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We study electrostatics in the background gravitational and electric field of a charged massive body or black
hole that is described by the Reissner-Nordstrom metric and its associated electric field. That is, we neglect
the gravitational field associated with the perturbing charges and electric fields. Specifically, we consider the
special case in which the charge e and mass M of the Reissner-Nordstrdm metric are related by e? = k M?,
with Kk the. gravitational constant, and obtain the multipole solutions of Maxwell’s equations for small
electrostatic perturbations. As one example we give the field of a point test charge in remarkably simple
closed algebraic form and study its behavior as the charge approaches the black-hole surface: Loosely
speaking, the test charge is rapidly “swallowed” by the black hole. Lastly, we show that our results are
readily generalized to cover both electrically and magnetically charged test particles.

I. INTRODUCTION

We wish to study the perturbations in the electric
field of a charged (¢) and massive (M) body or
black hole described by the Reissner-Nordstrém
(RN) metric'’?; we will neglect the effect of the
perturbing charges and electric fields on the grav-
itational field, i.e., the background metric. Thus
we must solve Maxwell’s equations in the RN back-
ground space. This is most easily done if we
choose the charge-to-mass ratio of the body to be
e®=kM?, where k is the gravitational constant.

The metric is then particularly simple. This
charge-to-mass ratio is of independent theoretical
interest as we will discuss further in Sec. II and
Sec. II.* It is remarkably easy to obtain a com-
plete set of multipole solutions as we shall do in
Sec. II. In Sec. III we will apply the multipole so-
lution to calculate the field of a point test charge,
which may be expressed in simple closed alge-
braic form. Owing to this simple form, the be-
havior of the field of the test charge may be read-
ily studied as the test charge approaches the
black-hole radius.*® Lastly, in Sec. IV we show
that the field of a magnetically charged test parti-
cle is easily obtained without further calculation.®®

1. MULTIPOLE SOLUTION OF MAXWELL’S EQUATIONS

The classic Reissner-Nordstrdm (RN) solution
represents a charged and massive spherically
symmetric body with a line element,?

ds® =g C2dt* - go,~tdr? — v *(d6? + sin®6d¢?) , (2.1)

-1 2m A _KM A= ke?
8o0= _T+F9 m_?y _0—4;
and a Minkowski tensor with one nonzero com-
ponent,

Fl=ze¢/v2. (2.2)
(We use in general the notation and conventions of
Ref. 2, but with cgs electromagnetic units instead
of those of Heavyside and Lorentz.)

We will be interested in the special case A =m?,
or e®=kM?, in which case g, takes the particularly
simple form (1-m/7)®. This case is of special
theoretical interest since a group of point parti-
cles with this charge-to-mass ratio can remain
at relative rest, as shown by Papapetrou,
Majumdar, Synge, Israel and Wilson, and
Perjes®; this is the general-relativistic general-
ization of the balance between gravitational at-
traction and electric repulsion that obtains clas-
sically for this charge-to-mass ratio. For this
reason we refer to this special case of the RN so-
lution as optimally charged.® (In Sec. III we will
consider the exact solutions mentioned above in
more detail.)

We wish to obtain solutions for electrostatic
perturbations to the optimally charged RN field;
by this we mean we will neglect the gravitational
field associated with the perturbing charges and
electric fields and solve Maxwell’s equations in
the RN background metric space. For convenience
we limit ourselves to cylindrically symmetric con-
figurations and thus write the nonvanishing com-
ponents of the Minkowski tensor as

F'=f(r,0), F%=h(r,0). (2.3)
Maxwell’s equations may be written as
[(|g)*/2F**]14=0, Fop=Aga=Aas, 2.4)

where a vertical bar denotes an ordinary deriva-
tive.? With A;= ¢ these lead to

1 .
goo@’z‘i’n)lﬁ“sm (sinf¢ ) j=0,

f== 0, hrige=— .

(2.5)
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This is a modified Laplace equation, and in the
limit g, ~ 1 we retrieve flat-space electrostatics.

To solve (2.5) we use a product solution, where
the angle-dependent factor is a Legendre polyno-
mial as in elementary theory. Then

(@, 0)=¢,()P,(cosb) ,

(1_—) (r2¢3) "~ 10+ 1)¢,=0,

where a prime denotes a derivative with respect
to . The solutions to this are simple products of
powers of 7 and 7 — m, and the multipole solutions
of (2.5) are accordingly

b= i[ (y_‘?z# +b,(’r— m)m]P,(cose) , (2.7

v v

(2.6)

where, as in elementary theory, the coefficients
must be chosen to satisfy specific physical de-
mands or boundary conditions. We will give one
example of the choice of coefficients in the next
section.

III. FIELD OF A POINT CHARGE

In the absence of the central body, m is equal to
zero and we have ordinary flat-space electrostat-
ics. Then the field of a point test charge e, at
7=a and 6=0 is described by a potential ¢, given
by

bo=e(r2+a® - 2ar cosd)™/?
© al
23 —miPy(coso). (3.1)

1=0

It is clear that to describe the analogous situation
in the presence of the central body we must choose
b,=0 in (2.7) so that ¢ has the correct behavior for
large . The a, must be chosen so that a singular-
ity of the appropriate nature occurs in ¢ at r=a,
0=0. To do this we demand that, for 6 -0 and

7 —~a, ¢ behave like ¢,, since sufficiently close to
the test charge the potential should be independent
of the background field. The limiting behavior of
the series (2.7) should thus be forced to be the
same as the singular limiting behavior of (3.1),
which gives

¢~ Za(a m)t’ o= e°2;_

(3.2)
a,=e,(a-m)t.

We thus obtain a simple expression for ¢, which,
moreover, may be summed in closed form:

io W P (COSG)

.—.eo<1_—:};>[(r— m)?+ (a—m)?

- 2(r — m)(a - m)coso]/2

. <1_%)% (3.3)

In Fig. 1 we have shown the equipotential lines of
this remarkably simple expression. Note that the
black-hole surface is an equipotential.

The result (3.3) may be compared with the exact
solution which we may obtain from Refs. 3. For
two point particles with charges e and e, and
masses M and M, (obeymg the optimal charge con-
dition e®= kM? and e,” = kM,?) the exact solution in
isotropic coordinates is given by?

ds® =y 2c?dt? ~ Yldp? + p*(d6® + sin®0d¢?)] ,

11)=1+';+—p;, (3.4a)
c? 1
A=z (1-5)
e/p+eq/py (3.4b)

“Trm/p+my/p,’

where p,. is the distance between the field point
and the charge ¢,, located on the z axis, and
m=KkM/c?, my=kM,/c?®. Our perturbation solution
is in ordinary Schwarzschild coordinates. With
the transformation » = p+m we may put the RN
solution into isotropic coordinates corresponding
to (3.4). Under this transformation the potential
A, behaves like a scalar. Thus the fotal potential
of our perturbative solution in isotropic coordi-
nates is

A ——+<1-———>f:°
v v | ¥

(2 15%),

7=[p*+ (a= m)? - 2p(a - m)coso] /2,

Identifying the radial position of the test charge in
isotropic coordinates as a - m we have #=p,, and
we see that the exact solution (3.4b) and our ap-
proximate solution (3.5) agree: The gravitational
effect of the test charge is contained in the small
third term of the denominator of (3.4b).

To discuss the electric field we introduce a
tetrad basis field &° defined as

et =g 151,
ds®=n,4(e5dx) (eldx®) , (3.6)
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FIG. 1. Qualitative plot of the equipotential surfaces
for a point test charge near an optimally charged black
hole. We choose a =2m and only plot the angular region
0=0 to m.

where the Latin letters a,b,... signify tetrad in-
dices and 7,, is the Lorentz metric. This basis
provides a local tangent space in which the com-
ponents of the Minkowski tensor have the usual
flat- space interpretation. We denote the tetrad
components of F , by E, for 01 and E, for 02;
they are related to the tensor components by

Fab=egeiFaB’
E,=‘(lg°°g“l)1/z¢>|,, Ee=_(lgoogzzl)1/z¢lo’
(3.7

.= _%E;-Jr%(l_%)[(r— ) — (@ - m)cos],

E,=- ;3&7[(7' — m)(a—m)sind].

As measured with respect to the tetrad basis the

electric field is radial at the black-hole radius,
owing to the factor » — m in E,.

In either of the forms for ¢ in (3.3) the behavior
as a-—m is transparent: Quite rapidly the higher
multipoles vanish, leaving only the I=0 term e,/7.
The perturbing charge ¢, is merely added to the
central charge e, or is “swallowed” by the black
hole. Qualitatively similar behavior occurs in the
Schwarzschild metric as shown in Refs. 4 and 5.

IV. MAGNETIC CHARGE

It is easy to generalize the preceding results to
include magnetically as well as electrically
charged particles.®® The Minkowski tensor will
contain both electric and magnetic cylindrically
symmetric fields. By a duality rotation we may
add to F,, of the preceding section the correct
magnetic terms; this is explicitly done by adding
to it *Faﬂgo/ €,, where g, is the magnetic charge
on the perturbing particle. Then F,, will have
two new nonzero magnetic components given by

F,=(go/e,)sind ¢,/ (1 - m/7)?,
4.1)
Fys=—(g,/ex)r*sind ¢,,.

The magnetic field of a point magnetic perturbing
charge is one obvious example: We merely take
the limit e, — 0.

Note that a duality rotation of the type we have
used is not in general permissible owing to non-
linear effects. For example, the exact
Majumdar- Papapetrou solution discussed in Sec.
IIT cannot undergo a duality rotation to a solution
for one electrically and one magnetically charged
particle as we have done here; instead a more
complicated procedure is necessary, and in fact
this problem does not seem as yet to be completely
solved.®

V. SUMMARY

For the particular case of an optimally charged
Reissner-Nordstrdm background field, defined by
the relation kM?®=47e® between charge e and mass
M, we have obtained the multipole solutions of
Maxwell’s equations in Eq. (2.3). The special
case of a point test charge e, outside the black-
hole surface at » = kM/c? is given by (3.3). For
magnetic charge the same basic equations hold,
and the field of a magnetic test charge is also
given by (3.3) with the electric charge e, replaced
by a magnetic charge g,.
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