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The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and
the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive.
This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical
concepts of space and time break down as do all the known laws of physics because they are all formulated on
a classical space-time background. In this paper it is claimed that this breakdown is not merely a resuit of our
ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the
future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-
mechanical uncertainty principle. The new limitation arises because general relativity allows the causal
structure of space-time to be very different from that of Minkowski space. The interaction region can be
bounded not only by an initial surface on which data are given and a final surface on which measurements are
made but also a “hidden surface” about which the observer has only limited information such as the mass,
angular momentum, and charge. Concerning this hidden surface one has a “principle of ignorance”: The
surface emits with equal probability all configurations of particles- compatible with the observers limited
knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black
holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other
possibly escaping to infinity. Because part of the information about the state of the system is lost down the
hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there
is no S matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new
operator, called the superscattering operator, which maps density matrices describing the initial situation to
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density matrices describing the final situation.

I. INTRODUCTION

Gravity is by far the weakest interaction known
to physics: The ratio of the gravitational to elec-
trical forces between two electrons is about one
part in 10*%, In fact, gravity is so weak that it
would not be observable at all were it not distin-
guished from all other interactions by having the
property known as the principle of universality or
equivalence: - Gravity affectsthe trajectories of all
freely moving particles in the same way. This has
been verified experimentally to an accuracy of
about 10™'* by Roll, Krotkov, and Dicke® and by
Braginsky and Panov.? Mathematically, the princi-
ple of equivalence is expressed as saying that
gravity couples to the energy-momentum tensor
of matter. This result and the usual requirement
from quantum theory that the local energy density
should be positive imply that gravity is always at-
tractive. The gravitational fields of all the parti-
cles in large concentrations of matter therefore
add up and can dominate over all other forces. As
predicted by general relativity and verified experi-
mentally, the universality of gravity extends to
light. A sufficiently high concentration of mass can
therefore produce such a strong gravitational field
that no light can escape. By the principle of spe-
cial relativity, nothing else can escape either since
nothing can travel faster than light. One thus has
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a situation in which a certain amount of matter is
trapped in a region whose boundary shrinks to
zero in a finite time. Something obviously goes
badly wrong. In fact, as was shown in a series of
papers by Penrose and this author,3"® a space-time
singularity is inevitable in such circumstances
provided that general relativity is correct and that
the energy-momentum tensor of matter satisfies

a certain positive-definite inequality.

Singularities are predicted to occur in two areas.
The first is in the past at the beginning of the pres-
ent expansion of the universe. This is thought to be
the “big bang” and is generally regarded as the
beginning of the universe. The second area in
which singularities are predicted is the collapse
of isolated regions of high-mass concentration such
as burnt-out stars.

A singularity can be regarded as a place where
there is a breakdown of the classical concept of
space-time as a manifold with a pseudo-Reiman-
nian metric. Because all known laws of physics
are formulated on a classical space-time back-
ground, they will all break down at a singularity.
This is a great crisis for physics because it means
that one cannot predict the future: One does not
know what will come out of a singularity.

Many physicists are very unwilling to believe
that physics breaks down at singularities. The
following attempts were therefore made in order
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to try to avoid this conclusion.

1. General velativity does not predict singulavi-
ties. This was widely believed at one time (e.g.,
Lifshitz and Khalatnikov®). It was, however,
abandoned after the singularity theorems mentioned
above and it is now generally accepted that the
classical theory of general relativity does indeed
predict singularities (Lifshitz and Khalatnikov®).

2. Modify geneval velativity. In order to prevent
singularities the modifications have to be such as
to make gravity repulsive in some situations. The
simplest viable modification is probably the Brans-
Dicke theory,'°. In this, however, gravity is al-
ways attractive so that the theory predicts singu-
larities just as in general relativity.” The Ein-
stein-Cartan theory’! contains a spin-spin interac-
tion which can be repulsive. This might prevent
singularities in some cases but there are situations
(such as a purely gravitational and electromagnetic
fields) in which singularities will still occur. Most
other modifications of general relativity appear
either to be in conflict with observations or to have
undesirable features like negative energy or
fourth-order equations.

3. The “cosmic censorship” hypothesis: Nature
abhovs a naked singulavity. In other words, if one
starts out with an initially nonsingular asymptot-
ically flat situation, any singularities which subse-
quently develop due to gravitational collapse will
be hidden from the view of an observer at infinity
by an event horizon. This hypothesis, though un-
proved, is probably true forthe classical theory
of general relativity with an appropriate definition
of nontrivial singularities to rule out such cases
as the world lines of pressure-free matter inter-
secting on caustics. If the cosmic censorship hy-
pothesis held, one might argue that one could ig-
nore the breakdown of physics at space-time singu-
larities because this could never cause any detec-
table effect for observers careful enough not to
fall into a black hole. This is a rather selfish at-
titude because it ignores the question of what hap-
pens to an observer who does fall through an event
horizon. It also does not solve the problem of the
big-bang singularity which definitely is naked. The
final blow to this attempt to evade the issue of
breakdown at singularities, however, has been the
discovery by this author'®!? that black holes create
and emit particles at a steady rate with a thermal
spectrum. Because this radiation carries away
energy, the black holes must presumably lose mass
and eventually disappear. If one tries to describe
this process of black-hole evaporation by a classi-
cal space-time metric, there is inevitably a naked
singularity when the black hole disappears. Even
if the black hole does not evaporate completely one
can regard the emitted particles as having come

from the singularity inside the black hole and
having tunnelled out through the event horizon on
spacelike trajectories. Thus even an observer at
infinity cannot avoid seeing what happens at a
singularity.

4. Quantize general relativity. One would ex-
pect quantum gravitational effects to be important
in the very strong fields near a singularity. A
number of people have hoped, therefore, that these
quantum effects might prevent the singularity from
occurring or might smear it out in some way such
as to maintain complete predictability within the
limits set by the uncertainty principle. However,
serious difficulties have arisen in trying to treat
quantum gravity like quantum electrodynamics by
using perturbation theory about some background
metric (usually flat space). Usually in electrody-
namics one makes a perturbation expansion in
powers of the small parameter e?/7% c, the charge
squared. Because of the principle of equivalence,
the quantity in general relativity that corresponds
to charge in electrodynamics is the energy of a
particle. The perturbation expansion is therefore
really a series in powers of the various energies
involved divided by the Planck mass 77'/2¢!/2G~1/2
~10"% g.

This works well for low-energy tree-approxima-
tion diagrams but it breaks down for diagrams with
closed loops where one has to integrate over all
energies. At energies of the Planck mass, all
diagrams become equally important and the series
diverges. This is the basic reason why general
relativity is not renormalizable.!% 15

Each additional closed loop appears to involve a
new infinite subtraction. There appears to be an
infinite sequence of finite remainders or renormal-
ization parameters which are not determined by
the theory. One therefore cannot, as was hoped,
construct an S matrix which would make definite
predictions. The trouble with perturbation theory
is that it uses the light cones of a fixed background
space. It therefore cannot describe situations in
which horizons or worm holes develop by vacuum
fluctuations. This is not to say that one cannot
quantize gravity, but that one needs a new ap-
proach.

One possible view of the failure of the above at-
tempts to avoid the breakdown of predictability
would be that we have not yet discovered the cor-
rect theory. The aim of this paper, however, is to
show this cannot be the case if one accepts that
quantum effects will cause a black hole to radiate.
In this case there is a basic limitation on our abili-
ty to predict which is similar but additional to the
usual quantum-mechanical uncertainty principle.
This extra limitation arises because general rela-
tivity allows the causal structure of space-time
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to be very different from that of Minkowski space.
For example, in the case of gravitational collapse
which produces a black hole there is an event hori-
zon which prevents observers at infinity from mea-
suring the internal state of the black hole apart
from its mass, angular momentum, and charge.
This means that measurements at future infinity
are insufficient to determine completely the state
of the system at past infinity: One also needs data
on the event horizon describing what fell into the
black hole. One might think that one could have
observers stationed just outside the event horizon
who would signal to the observers at future infinity
every time a particle fell into the black hole. How-
ever, this is not possible, just as one cannot have
observers who will measure both the position and
the velocity of a particle. To signal accurately the
time at which a particle crossed the event horizon
would require a photon of the same wavelength and
therefore the same energy as that of the infalling
particle. If this were done for every particle which
underwent gravitational collapse to form the black
hole, the total energy required to signal would be
equal to that of the collapsing body and there would
be no energy left over to form the black hole. It
therefore follows that when a black hole forms, one
cannot determine the results of measurements at
past infinity from observations at future infinity.
This might not seem so terrible because one is
normally more concerned with prediction than
postdiction. However, although in such a situation
one could classically determine future infinity from
knowledge of past infinity, one cannot do this if
quantum effects are taken into account. For exam-
ple, quantum mechanics allows particles to tunnel
on spacelike or past-directed world lines. It is
therefore possible for a particle to tunnel out of the
black hole through the event horizon and escape

to future infinity. One can interpret such a hap-
pening as being the spontaneous creation in the
gravitational field of the black hole of a pair of
particles, one with negative and one with positive
energy with respect to infinity. The particle with
negative energy would fall into the black hole
where there are particle states with negative en-
ergy with respect to infinity. The particles with
positive energy can escape to infinity where they
constitute the recently predicted thermal emission
from black holes. Because these particles come
from the interior of the black hole about which an
external observer has no knowledge, he cannot
predict the amplitudes for them to be emitted but
only the probabilities without the phases.

In Secs. III and IV of this paper it is shown that
the quantum emission from a black hole is com-
pletely random and uncorrelated. Similar results
have been found by Wald'® and Parker.'” The black

hole emits with equal probability every configura-
tion of particles compatible with conservation of
energy, angular momentum, and charge (not every
configuration escapes to infinity with equal proba-
bility because there is a potential barrier around
the black hole which depends on the angular mo-
mentum of the particles and which may reflect
some of the particles back into the black holes).
This result can be regarded as a quantum version
of the “no hair” theorems because it implies that
an observer at infinity cannot predict the internal
state of the black hole apart from its mass, angu-
lar momentum, and charge: If the black hole
emitted some configuration of particles with great-
er probability than others, the observer would
have some a priori information about the internal
state. Of course, if the observer measures the
wave functions of all the particles that are emitted
in a particular case he can then aposteviori de-
termine the internal state of the black hole but it
will have disappeared by that time.

A gravitational collapse which produces an event
horizon is an example of a situation in which the
interaction region is bounded by an initial surface
on which data are prescribed, a final surface on
which measurements are made, and, in addition,
a third “hidden” surface about which the observer
can have only limited information such as the flux
of energy, angular momentum, or charge. Such
hidden surfaces can surround either singularities
(as in the Schwarzschild solution) or “wormholes”
leading to other space-time regions about which
the observer has no knowledge (as in the Reissner-
Nordstrom or other solutions). About this surface
one has the principle of ignovance.

All data on a “hidden” surface compatible with
the observer’s limited information are equally
probable.

So far the discussion has been in terms of quan-
tized matter fields on a fixed classical background
metric (the semiclassical approximation). How-
ever, one can extend the principle to treatments in
which the gravitational field is also quantized by
means of the Feynman sum over histories. In this
one performs an integration (with an as yet unde-
termined measure) over all configuration of both
matter and gravitational fields. The classical ex-
ample of black-hole event horizons shows that in
this integral one has to include metrics in which
the interaction region (i.e., the region over which
the action is evaluated) is bounded, not only by the
initial and final surfaces, but by a hidden surface
as well. Indeed, in any quantum gravitational situ-
ation there is the possibility of “virtual” black
holes which arise from vacuum fluctuations and
which appear out of nothing and then disappear
again. One therefore has to include in the sum
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over histories metrics containing transient holes,
leading either to singularities or to other space-
time regions about which one has no knowledge.
One therefore has to introduce a hidden surface
around each of these holes and apply the principle
of ignorance to say that all field configurations on
these hidden surfaces are equally probable pro-
vided they are compatible with the conservation of
mass, angular momentum, etc. which can be mea-
sured by surface integrals at a distance from the
hole.

Let H, be the Hilbert space of all possible data
on the initial surface, H, be the Hilbert space of
all possible data on the hidden surface, and H, be
the Hilbert space of all possible data on the final
surface. The basic assumption of quantum theory
is that there is some tensor S, ;. whose three in-
dices refer to H,, H,, and H,, respectively, such
that if

ECGHI, $p€H,, Xa€H,,

then

2 Z ZSABCXAEBEC

is the amplitude to have the initial state £, the
final state x,, and the state {; on the hidden sur-
face. Given only the initial state £, one cannot de-
termine the final state but only the element
ESABc%'c of the tensor product H, ® H,. Because
one is ignorant of the state on the hidden surface
one cannot find the amplitude for measurements on
the final surface to give the answer y, but one can
calculate the probability for this outcome to be
22230 cpXcXps Where

Pep= 2 Z Z ScaeSparkets

is the density matrix which completely describes
observations made only on the future surface and
not on the hidden surface. Note that one gets this
density matrix from 23S aBcEc by summing with
equal weight over all the unobserved states on the
“hidden” surface.

One can see from the above that there will not
be an S matrix or operator which maps initial
states to final states, because the observed final
situation is described, not by a pure quantum
state, but by a density matrix. In fact, the initial
situation in general will also be described not by
a pure state but by a density matrix because of the
hidden surface occurring at earlier times. Instead
of an S matrix one will have a new operator called
the superscattering operator 8§, which maps densi-
ty matrices describing the initial situation to den-
sity matrices describing the final situation. This
operator can be regarded as a 4-index tensor

Sapcp Where the first two indices operate on the
final space H,® H, and the last two indices operate
on the space H, ® H,. It is related to the 3-index
tensor S, 5. by

Sancp=2 ), SarcSpen*SprcSarn) -

The final density matrix p,,5 is given in terms of
the initial density matrix p,., by

Pean= 2 SancoPicp-

The superscattering operator is discussed further
in Sec. V.

The fact that in gravitational interactions the
final situation at infinity is described by a density
matrix and not a pure state indicates that quantum
gravity cannot, as was hoped, be renormalized
to give a well-defined S matrix with only a finite
number of undetermined parameters. It seems
reasonable to conjecture that there is a close con-
nection between the infinite sequence of renormali-
zation constants that occur in perturbation theory
and the loss of predictability which arises from
hidden surfaces.

One can also appeal to the principle of ignorance
to provide a possible explanation of the observa-
tions of the microwave background and of the abun-
dances of helium and deuterium which indicate that
the early universe was very nearly spatially homo-
geneous and isotropic and in thermal equilibrium.
One could regard a surface very close to the initial
big-bang singularity (say, at the Planck time
10" sec) as being a “hidden surface” in the sense
that we have no a priovi information about it. The
initial surface would thus emit all configurations
of particles with equal probability. To obtain a
thermal distribution one would need to impose
some constraint on the total energy of the configu-
rations where the total energy is the rest-mass en-
ergy of the particles plus their kinetic energy of
expansion minus their gravitational potential ener-
gy. Observationally this energy is very nearly, if
not exactly, zero and this can be understood as a
necessary condition for our existence: If the
total energy were large and positive, the universe
would expand too rapidly for galaxies to form, and
if the total energy were large and negative, the
universe would collapse before intelligent life had
time to develop. We therefore do have some
limited knowledge of the data on the initial surface
from the fact of our own existence. If one assumes
that the initial surface emitted with equal probabil-
ity all configurations of particles with total energy
(with some appropriate definition) nearly equal to
zero, then an approximately thermal distribution
is the most probable macrostate since it
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corresponds to the largest number of microstates.
Any significant departure from homogeneity or iso-
tropy could be regarded as the presence in some
long-wavelength modes of a very large number of
gravitons, a number greatly in excess of that for

a thermal distribution and therefore highly im-
probable. It should be pointed out that this view

of the generality of isotropic expansion is the op-
posite of that adopted by Collins and Hawking.!®
The difference arises from considering microscop-
ic rather than macroscopic configurations.

One might also think to explain the observed net
baryon number of the universe by saying that we,
as observers, could result only from initial con-
figurations that had a net baryon number. An al-
ternative explanation might be that CP violations
in the highly T-nonsymmetric early universe
caused expanding configurations in which baryons
predominated to have lower energies than similar
expanding configurations in which antibaryons pre-
dominated. This would mean that for a given ener-
gy density there would be more configurations
with a positive baryon number than with a negative
baryon number, thus the expectation value of the
baryon number would be positive. Alternatively,
there might be a sort of spontaneous symmetry
breaking which resulted in regions of pure baryons
or pure antibaryons having lower energy densities
than regions containing a mixture of baryons and
antibaryons. In this case, as suggested by
Omnés,'® one would get a phase transition in which
regions of pure baryons were separated from re-
gions of pure antibaryons. Unlike the case con-
sidered by Omnés, there is no reason why the
separation should not be over length scales larger
than the particle horizon. Such a greater separa-
tion would overcome most of the difficulties of the
Omnés model.

There is a close connection between the above
proposed explanation for the isotropy of the uni-
verse and the suggestion by Zel’dovich?® that it is
caused by particle creation in anisotropic regions.
In Zel’dovich’s work, however, in order to define
particle creation, one has to pretend that the uni-
verse was time-independent at early times (which
is obviously not the case). The present approach
avoids the difficulty of talking about early times;
one merely has to count the configurations at some
convenient late time.

The conclusion of this paper is that gravitation
introduces a new level of uncertainty or random-
ness into physics over and above the uncertainty
usually associated with quantum mechanics. Ein-
stein was very unhappy about the unpredictability
of quantum mechanics because he felt that “God
does not play dice.” However, the results given
here indicate that “God not only plays dice, He

sometimes throws the dice where they cannot be
seen.”

II. QUANTUM THEORY IN CURVED SPACE-TIME

In this section a brief outline is given of the
formalism of quantum theory on a given space-time
background which was used by Hawking'® to derive
the quantum-mechanical emission from black
holes. This formalism will be used in Sec. III to
show that the radiation which escapes to infinity is
completely thermal and uncorrelated. In Sec. IV
a specific choice of states for particles going into
the black hole is used to calculate explicitly both
the ingoing and the-emitted particles. This shows
that the particles are created in pairs with one
member of the pair always falling into the hole and
the other member either falling in or escaping to
infinity. Section V contains a discussion of the
superscattering operator 8§ which maps density
matrices describing the initial situation to density
matrices describing the final situation.

For simplicity only a massless Hermitian scalar
field ¢ and an uncharged nonrotating black hole will
be considered. The extension to charged massive
fields of higher spin and charged rotating black
holes is straightforward along the lines indicated
in Ref. 13. Throughout the paper units will be used
in which G=c=% =k=1.

Figure 1 is a diagram of the situation under con-
sideration: A gravitational collapse creates a
black hole which slowly evaporates and eventually
disappears by the quantum-mechanical creation
and emission of particles. Except in the final
stages of the evaporation, when the black hole gets
down to the Planck mass, the back reaction on the
gravitational field is very small and it can be
treated as an unquantized external field. The
metric at late times can be approximated by a se-
quence of time-independent Schwarzschild solu-
tions and the gravitational collapse can be taken to
be spherically symmetric (it was shown in Ref. 13
that departures from spherical symmetry made no
essential difference).

The scalar field operator ¢ satisfies wave equa-
tion

O¢=0 (2.1)
in this metric and the commutation relations
[¢(x)’ 4)( y)]=iG(x, y), (2-2)

where G(x,v) is the half-retarded minus half-ad-
vanced Green’s function. One can express the op-
erator ¢ as

d’:Z (f,-ai+7,-a§), (2.3)

where the { f i} are a complete orthonormal family
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FIG. 1. A gravitational collapse produces a black
hole which slowly evaporates by the emission of radia-
tion to future null infinity 9*. Because of the loss of en-
ergy, the black hole decreases in size and eventually
disappears.

of complex-valued solutions of the wave equation
0O f;=0 which contain only positive frequenciesat
past null infinity §°. The operators a; are position
independent and obey the commutation relations

[ai,aj]=0 s (2.4)
[a;,al]=6;;. (2.5)

tJ

The operators a; and a‘; are respectively the anni-

hilation and creation operators for particles in the

ith mode at past infinity. The initial vacuum state

for scalar particles |0_>, i.e., the state which con-
tains no scalar particles at past infinity, is defined
by

a;|0)=0 foralli. (2.6)

One can also express ¢ in the form
¢=2 (p:by+ Pidl+q,c;+qic)). 2.7)
i

Here the { pi} are a complete orthonormal family
of solutions of the wave equation which contain only
positive frequencies at future null infinity §*and
whichare purely outgoing, i.e., they have zero Cauchy
data on the event horizon H. The {g,} are a com-
plete orthonormal set of solutions of the wave
equation which contain no outgoing component. The
position-independent operators b; and c; obey the
commutation relations

[bi’bj]=[cncj]=0, (2.8)
[bncj]:[bi,C;]:O’ (2.9)
[bi,b;]=[c{, c;]:_'aij- (2.10)

The operators b; and b'g are respectively the anni-
hilation and creation operators for outgoing parti-

cles at future infinity. By analogy one could re-
gard the operators c; and c! as the annihilation and
creation operators for particles falling into the
black hole. However, because one cannot uniquely
define positive frequency for the {qi}, the division
into annihilation and creation parts is not unique
and so one should not attach too much physical
significance to this interpretation. The nonunique-
ness of the {c,} and the {c!} does not affect any ob-
servable at future infinity. In Sec. IV a particular
choice of the {q,.} will be made which will allow an
explicit calculation of the particles going into the
black hole. The final scalar-particle vacuum state
]0,), i.e., the state which contains no outgoing par-
ticles at future infinity or particles going into the
black hole, is defined by

b,]0,)=¢;|0,)=0.

It can be represented as |0,)|0,), where the b and
c operators act on |0;) and |0,), respectively,
which are the vacua for outgoing particles and for
particles falling into the hole. [O,) is uniquely de-
fined by the positive-frequency condition on the
{p;} but the ambiguity in the choice of the {g,}
means that |0,) is not unique.

Because massless fields are completely deter-
mined by their data on 9~ one can express {pi}
and {g,}, as linear combinations of the {f;} and

(2.11)

il

b= Z (@ f 5+ Bisf ) s (2.12)

qi'—'z: (yijfj+nij7j)' (2.13)
i

These relations lead to corresponding relations be-

tween the operators:

b= 3 (@0, - Byal), (2.14)
i

;= Z (CA R AR (2.15)

i

In the situation under consideration the metric
is spherically symmetric. This means the angular
dependence of the {f,}, {p;}, and {g;} can be taken
to be that of spherical harmonics Y,,. The rela-
tions (2.12) and (2.13) will connect only solutions
with the same values of 7 and |m|. (This is not
true if the collapse is not exactly spherically sym-
metric but it was shown in Ref. 13 that this makes
no essential difference.) For computational pur-
poses it is convenient to use f and p solutions
which have time dependence of the form e“’? and
e’“¥, respectively, where v and u are advanced and
retarded times. The solutions will be denoted by
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{f .} and {p,} and will have continuum normaliza-
tion. They can be superposed to form wave-packet
solutions of finite normalization. The summations
in Egs. (2.3), (2.7), and (2.12) are replaced by in-
tegrations over frequency. The operators a,,b,,
etc. obey similar commutation relations involving
6 functions in the frequency.

The advantage of using Fourier components with
respect to time is that one can calculate the coef-
ficients @ . and B, in the approximation that the
mass of the black hole is changing only slowly.
One considers a solution p , propagating backwards
in time from future infinity. A part p}’ is reflec-
ted by the static Schwarzschild metric and reaches
past infinity with the same frequency. This gives
a term 7, 8(w - w’) in @, where 7, is the reflec-
tion coefficient of the Schwarzschild metric for
the frequency w and the given angular mode. More
interesting is the behavior of the part ¢’ which
propagates through the collapsing body and out to
past infinity with a very large blue-shift. This
gives contributions to @, and B,,. of the form

W 1/2
2) ~ -1 ,i(w=w’)
Qs —'tw(zﬂ ettee u0<__(:>_>

xr<1 _Z—K‘i>(_iw')'“iw/“, (2.16)

(2) o~ ;2 (2.17)

W W w(=w') >

where k= (4M)™ is the surface gravity of the black
hole and where £, is the transmission coefficient
for the given Schwarzschild metric, i.e.,

|t]*=T

is the fraction of a wave with frequency w and the
given angular dependence which penetrates through
the potential barrier into the hole,

[t, |2+ |7r,|?=1.

III. THE OUTGOING RADJIATION

One assumes that there are no scalar particles
present in the infinite past, i.e., the system is in
the initial scalar-particle vacuum state |0_). (It
is not a complete vacuum because it contains the
matter that will give rise to the black hole.) The
state IO_) will not coincide with the final scalar-
particle vacuum state |0+> because there is particle
creation. One can express [0_) as a linear combi-
nation of states with different numbers of particles
going out to infinity and into the horizon:

l0.>=zz )\AB!A1>IBH>a (3-1)

where IA,) is the outgoing state with #, particles
in the jth outgoing mode and |By) is the horizon

state with #n,, particles in the kth mode going into
the hole. In other words,

|Ap =TT (;u1)*2(6%) 52| 0, (3.2)
| By =TT (2) ™/ 2(ch) 2] 0,) . (3.3)
k

An operator @ which corresponds to an observable
at future infinity will be composed only of the {;}
and the {57} and will operate only on the vectors
|Ap). Thus the expectation value of this operator
will be

(0. I Q |0_> = Z Z PacRca

where @,=(C;|Q|Ap) in the matrix element of the
operator @ on the Hilbert space of outgoing states
and p, =27\ 5 pp is the density matrix which com-
pletely describes all observations which are made
only at future infinity and do not measure what
went into the hole. The components of p,, can be
completely determined from the expectation values
of polynomials in the operators {b,} and {b%}. Thus
the density matrix is independent of the ambiguity
in the choice of the {qj} which describes particles
going into the hole.

As an example of such a polynomial consider
b; b;, which is the number operator for the jth out-
going mode. Then

<nj> = E nja pAA

=(0.|b]b,]0.)

(3.4) .

=2 1Bl (3.5)

In order to calculate this last expression one ex-
pands the finite-normalization wave-packet mode
p; in terms of continuum-normalization modes p,,,

1= [ B @b, e, (3.6)
where

fwf;j[),dwaj,, (3.7)
then

<nj>=fff ;j(wl)i)'j(wz) ’
Xbus szw,dwldwzdw' .

If the wave packet is sharply peaked around fre-
quency w, one can use Eq. (2.14) to show that
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fﬁwlw'ngw'dw’= (2'”)-2 | tw lz | r(l - in—l) [ 2

Xe"""l =Wy )va-l e-mnx_l

Xf eiv«'l(wl-wz)dy’ (3.8)

where y=1In(-w’). The factor ¢™* " arises from
the analytic continuation of w’ to negative values
in the expression (2.15) for g,

Eq. (3.8)=|2,]|2(e2™ — 1) 5(w, — w;),  (3.9)

therefore

()= |t, (e —1) . (3.10)
This is precisely the expectation value for a body
emitting thermal radiation with a temperature
T=x/27. To show that the probabilities of emitting
different numbers of particles in the jth mode and
not just the average number are in agreement with
thermal radiation one can calculate the expectation

values of nJ ’ n] , and so on. For example,

(n,?={0.|b"b,b%0,|0)

= (nj>+ (0. l (bj)z(b,)zl 0.).

One can evaluate the second term on the right-hand
side of (3.11) using Eqgs. (2.14) and (2.15) as above.
The terms a?), give rise to expressions involving
functions hke (S(w1 +w,) which do not contribute,
since w, and w, are both positive. The terms in
all), give rise to expressions involving functions
like [p ;(w)dw which vanish because for wave pac-
kets at late times the phase of ;(w) varies very
rapidly with w. Thus,

o XT[1+ (2T = 1)x]
R v e

(3.11)

(3.12)
where x=¢“T " and T'= |¢, |?. Proceeding induc-
tively one can calculate the higher moments

(n), etc. These are all consistent with the prob-
ability distribution for » particles in the jth mode,

(1 - x)(xT)"
[1 - (1 - I“)x]nﬂ M

This is just the combination of the thermal prob-
ability (1 — x)x™ to emit m particles in the given
mode with the probability I" that a given emitted
particle will escape to infinity and not be reflected
back into the hole by the potential barrier.

One can also investigate whether there is any
correlation between the phases for emitting differ-
ent numbers of particles in the same mode by
examining the expectation values of operators like
b;b; which connect components of the density ma-
trix with different numbers of particles in the jth
mode. These expectation values are all zero. To

P(nj) = (3.13)

see whether there are any correlations between
different modes one can consider the expectation
values of operators like b’; b, which relate to other
nondiagonal components of the density matrix.
These are also all zero. Thus the density matrix
is completely diagonal in a basis of states with
definite particle numbers in modes which are
sharply peaked in frequency. One can express the
density matrix explicitly as

Pac= H5

The density matrix (3.14) is exactly what one would
expect for a body emitting thermal radiation.

As the black hole emits radiation its mass will
go down and its temperature will go up. This vari-
ation will be slow except when the mass of the
black hole has gone down to nearly the Planck
mass. Thus to a good approximation the probabili-
ty of n; particles being emitted in the jth wave-pac-
ket mode will be given by Eq. (3.13) where the
temperature corresponds to the mass of the black
hole at the retarded time around which the jth mode
is peaked. After the black hole has completely
evaporated and disappeared, the only possible
states |A;) for the radiation at future infinity will
be those for which the total energy of the particles
is equal to the initial mass M, of the black hole.
The probability of such a state occurring will be

P(nja (3.14)

P(A)=pyy
= HP(nja). (3.15)
If T were 1 for all modes,
In[P(A)] = 2 In(1 - x;,) = 3" 8me;,w; M
(3.16)
where M, is the mass to which the black hole has

been reduced by the retarded time of the jth mode
by emission of particles in configuration A. By
conservation of energy anaw ;=M, for all possible
configurations A of the emitted particles. Because
M;, is only a slowly varying function of the mode
number j, the last term in Eq. (3.16) will be nearly
the same for all configurations A. Thus the black
hole emits all configurations with equal probability.
The probabilities of different configurations at
future infinity are not equal because the I" factors
are different for different modes.

IV. THE INGOING PARTICLES

In this section a specific choice will be made of
the ingoing solutions {qi} which will allow an ex-
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plicit calculation to be made of the coefficients

A4 So that the state of the system can be expressed
in terms of particles falling into the black hole and
particles escaping to infinity. The outgoing solu-
tions {p j} are chosen to be purely positive frequen-
cy along the orbits of the approximate time-trans-
lation Killing vector K in the quasistationary re-
gion outside the black hole at late times. They
therefore, correspond to particle modes that would
be measured by an observer with a detector moving
along a world-line at constant distance from the
black hole. They do not correspond to what would
be detected by nonstationary observers, in parti-
cular observers falling into the black hole, be-
cause they are not purely positive frequency along
the world lines of such observers.

A stationary observer outside the black hole
could regard a particle he detected in a mode {p,}
as being one member of a pair of particles created
by the gravitational yield of the collapse, the other
member having negative energy and having fallen
into the black hole. The horizon states {g j} will be
chosen so that some of them describe those nega-
tive-energy particles which the stationary observer
considers to exist inside the black hole. The re-
maining {g j} will describe those positive-energy
particles which are reflected back by the potential
barrier around the black hole and which fall through
the event horizon. It should be emphasized that
this choice of {g;} does not correspond to anything
that an infalling observer would measure since
they are not positive frequency along his world
line. However, given the {p,}, the choice of the
{q j} that will be used is minimal in the sense that
any other choice would describe the creation of
extra pairs of particles, both of which fell into the
black hole.

To calculate the coefficients @ and g which relate
the {p;} to the {f,} and {7,} one decomposes the
{p,} into Fourier components {p,} with time depen-
dence of the form e“* where u=¢—- v - 2M In(r
—2M) is the retarded time coordinate in the
Schwarzschild solution. Because u tends to +
in the exterior region as one approaches the future
horizon, the surfaces of constant phase of p  pile
up just outside the future horizon (Fig. 2). In
other words, p, is blue-shifted to a very high fre-
quency near the future horizon. This means that
it propagates by geometric optics back through the
collapsing body and out to past null infinity g-
where it has time dependence of the form

|
emiwk ™ In(vy=v)  for v<w,

and (4.1)
0 for v>v,,

where v=¢+7+2M In(» — 2M) is the advanced time

coordinate and v, is the last advanced time before
which a null geodesic could leave 97, pass through
the center of the collapsing object, and escape to
g*, Similarly, to calculate the coefficients y and

n which express the {g;} in terms of the {f;} and
the {7,} one decomposes the {¢,} into Fourier com-
ponents {qw}. In the quasistationary region the
part {¢©’} that crosses the future horizon in the
quasistationary region will have time dependence
of the form e**?. The part ¢{*’ which crosses the
horizon just after its formation will have time de-
pendence of the form e i (the minus sign is be-
cause in the interior region the direction of in-
crease of u is reversed). The surfaces of constant
phase of {¢{*’} pile up just inside the horizon (Fig.
2). One can therefore propagate them backwards
also by geometric optics through the collapsing body
and out to 97, where they will have time dependence

of the form
eiwu'l n(v-vy) for 'l)>‘l)0

and (4.2)
0 for v <w,.

In order to calculate the coefficients o, 8, y,
and 7 one can decompose (4.1) and (4.2) into posi-
tive- and negative-frequency components of the
form ei“” and e~#“" in terms of the advanced time
v at 9. However, one can obtain the same results

Event Horizon

Wavefronts of q(j4 l— Wavefronts of qi(q)

Wavefronts of p; = Wavefronts of p;

V=V,

FIG. 2. The wave fronts or surfaces of constant phase
of the solutions p; pile up just outside the event horizon
because of the large blue-shift. They propagate by geo-
metric optics through the collapsing body and out to
past null infinity 97 just before the advanced time v
=v,. Similarly the wave fronts of q(f) will pile up just
inside the horizon and will propagate through the collaps-
ing body out to 9~ just after the advanced time v =v,,.
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if one leaves out the collapsing body and analytical-
ly extends back to the past horizon the Schwarz-
schild solution that represents the quasistationary
region. Instead of propagating p_ and ¢, back
through the collapsing body to 9~ and analyzing
them there into positive- and negative-frequency
components with respect to the advanced time v,
one propagates them back to the past horizon H-
and analyzes them into positive- and negative-
frequency components with respect to an affine
parameter U along the generators of H-. (A sim-
ilar construction has been used by Unruh.?!) One
can then discuss the creation of particles in terms
of the Penrose diagram (Fig. 3) of the analytically
extended Schwarzschild solution. The initial vacu-
um state |0_) is now defined as the state which on
9™ has no positive-frequency components with re-
spect to the advanced time » and which on the past
horizon H™ has no positive-frequency components
with respect to affine parameter U. In other -
words, one can express the operator ¢ in the form

9= [ @PfD+adrSwH.c o, (4.3)
0

where {f®} are a family of solutions of the wave
equation in the analytically extended Schwarzschild
solution with continuum normalization which have
zero Cauchy data on the past horizon and have time
dependence of the form ¢’ on 9-, and {f*} are a
family of solutions with continuum normalization
which have zero Cauchy data on 9° and have time
dependence of the form e?“Y on the past horizon.
The initial vacuum state is then defined by

al’|0)=a]0)=0. (4.4)

This definition of the vacuum state is different
from that used by Boulware?® for the analytically
extended Schwarzschild solution. The above defini-
tion, however, reproduces the results on particle
creation by a black hole which was formed by a
collapse.

The affine parameter U on the past horizon is re-
lated to the retarded time « by

u=—kIn(- U), (4.5)

where — o<y <, U<0. One can analytically con-
tinue (4.5) past the logarithmetic singularity at
U=0. In doing so, one picks up an imaginary part
of +7k™! depending on whether one passes above or
below the singularity, respectively. Define the
two analytic continuations #, and «_ by

u,=u_.=-k*In(- U) for U<O, (4.6)
u,=— k*InUzink™ for U>O.

Because #, is holomorphic in the upper half U
plane, the functions e ¥+ and e~*“%+ defined all the

way up the past horizon from U=-« to U=+« both
contain only positive frequencies with respect to
U. This means that one can replace the family of
solutions {f®}, which have zero Cauchy data on
9™ and only positive frequencies with respect to U
on the past horizon, by two orthogonal families

of solutions { '} and {f{»'}, with continuum nor-
malization which have zero Cauchy data on 97, and
which have time dependence on the past horizon of
the form e !9+ and e"*“¥+, respectively. One can
then express ¢ as

¢=f(aﬁ,"fﬁ’+a(f,3’f“f’+a‘f,“’ffu"’+H.c.)dw.

(4.7
Equation (4.4) then becomes
a® o)y =a®|0y=a®|0)=0. (4.8)

Equation (4.8) says that there are no scalar parti-
cles in the modes {f'} and {f’}. However, these
modes extend across both the interior and exterior
regions of the analytically continued Schwarzschild
solution. An observer at future null infinity 9*
cannot measure these modes but only the part of
them outside the future horizon. To correspond
with what an observer sees, define a new basis
consisting of three orthogonal families {w,}, {y,},
and {z,} of solutions with continuum normalization
with the following properties:

{w,} have zero Cauchy data on 4~ and on the past
horizon for U<0. On the past horizon for U>0
they have time dependence of the form e~*“%, (The
minus sign is necessary in order for the {ww} to
have positive Klein-Gordon norm and thus for the
associated annihilation and creation operators to
have the right commutation relations.)

{yw} have zero Cauchy data on 9° and the past
horizon for U>0. On the past horizon for U<0
they have time dependence of the form e?“%s,

{z o have zero Cauchy data on the past horizon
and on 9- they have time dependence of the form
e iwv_

The modes {z} represent particles which come
in from 9 and pass through the future horizon with
probability |¢,|? or are reflected back to 9* with
probability |7, |?. The modes {y } represent par-
ticles which, in the analytically extended Schwarz-
schild space, appear to come from the past horizon
and which escape to §* with probability |¢,|? or
are reflected back to the future horizon with prob-
ability |7, |?. In the spacetime which includes the
collapsing body, the outgoing and incoming solu-
tions {p,}and {g,} in the quasistationary
region outside the horizon correspond to linear
combinations of the {y } and the {z_}:
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Future Horizon

Past Horizon

FIG. 3. The Penrose diagram of the -t plane of the
analytically extended Schwarzschild space. Null lines
are at £45° and a conformal transformation has been
made to bring infinity, represented by 9* and 9, to a
finite distance. Each point in this diagram represents a
sphere of area 4mr?.

Polada T (4.9)
qw=7wyw_thw' .
The modes {ww} represent particles which, in the
analytically extended Schwarzschild space, are
always inside the future horizon and which do not
enter the exterior region. In the real space-time
with the collapsing body they correspond to par-
ticles which cross the event horizon just after its
formation.
The modes {z } have the same Cauchy data as the
{ff.,”}, therefore they are the same everywhere,
i.e.,

z2,=fL (4.10)
on the past horizon for U<O0,
Vo=(1-0)F
=x 21— x)2FD, (4.11)

where x=¢27%«* The factors (1 - x)!/2 and
x71/2(1 = x)*/2 appear because of the normaliza-
tion. On the past horizon for U>0
w, =x-1/2(1 - x)l/zf‘(f)
=(1=x)' /2D, (4.12)
This implies that (1-x)™/%(y_+x*/%w ) has the

same Cauchy data as £’ and therefore is the same
everywhere, i.e.,

FO=(1-x) 2y, + 2 %0,). (4.13)
Similarly,
FO= (1= 2) 2, +24 %) (4.14)

One can express the operator ¢ in terms of the
basis {w_,y ., 2,1

6= f(gwww+hwyw+jwzw+H.c.)dw, (4.15)

where the {g,} and the {g!}, etc., are the annihila-
tion and creation operators for particles in the
modes {w,}, etc. Comparing (4.15) with (4.7) and
using (4.13) and (4.14) one sees that

all=(1-x)"2n, - 21,

0= (L= 271/ g, - 1Y), (4.16)
(ZS') = jw’

One can superimpose the continuum-normalization
solutions {f'}, etc., {w,}, etc. to form families
of orthonormal wave-packet solutions {f(V}, {f®},
U@, fw,t { 9,5 {2,}. 1f the wave packets are
sharply peaked around frequency w, the corre-
sponding operators a{"’, etc., g;, etc. will be re-
lated by Eq. (4.16), where the suffix w is replaced
by j and modes with the same suffix j are taken to
be made up from continuum modes in the same
way, i.e., they have the same Fourier transforms.
One can define a future vacuum state |0,)by

g; 10,)=n,;10,)=4,]0,)=0. (4.17)

One can then define states ]A;B; C) which contain
n,, particles in the mode w,, n,, particles in the
mode w,, etc., n,, particles in the mode y,, etc.,
and #n, particles in the mode z,, etc. by

|4:5.0y= [[Ton, ™ =(g}ye |
x [H(njb! )"t /z(h;)""”}

X[H(n,c!)‘”z(j;)"fc}|o+>. (4.18)

The initial vacuum state |0_) can be expressed as
a linear combination of these states:

0.)= 3 uiA;B;C)|A;B;C). (4.19)

The coefficients u(A;B;C) may be found by using
Eqgs. (4.8) and (4.16) which give

(g—*'/211)]0.)=0, (4.20)
(- x*"2gT)[0)=0, (4.21)
jpl0.)=0. (4.22)

Equation (4.22) implies that the coefficients u will
be nonzero only for states with no particles in the
{z;} modes, i.e., states for which n,,=0 for all j.
Equation (4.20) connects the coefficients u for
states with m particles in the w, mode and s par-
ticles in the y, mode, with the coefficients u for
states with m — 1 particles in the w, mode and

s -1 particles in the y, mode, i.e.,
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(m )2 w(Alm,]; Bls,l; 0)
- 2(s ) 2 u(Alm - 1,]; B[(s - 1),];0)=0,
(4.23)

where p(A[m,]; B[s,];0) is the coefficient for the
state {n,,, 7005 « «+ 3 MuprNaps - - .30}, Where n,,=m
and n,,=s. By induction on (4.23) one sees that

w(Alm,]; Bls,);0) =6, 2™ 2u(A[0,]; B[0,];0).
(4.24)

In other words, if one compares states with the
same numbers of particles in all modes except
the w, mode and the y, mode, the relative prob-
abilities of having m and s particles, respectively,
in these modes is zero unless m =s, in which case
it is proportional to x™. One can interpret this as
saying that the particles are created in pairs in the
corresponding w and y modes. The particle in the
w mode enters the black hole shortly after its for-
mation. The particle in the y mode is emitted from
the black hole and will escape to infinity with prob-
ability |¢,|? or be reflected back into the black hole
with probability |7,|2. The relative probabilities
of different numbers of particles being emitted in
the y modes correspond exactly to the probability
distribution for thermal radiation.

By applying (4.24) to each value of £ one obtains

w(A;B;0)=exp (— 7Kt Z "jé“;) (0;0;0)

(4.25)

if P14, M0g, -+« - F={01ps 10y, - - -}, 1(A;B;0)=0 other-
wise. Strictly speaking, 11(0;0;0) is zero because
in the approximation that has been used the back
reaction of the created particles has been ignored
and the space-time has been represented by a
Schwarzschild solution of constant mass. This
means that the black hole goes on emitting at a
steady rate for an infinite time and therefore the
probability of emitting any given finite number of
particles is vanishingly small. However, if one
considers the emission only over some finite period
of time in which the mass of the black hole does
not change significantly, Eq. (4.25) gives the cor-
rect relative probabilities of emitting different
configurations of particles. Again one sees that
the probabilities of emitting all configurations with
some given energy are equal.

If one puts in the angular dependence Y,,, of the
modes, one finds that because (4.13) and (4.14)
connect w,, and y,, they connect modes with the
opposite angular momenta, (Z,m) and (I,-m).
This means that the particles are created in pairs
in the w and y modes with opposite angular mo-
menta. Because the w modes have time dependence

of the form e~“* while the y modes have time de-
pendence of the form e#“¥, there is also a sense
in which they have opposite signs of energy: The
y particles have positive energy and can escape
to infinity while the w particles have negative en-
ergy and reduce the mass of the black hole.

The particle creation that is observed at infinity
comes about because an observer at infinity divides
the modes of the scalar field in a manner which is
discontinuous at the event horizon and loses all in-
formation about modes inside the horizon. An ob-
server who was falling into the black hole would
not make such a discontinuous division. Instead,
he would analyze the field into modes which were
continuous against the event horizon. When prop-
agated back to the past horizon, these modes would
merely be blue-shifted by some constant factor
and therefore would still be purely positive fre-
quency with respect to the affine parameter U on
the past horizon. Thus the observer falling into
the black hole would not see any created particles.

V. THE SUPERSCATTERING OPERATOR 8§

It was shown in Sec. III that observations at
future infinity had to be described in terms of a
density operator or matrix rather than a pure
quantum state. The reason for this was that part
of the information about the quantum state of the
system was lost down the black hole. One might
think that this information might reemerge during
the final stages of the evaporation and disappear-
ance of the black hole so that what one would be
left with at future infinity would be a pure quantum
state after all. However, this cannot be the case;
there must be nonconservation of information in
black-hole formation and evaporation just as there
must be a nonconservation of baryon number. A
large black hole formed by the collapse of a star
consisting mainly of baryons will have a very low
temperature. It will therefore emit most of its
rest-mass energy in the form of particles of zero
rest mass. By the time it becomes hot enough to
emit baryons it will have lost all but a small frac-
tion of its original mass and there will be insuf-
ficent energy avilable to emit the number of bar-
yons that went into forming the black hole. Thus,
if the black hole disappears completely, there will
be nonconservation of baryon number. The situa-
tion with regard to information nonconservation is
similar. The black hole is formed by the collapse
of some well-ordered body with low entropy. Dur-
ing the quasistationary emission phase the black
hole sends out random thermal radiation with a
large amount of entropy. In order to end up in a
pure quantum state the black hole would have to
emit a similar amount of negative entropy or in-
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formation in the final stages of the evaporation.
However, information like baryon number requires
energy and there is simply not enough energy
available in the final stages of the evaporation.
To carry the large amount of information needed
would require the emission in the final stages of
about the same number of particles as had already
been emitted in the quasistationary phase.
Because one ends up with a density operator
rather than pure quantum space, the process of
black-hole formation and evaporation cannot be
described by an S matrix. In general, the initial
situation will not be a pure quantum state either
because of the evaporation of black holes at earlier
times. What one has therefore is an operator,
which will be called the superscattering operator
8, that maps density operators describing the ini-
tial situation to density operators describing the
final situation. By the superposition principle
this mapping must be linear. Thus if one regards
the initial and final density operators p, and p,
as second-rank tensors or matrices p, o and p,¢p
on the initial and final Hilbert spaces, respective-
ly, the superscattering operator will be a 4-index
tensor 8,5, such that

Pzcp = EZ ScpasPias- (5.1)

When the initial situation is a pure quantum state
&, the initial density operator will be

Prap=Eaks- (5.2)

If the initial state is such as to have a very small
probability of forming a black hole, the final situa-
tion will also be a pure quantum state ¢, which is
related to the initial state by the S matrix:

£c=D Scatar (5.3)

The final density operator will be

Pzcp=&Ectp- (5.4)

Thus the components of the 8§ operator on these
states can be expressed as the product of two S
matrices:

8cpan=2(ScaSsp +Sap™Scs)- (5.5)

However, for initial states that have a significant
probability of forming a black hole, there is no S
matrix and so one cdnnot represent 8 in the form
(5.5).

Consider, for example, the scattering of two
gravitons. In this case the initial situation is a
pure quantum state and, if the energy is low, the
final situation will be also a nearly pure state.
This can be recognized by computing the entropy
of the final situatiofi which can be defined as

Sy == Z E Pzcpln(pzcp)- (5.6)

In this expression the logarithm is to be under-
stood as the inverse of the exponential of a matrix.
It can be computed by transforming to a basis in
which p,.p, is diagonal. For energies for which
there is a low probability of forming a black hole,
the entropy S, will be nearly zero. However, as
the center-of-mass energy of the gravitons is in-
creased to the Planck mass, there will be a sig-
nificant probability of a black hole forming and
evaporating and the entropy S, will be nonzero.

The tensor 8.,,p is Hermitian in the first and
second pairs of indices. Any density matrix has
unit trace because, in a basis in which it is di-
agonal, the diagonal entries are the probabilities
of being in the different states of the basis. Since
p2cp must have unit trace for any initial density
matrix p, 45,

ZSCCAB= O4p- (5.7

One can regard this as saying that, starting from
any initial state, the probabilities of ending up in
different final states must sum to unity. The cor-
responding relation

Z 8cpaa=0cop (5.8)

would imply that for any given final state, the
probabilities of it arising from different initial
states should sum to unity. Two arguments will
be given for Eq. (5.8). The first is a thermody-
namic argument based on the impossibility of con-
structing perpetual-motion machines. The second
is based on CPT invariance.

Because the mass measured from infinity is con-
served, the superscattering operator 8 will con-
nect only initial and final states with the same en-
ergy. Thus (5.7) will hold when the initial and final
state indices are restricted to states with some
given energy E. Similarly, if (5.8) holds, it should
also hold when restricted to initial and final states
of energy E. For convenience, in order to make
the number of states finite, consider states be-
tween energy E and E + AE contained in a very
large box with perfectly reflecting walls. Define
Yep to be ZSCDAA, where the summation is over
the finite number of states specified above. Sup-
pose that

Yep # Ocp- (5.9)

By (5.7) restricted to the same states, 2 9.c=N,
where N is the number of states. By transforming
to a basis in which ., is diagonal, one can see
that (5.9) would imply that there was some state
&c such that
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ZZKPCDgCgD: Z Z Z Scoastctp>1.

(5.10)

This would imply that the sum of the probabilities
of arriving at the final state £, from all the differ-
ent possible initial states was greater than unity.
;If one now left the energy E in the box for a very
long time, the system would evolve to various dif-
ferent configurations. For most of the time the
box would contain particles in approximately ther-
mal distribution. Occasionally, a large number of
particles would get together in a small region and
would create a black hole which would then evapor-
ate again. To a good approximation one could re-
gard the time development of the density matrix

of the system as being given by successive applica-
tions of the 8 operator restricted to the finite num-
ber of states. On the normal assumptions of ther-
mal equilibrium and ergodicity one would expect
that after a long time the probability of finding the
system in any given state would be N™! and the
entropy would be InN. However, if (5.10) held,

the probability of the system being in the state

£, would be greater than N ! and so the entropy
would be less than In N. One could therefore ex-
tract useful energy and run a perpetual-motion
machine by periodically allowing the system to re-
lax to entropy In N. If one assumes that this is
impossible, (5.8) must hold.

The second argument for Eq. (5.8) is based on
CPT invariance. Because the Einstein equations
are separately invariant under C, P, and T, pure
quantum gravity will also be invariant under these
operations if the boundary conditions at hidden sur-
faces are similarly invariant. The matter fields

are not necessarily locally invariant under C, P,
and T separately, but they are locally invariant
under CPT because their Lagrangian density is a
scalar under local proper Lorentz transforma-
tions. Thus the quantum theory of coupled gravita-
tional and matter fields will be invariant under
CPT provided that the boundary conditions at hid-
den surfaces are invariant under CPT. That the
boundary conditions at hidden surfaces should be
invariant under CPT would seem a very reason-
able assumption. In fact, the assumption of CPT
for quantum gravity and the assumption that one
cannot build a perpetual-motion machine are equiv-
alent in that each of them implies the other. With
CPT invariance, Eq. (5.8) follows from (5.7). Be-
cause black holes can form when there was no
black hole present beforehand, CPT implies that
they must also be able to evaporate completely;
they cannot stabilize at the Planck mass, as has
been suggested by some authors. CPT invariance
also implies that for an observer at infinity there
is no operational distinction between a black hole
and a white hole: The formation and evaporation
of a black hole can be regarded equally well in the
reverse direction of time as the formation and
evaporation of a white hole.?® An observer who
falls into a hole will always think that it is a black
hole but he will not be able to communicate his
measurements to an observer at infinity.
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