear amplifier is defined to be one in which
the amplitude and phase of the output signal are
linearly related to the input amplitude and phase.
The arguments which lead to Eq. (21) are equally
applicable to a device whose input is a mechanical
signal, and they are thus appropriate to the case
of any motion detector which is linear. All motion
detectors used at present or proposed for gravity
wave detectors appear to fall within the definition
of linear devices, with the possible exception of
the "quantum nonperturbing" detector discussed

The total noise power per unit bandwidth of the
detector is thus equal to W, and Z is a character-
istic impedance which can in principle be selected
at will. The overall noise level is conveniently
expressed by the energy equivalent U„of the signal
pulse which would cause a vector difference equal
in magnitude to the root mean square noise incre-
ment (&')'~'. Using Eq. (11) and the redefined
noise parameters, Eq. (16) gives

U„= 2ksT(r, /r, )+ W(Zr, /2M+ 2M/Zr ) .(18)

In principle, brief signal pulses can be detected
with a signal-to-noise ratio of unity if their ener-
gy equivalent is equal to U„. For a chosen value
of 7, the detector noise, represented by the second
and third terms on the right of Eq. (18), is mini-
mized when the noise properties of the detector
satisfy the unique impedance-matching condition
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by Braginskii et al."'"
It is shown in the second part of the Appendix

that a motion detector operating at a frequency &,
with a noise level characterized by the parameter
W defined in Eq. (17a), has an optimum noise
temperature T„'p satisfying the equation

given by
~
V(t)

~

= [2h~, (n+ —,)/M]'t'. If the quantities
n and Q are measured by the technique described
in Sec. III, and the resulting root mean square un-
certainties are &n and &P, respectively, the con-
dition that the overall uncertainty be isotropic in
x-y space with variance &

4' requires that

W=K~/[exp(K&u/k T„,) —1]. &n = &Q(M/@co, )(V'), (26)

E„o= 2 (EU„o)
~ ~2, (23)

where E is the average value of the resonator en-
ergy E(t). If E takes the thermal equilibrium val-
ue K~T„and U p takes the minimum possible value
2h~„ the value of E„, is given by

E„,/her, = (8k~ T,/k~, )'~'. (24)

Using optimistic values of the parameters,
T, =10 'K, ~, =2v && 10' sec ', the value of (8ksT, /
ka, )'t' is found to exceed 10'. Thus the energy
changes corresponding to detectable signals are
considerably greater than S&„and the classical
derivation of Eq. (20) is justified for practical an-
tennas.

It is interesting to determine how closely the
performance of the signal-processing technique
described in Sec. III approaches the limit of the
uncertainty principle. The quantity 4', whose
value is given in Eq. (16), represents the mean
square uncertainty involved in determining a
change in the state of the antenna oscillation by
means of two successive measurements. Because
the autocorrelation functions of the quadrature
components x'(t) and y'(t) are identical, the prob-
ability distribution associated with a single mea-
surement of the state of the antenna in x-y space
may be expected to be isotropic with a mean
square radius of &&'.

The state of the oscillation can be given in terms
of the phase Q and quantum number n of the oscil-
lator using Eqs. (Ba) and (Bb), in which case the
length of the envelope vector V(t) in x-y space is

Since this value of T„, must be greater than the
minimum allowed by Eq. (21), the condition

(22)

is obtained. A motion detector with a smaller
value of 8'would potentially be capable of making
a measurement to an accuracy which is not allowed
by the uncertainty principle, and therefore such a
device cannot be realized.

Since the ultimate lower limit to W is of quan-
tum-mechanical origin, it is necessary to check
the validity of the classical calculation used to
obtain Eq. (20). Equations (Ba) and (11) show that

E„„the mean change in resonator energy corre-
sponding to a signal equal to the minimum noise
level U„„ is given by

and

(An)'- 6'(M/Iv )'(V')

where (V') is the mean square of ~V(t) ~. Simple
manipulation of these equations shows that

(26)

Ands = 6'(M/2K~, ). (27)

V. EXPERIMENTAL SENSITIVITY

The energy equivalent of a pulse which is detec-
table at unity signal-to-noise ratio is given by Eq.
(18). However, in an experiment it is necessary
to consider the expected frequency of the signals
and the statistics of the noise. The noise output
of the detection algorithm described in Sec. III is
a normal distribution of vector differences, with
the mean square value U„, referred to energy,
given by Eq. (18). The probability I'(U) of the
square of a single vector difference exceeding a
threshold corresponding to an input pulse of ener-
gy equivalent U is therefore

a(U) = exp(- U/U„). (28)

Thus the threshold U'„which is exceeded by the
noise output at a repetition rate R is given by
P(U'„)r, '=R, so that

U'„= U„ ln(Rr, ) '. (29)

Since the detection efficiency for signals will only
approach unity when the energy equivalent is equal
to or greater than U'„, the value necessary for de-
tection of signals occurring at rate A is greater

For the minimum value of W allowed by Eq. (22),
&' cannot be smaller than 4k&v, /M, giving 4nb Q
~ 2. The uncertainty principle applied to a har-
monic oscillator defines the minimum value
hnbQ = —,', and thus the signal processing technique
discussed in Sec. III appears to be slightly less
than optimal. Moreover, it follows that the sensi-
tivity of an antenna with a linear detector cannot
be substantially improved beyond the limit U p

= 26~, by using more sophisticated signal-proces-
sing techniques. More sensitivity may be
achieved if a nonlinear motion detection system
with greater sensitivity to energy changes at the
expense of phase resolution, or vice versa, can be
devised. This problem has been considered by
Braginskii et al. '4'"
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than p„by a factor of approximately In(q), where
q=(Rr, ) '. The minimum signal energy equivalent

U~ detectable at this accidentals rate with opti-
mum noise matching is thus given by

U~ = In(q)[2k' T,(r,/r, ) + 2 W]. (30)

Equation (30) gives the best sensitivity which
can be obtained with given values of the param-
eters T„v„~„and W. Using Eq. (10) this may
be rewritten in terms of the spectral density
E(&u,) required for detection of signal pulses at an
accidentals rate of R. The condition for detection
ls

E(&u, ) ~ o', ' In(q)[2keT, (v,/v', )+ 2Wj. (31)

keT (7 /r, ) «W (32)

can still be satisfied. This equation therefore
gives the condition for thermal noise not to de-
grade sensitivity for given values of the param-
eters 7', and 8'. If the matching condition cannot
be satisfied at a value of v', which gives negligible
thermal noise, the value giving optimum sensiti-

In practice the sensitivity of a detector will de-
pend on how far the quantities on the right-hand
side of Eq. (31) can be reduced. It is always use-
ful to increase the cross section o, as far as pos-
sible. Since the factor In(q) may be expected to
vary only slowly with typical values of R and v„
the most significant remaining factor is the quan-
tity U„o, with the dimensions of energy, between
brackets. The first term represents the noise due
to thermodynamic fluctuations in the dissipative
mechanism of the antenna. This is traditional. ly
considered to be under the control of the experi-
menter since it can be reduced by the technics, l
expedient of using better materials to lengthen
the decay time and by reducing the temperature.
It is also advantageous to use the shortest possible
sampling time permitted by the inequality v., 7.~,
and by any constraints that may be imposed by the
matching condition. It is clear that the sensitivity
of the antenna cannot be increased indefinitely by
increasing v, or reducing T, since the detector
noise will eventually become dominant. It has
been shown above that, in order to obtain the mini-
mum detector noise 2W, the detector noise im-
pedance Z must satisfy the condition Z = 2M/7 „
and that any departure from ideal matching will
result in poorer sensitivity. In practice, matching
is achieved by correct design of the motion detec-
tor and by choosing the correct point of attach-
ment to the antenna, which varies the model
mass M. The use of a value of v, longer than 7'~

in order to achieve matching is undesirable since
it will significantly increase the contribution of
resonator noise unless the condition

vity must be found by differentiating Eq. (18).
The ultimate sensitivity of a practical antenna

using a linear detector is obtained when W takes
the lowest theoretically possible value h(d, . If
thermal noise can be made unimportant, and the
detector is perfectly matched to the antenna, the
condition for detection is

F (u&,) ~ 2(k&u, /o, ) In(q). (33)

VI. DISCUSSION AND CONCLUSIONS

The use of a linearly responding motion detector
is shown by Eq. (20) to imply a bandwidth-indepen-
dent minimum noise level in the absence of ther-
mal fluctuations. When the fundamental limit of
linear detector sensitivity is considered, it is
found that the ultimate lower limit of noise in an
antenna system at frequency u, is given by U„,
& 2N&„where p„, is the energy equivalent of the
noise. The existence of this absolute noise limit
is not apparent from earlier sensitivity calcula-
tions'"" ~' which made use of various approxima-
tions, valid at room temperature, which fail in the
general case of a refrigerated antenna.

In order to approach the ultimate noise limit
with practical antennas, several important prob-
lems have to be solved. A motion detector with
sensitivity close to the quantum-limiting value,
with a characteristic impedance matched to the
antenna, must be devised, and all other forms of
noise must be reduced to insignificant levels.
The most formidable problem appears to be the
construction of the detector. The most sensitive
amplifiers available at present are traveling
wave masers. These have a noise level which is
already within an order of magnitude of the quan-
tum limit at their operating frequencies. ' In
order to use such an amplifier, the signal at the
antenna frequency u, must be up-converted to the
microwave input frequency &, either by means of

It is important to notice that, as a result of the
use of a linear detection system, neither the am-
plitude of the detected signal nor the detector
noise level depends on E(t), the level of oscilla-
tion. The ultimate sensitivity given by Eq. (33)
would consequently be unaffected by coherent ex-
citation of the antenna. Braginskii and Vorontsov"
have calculated a much smaller limiting noise
level than Eq. (33) assuming that the last two terms
of Eq. (16) may be independently minimized. The
discussion in Sec. IV above shows that the neces-
sary motion detector must sacrifice sensitivity
to the phase of the oscillation in order to be more
sensitive to energy. It is not yet clear that this
can be achieved with the proposed motion detector,
which appears capable of linear amplification.
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a motion transducer followed by a parametric
converter, or by means of a parametric trans-
ducer. Ideally, such a device need add no noise,
and the relationship between the amplifier noise
level and the quantum limit at &, can be repro-
duced at the input frequency &,." A second es-
sential function of the transducer or converter is
to provide the correct noise match between the
amplifier and the antenna. Transducers for this
application pose unique problems, and existing
designs rely on the properties of superconductors
to achieve low-noise and parametric action. ""

The remaining problem of thermal noise is per-
haps less severe. In the most demanding case
where the detector is quantum limited, the inequal-
ity (ks T,/r, ) & (h&u, /r, ) must be satisfied to achieve
full sensitivity. Reasonably optimistic parameter
values of Q = 3.10' and v, =10 ' sec require a tem-
perature T, & 0.07 K, which is accessible by con-
tinuous refrigeration. The problem would become
worse if the oscillator Q were lower, or if match-
ing could only be achieved for longer values of

It is important to notice that once the condi-
tion of Eq. (32) has been met, no further increase
of the ratio (Q/7,') is useful.

With a given noise level the spectral intensity
of a detectable pulse is given by Eq. (31). It is
clear that the greatest sensitivity results from
using the maximum possible value of the cross
section o,. The largest antenna reportedly under
construction'"" will have a cross section of
8 && 10 "m', assuming a favorably polarized
source in a suitable direction. The ultimate sen-
sitivity obtainable with this detector is shown by
Eq. (33) to correspond to an energy spectral den-
sity of about 3.10 ' Jm ' Hz ' at an accidentals
rate of 10 per year. This intensity corresponds

' to the isotropic conversion into a bandwidth of
10' Hz of 2.10 ' solar masses at the distance to
the center of the galaxy.

It is clear that existing antennas are far from
any fundamental restrictions on performance.
However, the existence of a fundamental noise
limit is very significant since proposals for more
sensitive experiments are now being made. ""
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S,((u, )
[1+ ((d 2 (d ) t& ]

(Al)

The quadrature components x'(f) and y'(f) of the
detector output are defined by

z'(f) =x'(t) cons, t —y'(f) sin&a, t. (A2)

Since the spectrum S„(e) is symmetric about e„
the quadrature components are uncorrelated and
have identical spectra equal to S,(e), such that"

S„(&u)=-,'S, (&u —v, )+ 2S, (&u+ ur, ). (A3)

The spectrum S,(ur) is thus given by

2(v, /2M)'[S„(~) + Sz(ur)] 2S,(~)
1+ (d T 1+ (d~'7

a f

(A4)

The autocorrelation function R, (r) for each quad-
rature noise signal is therefore equal to

R, (T) =I (2M) '[S„(&u,)+S&(&u,)]e '~"

+ (7~) 'S (cu,)e '~'~. (A5)

In the vector difference detection procedure des-
cribed in Sec. III, the quadrature components
x'(f) and y'(f) are sampled at intervals of r, . The
mean square detected vector difference ~' is
given by

&' = (L[x'(t) -x (t —~,)]'+ [X'(t) —X'(f —r.)]']).
(A6)

In the absence of signals, x'(f) and y'(t) have iden-
tical correlation functions R,(v) given by Eq. (A5),
and ~' is given by

~'= 4[R,(O) -R, (i,)]. (A7)

In practice, the conditions v, » v, and ~&=7, will
obtain, and &' is given by

42 = (r, /M2) [Sz(u),)+ S&(v,)] + 4(r,) ~S,(e,),
(A6)

where exp( —7,/r&) has been neglected in compari-
son with unity.

Fig. 1 has a narrowband noise spectrum S„(~)
which is given at frequencies close to the antenna
resonance (d, by

(r, /2M)'[S„(u&, )+Sz(e,)]
[1+((u + (u,)'r, ']

APPENDIX

1. Noise level for vector difference detection

In Sec. II it is shown that the motion detector
output z'(f) of the antenna system modeled in

2. The noise temperature of a linear motion detector

The effective noise temperature of a linear me-
chanical amplifier or motion detector can be cal-
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culated by reference to the model shown in Fig. 2.
The detector noise is represented by the two gen-
erators f(t) and «(t) corresponding respectively
'to a random force with spectral density S&(ur) and
a random velocity error with spectral intensity
S,(co). The detector is connected to measure the
velocity difference across a mechanical resis-
tance p whose noise is represented by a shunt
random force g(t). The corresponding spectral
density S (&u) is given by the Nyguist relation in
terms of the temperature T„,

S,(&u) = 2ykur[exp(8'co/k~ 2„)—1] '. (A9)

The equation of motion for the velocity difference
v(t) is

(A10)

It has been assumed that the mechanical input sus-
ceptance of the detector is negligible or has been
tuned out by its complex conjugate at the frequency
of interest. The detector output e'(f), referred to
as the power level at the input, is given by

(A11)

If the noise sources are assumed uncorrelated in
an ideal detector, the spectrum S„(&u) of v'(f) is

S„(&u)= 2@coy '[exp(h &a/k~ T„) —1] '

+ y 'SI(cu)+S, (~).

%hen T„ is equal to the effective noise tempera-
ture T„, the first term in Eq. (A12), corresponding
to the source thermal noise, is equal to the sum
of the remaining two terms which represent the
detector noise; thus

2)f&[exp(Ro/k~T„) —1] ' "- yS, ((o)+ y 'Sy(u)).

(A13)

1

g(t) f(t) ~ {t)

FIG. 2. Model of a motion detector D connected to a
mechanical resistance y. The noise sources g(t), f (t),
and &(t) are discussed in the text.

The detector noise is minimized when the source
is matched to the detector so that y= [S&(&)/
S,(ur)]'~', and the resulting optimum noise tem-
perature T„, is given by

A~[exp(I&a/keT„, ) —1] '= W,

where

W= [Sz(~)S,(&u)]' '.

(A14)

Any detector in which the phase and amplitude of
the output signal are not proportional to those at
the input is not a linear amplifier, and thus Eq.
(A16) need not apply.

Heffner has shown" that the minimum realizable
noise temperature for a linear amplifier is

7„,i
„=bur/(ke ln2).

The derivation of this relationship is equally ap-
plicable to a linear amplifier whose input signal
is mechanical. Thus for any realizable, linear,
motion detector, Eqs. (A14) and (A15) show that
the value of W must satisfy the condition

(A16)

*Work partly supported by the National Science Founda-
tion.

)Alfred P. Sloan Fellow.
~R. W. P. Drever, J. Hough, R. Bland, and G. W. Less-

noff, Nature 246, 340 (1973).
2V. B. Braginskii, A. B. Manukin, E. I. Popov, V. N.

Rudenko, and A. A. Khorev, Zh. Eksp. Teor. Fiz. 66,
801 (1974) I.Sov. Phys. —JETP 39, 387 (1974)].

3H. Bining, P. Kafka, K. Maischberger, F. Meyer, and
W. Winkler, Lett. Nuovo Cimento 12, 111 (1975).

4D. H. Douglass, R. Q. Gram, J. A. Tyson, and R. W.
Lee, Phys. Rev. Lett. 35, 480 (1975).

~H. Hirakawa and K. Narihara, Phys. Rev. Lett. 35, 330
(1975).

~J. L. Levine and B. L. Garwin, Phys. Rev. Lett. 31,
173 (1973).

~J. L. Levine and R. L. Garwin, Phys. Rev. Lett. 33,

794 (1974).
8J Weber, M. Lee, D. J. Gretz, G. Bydbeck, V. L.

Trimble, and S. Steppel, Phys. Rev. Lett. 31, 779
(1973).

9M. Lee, D. Gretz, S. Steppel, and J. Weber, Phys.
Bev. D 14, 893 (1976).
J. Weber, Phys. Rev. 117, 306 (1960).
G. W. Gibbons and S. W. Hawking, Phys. Rev. D 4,
2191 (1971).
C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation (Freeman, San Francisco, 1973).
R. Buffini and J. A. Wheeler, in Relativistic Cos-
mology and SPace I'latfo~s, edited by V. Hardy and
H. Moore (ESBO, Paris, 1971), Chap. 6.

~4H. J. Paik and R. V. Wagoner, Phys. . Bev. D 13, 2694
(1976).
H. Heffner, Proc. IRE 50, 1604 (1962).



2486 R. P. GIFFARD 14

~~J. Weber, in Critical Phenomena, Proceedings of the
International School of Physics "Enrico Fermi, "
Varenna, 1972, edited by M. S. Green (Academic,
New York, 1974).
J. A. Tyson and G. L. Miller, Bell Laboratories Tech-
nical Memorandum, 1972 (unpublished).
H. J. Paik, Ph. D. thesis, Stanford, 1975 (unpublished).

~SJ. A. Tyson {private communication).
S. P. Boughn, W. M. Fairbank, M. S. McAshan, H. J.
Paik, R. C. Taber, T. P. Bernat, D. G. Blair, and
W. O. Hamilton, in Gravitational Radiation and Gravi-
tational CollaPse, edited by C. Morette-DeWitt
(Reidel, Dordrecht, 1974).

2~V. B. Braginskii, lectures presented at the Interna-
tional School of Cosmology and Gravitation, Erice,
Sicily, 1975 (unpublished).
P. Kafka, lectures presented at the International
School of Cosmology and Gravitation, Erice, Sicily,
1975 (unpublished) .
S. P. Boughn, Ph. D. thesis, Stanford, 1975 (ggpub-
lished).

2~V. B. Braginskii, Yu. I. Vorontsov, and V. D. Kriv-

chenkov, Zh. Eksp. Teor. Fiz 68 55 (1975) t,Sov. Phys.
—JETP 41, 28 (1975)j.
V. B. Braginskii and Yu. I. Vorontsov, Usp. Fiz. Nauk.
114, 41 (1974) [Sov. Phys. —USP. 17, 644 (1975).

6M. S. Reid et al. , Proc. IEEE 61, 1330 (1973).
276. J. Dick and H. C. Yen, in Proceedings of the Applied

Superconductivity Conference, Annapolis, Md. , 1972,
Pub. No. 72CH0682-5- TABSC (IEEE, New York 19723,
p. 684.
D. G. Blair, T. P. Bernat, and W. O. Hamilton, in
Proceedings of the 14th International Conference on
Low Temperature Physics, Otaniemi, I'inland, 1975,
edited by Vuorio Krusius (North-Holland, Amsterdam,
1975) Vol. 4, p. 254.

8H. J. Palk, J. Appl. Phys. 47/ 1168 (1976).
K. S. Thorne, expanded version of lecture presented
at the (Chandrasekhar) Symposium on Theoretical
Principles in Astrophysics and Relativity, Chicago,
1975 (unpublished) .

3~A. D. Whalen, Detection of Signals in Noise (Academic,
New York, 1971).


