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Highly nonspherical time-dependent collisions between black holes may be powerful sources of gravitational
radiation. We consider various attempts at estimating the efficiency of the generation of radiation by such
collisions. To determine the actual efficiency as well as to understand the details of the dynamical coalescence
of black-hole event horizons, we have developed a numerical method for solving the Einstein gravitational
field equations in these high-velocity strong-field regions. The head-on collision of two nonrotating vacuum
black holes is chosen as an example of our technique. We use the geometrodynamical model of a black hole as
an Einstein-Rosen bridge. The initial data to be evolved are the time-symmetric conformally flat data
discovered by Misner. A new set of spatial coordinates for these data is derived. Then the general space plus
time decomposition of Einstein’s equations is presented and specialized to the axisymmetric nonrotating case.
Details of the evolution will be given in later papers.

I. INTRODUCTION

Because of the rapid increase in the sensitivity
of Weber-type resonant-bar gravitational wave
antennas,' we may soon be capable of detecting?
bursts of gravitational radiation emitted in our
galaxy by collisions of black holes or by the non-
spherical final collapse of stars. Furthermore,
new techniques, such as Doppler tracking of inter-
planetary spacecraft,® may let us observe these
violent events in the nuclei of distant quasars,
galaxies, or globular clusters.* Therefore, it is
important to calculate the details of the expected
waves. Unfortunately, it is precisely in these sit-

- uations of strong gravitational field (R~ Rgy,
=2GM/c? and fast motion (v~¢) that all known
approximation schemes in general relativity fail

~(see Thorne and Kovécs® for a review of existing
techniques). What is needed is a method for ob-
taining highly nonspherical, time-dependent, and
physically realistic solutions of the full nonlinear
Einstein equations which describe gravitational
fields produced by collapse or collision.

Since we could not solve this problem analytical-
ly, we developed a numerical method using digital
computer programs to integrate the axisymmetric,
finite-differenced, Einstein equations. (The re-
striction of axisymmetry was imposed solely be-
cause of limited computer memory and speed. Our
techniques can be generalized to the generic case
of no spatial symmetry.) In this procedure, we

start with some initial data specified on a space-
like hypersurface. Using the 3 +1 (space +time)
decomposition of spacetime® we then build up both
the four-dimensional coordinate system and the
Cauchy evolution of the initial data simultaneously.
The general theory of how to build a “good” space-
time coordinate system slice by slice will be de-~
scribed elsewhere.” The present paper is the first
in a series describing the calculation of a specific
spacetime representing the head-on collision of
two black holes.

We chose the collision problem as a first “test
case” for several reasons. First, the spacetime
can be purely vacuum by using Einstein-Rosen
bridges® to represent the two black holes. This
means we can avoid all the messy hydrodynamics
which is needed even in spherical stellar collapse.
Second, an initial data set is known analytically'®
and has been exhaustively analyzed (see Sec. III
for references). Third, the spacetime involves
many unexplored aspects of highly nonspherical
black holes, generation of gravitational waves in
time-dependent strong-field regions, and propa-
gation of the waves outward into the wave zone
where they can be measured. Fourth, the results
of this calculation will be relevant for astrophysics
since they will test whether the high efficiencies
(~10%) which are usually assumed*'!! for con-
version of rest mass to gravitational radiationactu-
ally occur.

As the computational geometrodynamical tech-
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niques become “battle-tested” on this problem, we
expect to turn to calculating the full relativistic
collapse of stars to form neutron stars or black
holes. Thuan and Ostriker'? have calculated the
gravitational radiation expected from nonspherical
dust collapses assuming Newtonian physics. Novi-
kov™® has pointed out that if pressure is included,
the efficiency can be much higher during the “bounce.”
Work on the Einstein version of their calculation is
now being pursued using our formalism (see Pachner
and Teshima,'* for analternate approach).

In this paper we first briefly recall the history
of the two-body problem in general relativity (Sec.
II). Then (Sec. III) we consider the Misner initial
data for the collision. We discuss various ideas
for estimating upper limits on the radiation effi-
ciency. The original spatial coordinates intro-
duced by Misner are not suited to numerical evo-
lution, so we have devised a new set in terms of
which the initial data are given (Sec. IV). The
next paper in this series will describe an evolu-
tion of the initial data.

II. HISTORY

Almost since the beginning of general relativity,
the two-body problem has been a central issue.
Early efforts were made by Bach, Weyl, and Levi-
Civita to obtain a static axisymmetric two-body
solution, but such efforts were doomed to failure.
Because of the attractive nature of gravitation,
any two-body problem must be time dependent®
unless there are “singularity struts” present or
counterbalancing electromagnetic forces (see,
e.g., Cooperstock’® and Hartle and Hawking'” for
discussions). Since an exact time-dependent solu-
tion seems unlikely to be presented, the study of
two bodies has mainly been confined to an initial
data sheet. Three pioneering approaches to this
problem emerged in the 1930’s (see Wheeler'®for a
review): (1) The geometrodynamical model of two
masses as non-Euclidean bridges between asymp-
totically flat spaces was formulated by Einstein
and Rosen. (2) The time-symmetric conformally
flat initial data with real masses on a Euclidean
space were set up by Lichnerowicz.’® (3) The
Einstein-Infeld-Hoffman approximation method for
deriving the equations of motion from the field
equations was investigated. We will not concern
ourselves here with the third alternative, because
we are not interested in approximations, but rather
in finding a full spacetime representing the colli-
sion of two bodies. For the case where the two
holes remain in each other’s weak-field region see
the beautiful recent work of D’Eath.2° The second
method has lain dormant but is currently being
revived for studies of nonspherical collapse.?! The

rest of our story follows the approach of Einstein
and Rosen, brought to fruition by Wheeler, Misner,
and their co-workers in the early 1960’s.

In 1960 Misner investigated an analytic set
of initial data for the vacuum two-body problem.
It was for equal masses and contained two free
parameters which set the total mass and initial
separation distance of the two throats. Brill and
Lindquist followed this up by producing a time-
symmetric conformally flat initial data set for N
throats in vacuum®? or with electric fields pres-
ent.?® They showed, as Lichnerowicz had shown
for the “matter” N-body problem, that one re-
covers the Newtonian potential description if the
bodies are far apart. The first attempt at obtain-
ing a numerical solution for the evolution of the
initial data was made by Hahn and Lindquist.?*
Their work demonstrated the feasibility of this ap-
proach and confirmed that each throat behaved
much like a single Schwarzschild throat. Unfor-
tunately, they were hampered by a number of
problems beyond their control. First, the phys-
ical setting was unknown. The notion of black
holes and horizons, the area theorems, and the
scope of the problem had not yet been defined.
Second, the Misner coordinates, while useful for
obtaining the initial data, proved disastrous for
computer calculations of the far-field region.
Third, they were only able to integrate for a very
short time into the future of their initial slice. In
the late 1960’s DeWitt started a researcheffort on
the feasibility of colliding two black holes on a
computer. This led directly to theses by CadeZ,
Smarr,*® and Eppley?® onthe problem. The results
of these theses are reported in this series of
papers.

III. MISNER INITIAL DATA

As mentioned above, there are various ways one
can choose initial data to represent two black
holes. Presumably, the most realistic case would
be modeled by the Lichnerowicz approach. There
one has two pockets of matter representing two
stars initially at rest. One could set up the data
so that as the stars started falling toward one an-
other, they would collapse to form black holes on
the way. Then the black holes would collide with
very complicated hydrodynamics inside the final
black hole as the matter coalesced. However, the
details of what occurs inside the black holes can-
not affect what occurs outside. Therefore, it is
equally realistic to use the vacuum Einstein-Rosen
model for two black holes which replaces each
star with a “throat” joining two separate universes.
This is in exact analogy to the well-known proce-
dure followed for a single spherical Schwarzschild
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black hole. There the “realistic” model uses only
that part of the Kruskal extended manifold outside
of the surface of a collapsing star. However, al-
most all of our knowledge about black-hole physics
has come from studying the vacuum solutions
(Kerr or Schwarzschild) with their two universes
connected by a throat. (See, e.g., Carter.25)
Furthermore, we will argue below that if

the collision of two black holes is capable of
radiating gravitational radiation with a high effi-
ciency, then this radiation will be produced during
the coalescence of the horizons. Since this is a
nonlocal occurrence involving the entire region
around the holes, we may expect that its efficiency
will not depend strongly on the details of the initial
data. Therefore, we chose to evolve Misner’s ini-
tial data because they were the easiest to work
with numerically. In the future, we hope to test the
dependence of the radiation produced on the initial
data by evolving other inequivalent black-hole ini-
tial data.?’

In general, the initial data for a gravitational
field are given on a spacelike hypersurface by two
three-dimensional symmetric tensor fields: y,;,
the three-metric, and K;; the extrinsic curvature
(see, e.g., O’Murchadha ‘and York®®). The v;; gives
the proper(distances and angles between any two
events lying in the spacelike hypersurface, while
K;; tells how the three-surface is embedded in the
four-dimensional spacetime. Since the fourth co-
ordinate is time, the extrinsic curvature is es-
sentially the first time derivative of y;; (see below
for details).

Let us now review the Misner™ initial data. Topo-
logically, they are two Euclidean sheets joined by
two throats. Metrically, the two sheets are as-
ymptotically flat universes. The initial data rep-
resent either two black holes or a single deformed
black hole, depending on the initial separation.?
In either case the initial surface is a moment of
time symmetry (K;; =0). In order to obtain an
analytic solution, one takes for the 3-metric the
conformally flat line element

ds?=a®*V*(dp®+dz®+p%do?) . (1)

As is well known, ¥ must be a solution of A¥ =0,
where A is the flat-space Laplacian in cylindrical
coordinates, in order that the Einstein constraint
equations be satisfied. Using techniques familiar
from electrostatics, Misner constructed a ¥ which
forces an isometry between the upper and lower
sheets:

= 1 1
¥=1+ ,,Z=1 CSCh(nlJ-o) <:‘r—n + :“‘) s (2)

V'n

+7,={p?+ [z £ coth(nu,)]Z}? .
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There are two free parameters (a, 4,) which appear
in the line element. One has the dimensions of
length (a) and one is dimensionless (k,). We have
pulled a?® out of the line element so that the coor-
dinates (p, z) are dimensionless. Misner and Lind-
quist have shown that the parameters (a, K,) are
related to the physical parameters (M,L), where
M is the total mass of the system as measured at
spatial infinity and L is the proper distance along the
spacelike geodesic connecting the two throats:

M=4a Z csch(ny,) , (3a)
n=1
L =2a [1 +2Ug Z n csch(nuo)] . (3b)
n=1

Misner,'® Wheeler,'® Lindquist,? and Brilland
Lindquist® discuss how the two throats distort
themselves in a manner suggesting a Newtonian
tidal deformation. This is to be expected since the
only nonzero components of the four-dimensional
Riemann curvature tensor on a vacuum time-sym-
metric slice are the tidal components *R;,;.*° One
can define an interaction energy for this bound
system as?

M =M = 2m==4a 9 (n—1)csch(np,)
n=1 (4)

m=2a 2 ncschinpy) ,
n=1
where m is the “bare” mass assigned to each
throat. Note that this interaction energy grows
more and more negative as p,-~ 0, and becomes
the Newtonian binding energy for large separation
(’J'o" °°)'

From the work of Hawking®! and others, we know
that the surfaces of the black holes, the global
event horizon, lie outside of the throats. In the
initial time-symmetric surface, the throats are
minimal surfaces and, thus, marginally trapped
surfaces.’®> When the holes are close enough to-
gether, a new minimal surface appears surround-
ing the entire system. Just by looking at this ini-
tial data sequence then we have a strong indication
that the event horizon for the two black holes will
merge and form a distorted black hole during an
actual evolution. It is important for us to know
when such a merging has occurred. Cadez has
found the value of y, at which the new minimal sur-
face first appears on the Misner initial data (i,
=1.362) and has calculated its position and area.
We shall see in a moment that this enables us to
set upper bounds on the amount of radiation which
might be produced by the evolution. In Table I,
we give values of M, L, L/M, m/M, and m /M as
functions of 1,. For reference, our preliminary
computer calculations have been carried out from
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TABLE I. The values of M, L, L/M, m/M, and
nint/M as functions of y,.

Ko M L L/M m/M gt/ M
1.0 5.14 9.87 1.92 0.77 —-0.53
1.5 2.39 6.58 2.75 0.64 —-0.28
2.0 1.27 4.94 3.88 0.58 —0.15
2.5 0.72 3.96 5.50 0.54 —0.09
3.0 0.42 3.33 7.92 0.53 —0.05

initial data with p,=2.

We can get an estimate of the time required for
a collision to occur by solving the Newtonian prob-
lem of the free fall of two point particles which
start at rest at £=0. If we let the initial separa-
tion be L(u,) and the total mass be M(i,), then one
can integrate the equation of motion to obtain £_,
the time of the “collision”, when the separationis 2/,
and (v/c) ey atthatpoint. These are given in Table IL
Although it would seem that L has little to do with
Newtonian distances in such strong-field regions,
we shall see in paper II that this estimate of free-
fall time is within a factor of order unity of the
general relativistic value for the coalescence of
the surfaces of the black holes. For an illustra-
tion of the expected development of the horizon
structure see Hawking.*®* As one can see, there
are essentially three phases in this evolution. The
first is just an in-flight period while the holes are
far apart but moving toward each other. The sec-
ond is when they get close enough to each other
that they very rapidly tidally distort one another.
The final phase is when they are coalescing. Dur-
ing this last phase one has a single black hole with
huge nonspherical deformations.

During each of these phases we expect gravita-
tional radiation to be produced. However, the
mechanism is somewhat different in each case.
For the in-flight radiation, we can think of the
system as two point masses falling toward each
other. This gives a time-changing quadrupole mo-
ment. As they near each other, their finite di-
mensions come into play, and we can imagine each
hole to have a “quadrupole” moment which changes
very rapidly as the holes distort one another.
Finally, with the coalescence, one may very well
expect a strong burst of radiation as the equatorial
sections of the event horizon expand outward to
form a spherical black hole. After this big pulse,
a long train of “ringing” waves may occur,*
gradually dying out until only a spherical black
hole is left surrounded by a region of radiation
propagating to infinity.

We can use several techniques to estimate the
importance of these phases for producing radia-
tion during a head-on collision. Let us assume

TABLE II. The values of L/M, t,,,/M and (v/c),; a8
functions of py. Here £,y is the time for the two particles
to fall together from a separation of L to a separation
of 2M. .

Ho L/M teort/M @/C)eont
1.5 2.75 3.20 0.52
2.0 3.88 6.86 0.70
2.5 5.50 12.80 0.80
3.0 7.92 23.30 0.86

that two holes of equal massm; are projected in-
ward from infinity with velocity v,. Then by en-
ergy conservation

2mi Yoo =My +E 1ad s (5)

where y,, = (1 -v,% "2 m; is the final mass of the
single hole, and Eq4 is the energy carried off by
gravitational radiation. We can combine this with
Hawking’s theorem?!that the total surface area of
black holes must increase (assuming cosmic cen-
sorship holds),

A +A, <A, (6)

where A; =167m,;?, to obtain an upper limit on the
efficiency of radiation, Fig. 1 (Hawking®® for the
v, =0 case, Smarr? for the v >0 case):

B 1 '1.00, v —1
€ Eue/@miyo) <1- - = {0.295, V=0

(M)

Ll 0.40
0.30
0.20

0.10

1 1 1 1 1 L 1 ! 1 J
1.0 09 0807 060.5 04 0.3 0.2 04 0.0
—~—— V(D —_—

FIG. 1. The upper limit (using the Hawking area in-
crease theorem) on the efficiency of conversion of the
energy of two colliding black holes with hyperbolic ve-
locities to gravitational radiatign. The initial velocity
at infinite separation (v.) is plotted horizontally and
the efficiency (Era/2m;v,,) is plotted vertically.
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The reason the upper bound on efficiency rises so
fast as v,—~ 1 is that the colliding black holes be-
come “Lorentz-contracted”’?” and appear to be more
and more like colliding plane waves.*® Their en-
ergy is almost totally bound up in kinetic energy
which presumably will be radiated leaving only the
“rest mass” in the final black hole. An approxi-
mate calculation of the efficiency for the extreme
case v,=~1 indicates that e~ 0.3~ 0.6.%°

For two black holes which are initially bound,
upper limits can also be calculated, but they are
not quite as stringent since they depend on using
the apparent horizons instead of the event hori-
zons. The notion is that the bound system can be
approximated by the Misner initial conditions. In
sucha time-symmetric slice we can measure the
area of the minimal surfaces whichare the apparent
horizons. We then use area theorems as before
to estimate the radiation. Gibbons and Schutz*
carried out this program for the minimal surfaces
at the throats. They found that the efficiency must
decrease as the holes move together. Unfortunate-
ly they made an error in calculating L so their
graph must have its scale for (M/L) corrected.
(There was no error in their calculation of the ef-
ficiency as a function of uo.) The numbers are
graphed in Fig. 2. Note that apparent horizons are
probably a useful approximation to the event hori-
zon when the holes are far apart (L/M =z 10), but
that they become less useful as the holes move to-
gether, until a third apparent horizon appears sur-
rounding the other two. Cadez used the area of

0.30=
T 0.20
b
~N
©
o
°
w
040
—-—L/M—
0.0048° 17;47 7.}92 3.'88 ~92
5.0 4.0 3.0 2.0 1.0
—-}1,0 J——

FIG. 2. The upper limit on the efficiency of conver-
sion of total mass into radiation for two bound black
holes. Here one assumes the Misner initial data with
zero angular momentum. The horizontal scale gives
Misner’s parameter 4, and the initial spacelike separa-
tion of the two throats (L) in units of the total mass (M)
of the system. The upper curve is based on using the
apparent horizons of each hole, while the lower curve
is obtained after a third apparent horizon surrounds the
other two on the initial slice.
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this third surface for 1;<1.362 to place a much
tighter limit and it is also plotted.

Going back to the parabolic infall when Hawking
gives an upper limit of E 4 =0.295Mc?, we can es-
timate the in-flight radiation by calculating the
quadrupole moment as a function of time of two
mass points falling toward each other starting at
rest with infinite separation, and using Newton’s
law of motion with the force provided by Newton’s
law of gravity. One then puts the third time de-
rivative of this quadrupole moment into the Landau-
Lifshitz*! expression to obtain the gravitational
radiation emitted. The result of this calculation®®
is E,4 =0.02(u2M)c?, where L is the reduced mass
and M is the total mass of the two particles, and
where one stops the integration when the separa-
tion is 2GM/c?® This is only a factor of 2 greater
than the fully relativistic calculation of a particle
of small mass K falling into a large mass M black
hole.*®* Therefore, the Newtonian approximation
might be believed as an order-of-magnitude esti-
mate for the gravitational radiation emitted, by
two equal mass black holes, up to the time when
their finite size becomes important. The result
is now E;a =~ 0.001Mc?, a factor of 300 less than
Hawking’s upper limit. For this reason, we feel
that if any appreciable amount of radiation is pro-
duced by the head-on collision, it will come from
the last two phases.

Estimating the radiation from the last two phases
is very difficult since all known approximation
techniques break down for both strong fields and
fast motions. For the second phase, one might use
the Mashhoon** calculation for tidal gravitational
radiation produced by a neutron star falling into a
black hole. If one uses a neutron star of black-hole
“density” and extent in Mashhoon’s formulas, one
comes out with Eq=~0.01Mc?. Even if a pulse of
radiation can be formed by the outward moving
event horizon, it still must fight the huge gravita-
tional red-shift, as well as avoid being backscat-
tered off the curvature, if it is to escape to infin-
ity. Clearly only an actual solution of the full non-
linear, time-dependent, non-spherically-symmetric
Einstein equations can settle the question of the
efficiency of black-hole collisions for producing
gravitational radiation.

We wish to emphasize that the above discussion
applies only to the head-on collision case. If the
two black holes fall from infinity with a small
enough impact parameter they will be able to “cap-
ture” each other by emitting gravitational brems-
strahlung radiation and then they will spiral in to-
ward each other by emitting more gravitational
radiation®® carrying off bothenergy and angular mo-
mentum.*® Finally, they will plunge into each other
in a coalescence burst of radiation. Since the non-
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zero impact parameter opens up these physically
new radiation processes, one might hope for con-
siderably better efficiency than is achieved in the
head-on case.

IV. THE SPACETIME METRIC

We will now describe the general technique for
constructing a spacetime from a set of initial data.
Following Dirac and Arnowitt, Deser, and Misner,®
we decompose spacetime into a set of spacelike
hypersurfaces or slices S;. The particular slicing
we choose defines “time” as being that spacetime
scalar function ¢ which is constant on each S;. The
spatial coordinates can be defined by threading a
congruence of curves through the slices, with each
member of the congruence labeled by three num-
bers. This coordinate congruence may or may not
be normal to the slices. Thus, an event in space-
time has coordinates (¢,x;), where ¢ is the value
given by the S; containing the event and x; are the
labels of the coordinate curve passing through the
event.

This great flexibility in choice of spacetime co-
ordinates is a consequence of the general covari-
ance of the Einstein equations. As we will see in
later papers in this series, it is essential to make
full use of this coordinate freedom if we are going
to be able to successfully evolve a dynamic black-
hole spacetime. To code the coordinate freedom
explicitly into the Einstein equations, one intro-
duces the lapse function o and the shift vector B;
(see, e.g., Wheeler*). The lapse function con-
trols the choice of slicing since it gives the proper
time d7 along the normals from S, to S;,4;:

dr=alx;)dt. (8)

For example, if @ =1 everywhere on the slice then
the S; are geodesically parallel. The shift vector
B; is nonzero if the coordinate congruence is not
orthogonal to the S;. In this case, B; is the 3-vec-
tor joining two events in S;,;;: One is the event
reached by the curve normal to S, through the
event (¢,x;), the other is the event (¢ +d¢,x;)
reached by the coordinate line through (¢,x;).

One can now write down the 4-metric 4g“,, in
terms of «, B;, and y;;, where y;; is the 3-metric
on S;:

4 <—a2+6k8k Bj > ©)
Buv= .
# Bi Yij

Inserting this form into the 10 Einstein equations
for vacuum (“G,, =0) leads to four constraint equa-
tions (the Hamiltonian and momentum constraints),

H=R+K*-K;;K' =0, (10a)
H;=D;K-D;K’; =0, (10b)

and six second order in time evolution equations
(split into six pairs of first-order equations),

8¢yiy =—2akK;; +Dif; +D;B; , (11a)
0. K;; = "ZCYKHK’J +aK,'K;

+aRy; —DiDja +6'D,Ky;

+K;;D;p' +K;,D;B" . (11b)

Here K;; is the extrinsic curvature tensor which
tells how the S, is bent in the surrounding space-
time and D; is the spatial covariant derivative. In
summary, our plan is to choose initial data

(vij, Ki;) which satisfy the constraint equations (10).
We then choose the lapse (a) and the shift (8;)
which extend our coordinates to the next slice.
Using (a, B, v;;, K;;) in the evolution equations (11),
we propagate (y;;, K;;) to the new S; and then repeat
the whole process. For a more complete deriva-
tion and discussion of the geometry and kinematics
of the 3 +1 (space and time) formalism see Smarr3®
and Smarr and York.”

Letus now specialize to the case of axisymmetry.
This restriction means that all gravitational field
variables depend at most on two space variables
(x,,x,) and time (f). We will denote the azimuthal
angle by ¢. It is convenient to use the standard
(z,p) coordinates as our base variables because
they are well-defined everywhere. Unfortunately,
the boundaries of the two-black-hole spacetime do
not lie along lines of constant (z,p). For this rea-
son it is useful to introduce two new coordinates
(n, £) withn a “radial” coordinate and ¢ and “angu-
lar” coordinate. Figure 3 sketches the desired
properties of n and £: They should be “quasi-
spherical” both near each throat and far from the
holes. Thesetwodemands mean (, £) are singular
at the saddle point (z,p)=(0,0). A particular set
of these coordinates is described in Appendix A
and compared with Misner’s coordinates which do
not have the desired properties. In any case, be-
cause of the general covariance of Einstein’s equa-
tions, we may use whichever set of labels (x,,x,)

P WAVE ZONE
‘V4|,€ Equator
@
o, E
&
m s
a 2
€ g 5
3 &
| | Saddle
Point 77
J &5 z '
Saddle  <° Rotation Axis &7 Threat -0
Point csch po €
- —
Z=coth po

FIG 3. Schematic representation of the coordinate
grid for two black holes.
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we wish and then transform between them in the
standard fashion.

The initial metric was chosen to be time sym-
metric and conformally flat [Eq. (1)]. Since we
know the conformal factor ¥ analytically [Eq. (2)],
we shall always factor ¥* out of the metric and
evaluate its derivatives analytically. This means
we shall evolve only the conformal metric in keep-
ing with York’s emphasis.?” Because of the co-
ordinate transormation described above, we know
that p%=p%(n, £) analytically so we shall always
factor it out of the d¢?® term. Now in general the
symmetric y;; has six independent entries. How-
ever, for this problem there is no rotation in-
volved so y4, and 4, can be set equal to zero for
all time. This leaves us with four functions in the
metric tensor,

AC O
yi; =¥ Cc B 0 |, (12)
0 0 p?»

with the ordering (z,p, ¢) or (n, £, ¢). The first
Einstein equation (11a) shows that K;; will have the
same number of components as y;;, so we define
its entries as

Ky, K, 0
K;=v‘| K, K5 0 |. (13)
0 0 pPK,

The eight Einstein differential equations (11) we
need to difference are now of the form (with g =0)

atA = —ZQKA 3
8; Ky =a(AB = C?)"'[Ky(-BK, +AKp+2CK,) — 2A K]

+aDKKp +‘I/—4(CYR" - a]zz) )
(14)
b

where the ¥* conformal factor is taken out of the
Christoffel symbols and Ricci tensor by the stand-
ard formulas. The explicit form of the right-hand
side of these equations is given in Appendix B.
These evolution equations must be supplemented by
equations specifying the lapse and shift. In Eq.
(14) we have specified 8; =0, which demands that
our coordinate lines (x ,x,, ¢) = constant be normal
to the S;. The lapse has been left free. Its speci-
fication and the use of these equations to obtain a
collision spacetime are the subject of paper II.
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APPENDIX A

A desirable property of any coordinate system
is that it be adapted to the physical symmetries of
a problem. For the two black holes this means we
wish the coordinates to be quasispherical near the
throats of the Einstein-Rosen bridges as well as
far away from the holes in the wave zone. To con-
struct such coordinates from the natural cylindri-
cal (z,p) coordinates, we use a standard method
from complex variables. Choose a complex ana-
lytic function x(¢) where £ =2z +ip. Then the real
and imaginary parts of x are the new coordinate
lines.

For instance, to obtain spherical coordinates
one defines

x(z +ip) =1n(g) . (A1)

The logarithm function places a pole at the origin.
The real and imaginary parts define a radial co-
ordinate n and an angular coordinate ¢ by

n=Re(x) =31In(p*+z%) =InR , (A2)
£=Im(x)=tan~'(p/z) =6 , (A3)

where R and 6 are the standard polar coordinates.
Note that the logarithm in x leads to a logarithmic
radial coordinate.

Let us examine Misner’s choice of coordinates
from this viewpoint. His ¥ is the superposition of
two equal but opposite poles at z =x cothi,=+z,,

X(€) =1n(¢ +&4) = In€ = &) , (A4)

where £,=(z,,0). By an easy calculation using
coth™n =31n[(n+1)/(n-1)], one finds that

§=Imy (A5)

are just the bispherical coordinates used by Mis-
ner and Lindquist:

n=Rey,

cothn = (p2+22+2,%)/(222,),
cothf =(p%+22-2,2)/(2pz,) .

(A6)

To transform the initial data from the cylindrical
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coordinates given in Eq. (1), we use the Cauchy-
Riemann equations

o _9E om__23E

9z op’ ap az ’

2, 2 2

o' _ _9m _ 9% (A7)

and the Jacobian of the two coordinate systems

2_ on 2 3_71 2
= <5> +<32) . (A8)

This yields the initial metric in the new coordin--
ates

&

I=a

2 2
ds®=a*¥* (—dn }d& + p2d¢2> ) (A9)

p=p(m,£), J=J(,¢), ¥=¥(@,%) .
For Misner’s ¥, Eq. (A4), we have in particular
J =(coshn —cos§)?/z,? , (A10)
p =2,sinf/(coshn - cosé) ,

and factoring out J~* we find the line element in
Misner-Lindquist form:

ds?=a?¥*(dn® +dE? + sin®t do?) , (A11)
=iyt .
The same procedure can be applied to any other

choice of y. We have chosen equal poles of the
same sign plus higher multipoles (see Cadez*®):

x(©) =3[In +&,) +1n( =&,)]

+icn< 1 1 ) (A12)

S\ )" T G-y

The C, are chosen by a least-squares technique
to make the initial throats

(2 £ 20)? +Py % =csch’y, (A13)

lie on an n =constant coordinate line. The result-
ing coordinate lines (n, £) are shown as a function
of (z,p) in Fig. 4. The important difference be-
tween our coordinates (A12) and Misner’s is that
the conformal map for Misner breaks down |dx/
d¢|—~ 0 as p,z ~», whereas for ours it breaks down
as p,z— 0. This is why Misner’s coordinates look
so distorted [see Fig. 2(b) of Cadez*] as one gets
farther away from the central region (squares are
no longer mapped onto squares). For our system
one only has the central saddle point to worry
about (see Fig. 4), since only its neighboring
squares are distorted.

We evolve the (z, p) metric components (e.g., A

75 218 2.62 3.05 3.49 3.93 4.36

©0.0 044 087 L3l

0 044 087 13l 175 2.8 2.62 305 349 393 4.36
z

FIG. 4. Actual grid chosen with 14 angular zones and
23 radial zones.

=v,./ ¥*) because theyare defined everywhere. On
the other hand, we evaluate these metric compo-
nents at the “natural” (n, £) grid points. Then when
we difference a derivative such as 5,A we use the
chain rule

8p=1,p97 +£,p9¢

=1,p97 +1,29¢ »

where we have used (A7). Since the (n, £) coordi-
nate grid is derived by using equal grid spacing of
(an, At) (see Fig. 3), we can use the standard sec-
ond-order accurate center differences to represent
9, and d¢,

oH; ;= Hiy,,; —Hi—l,j)/(zAn) s

agH; ;= (H; ;4. —H; ;_,)/(208) ,

dnnHi ;= (Hysy,; —2H; ; +H; )/ (an)?

ag EHi,j = (Hi,j+1 - ZHi.j +Hi,j—1)/(AE)2 R
Hyyyjor=Hipyjor—Hioy e +Hio i

4AnAE

Oy, = ;
where H; ; is a function on the (n, §) grid. That is,
if the throat is on the coordinate line n =7,, then

Hy;=H [G xan) + Mos 7 *AE].

To obtain the values of functions on the other side
of the boundaries in Fig. 3, we use the symmetries
of the problem. For details see Cadez,* Eppley 2
and Smarr.*

It is important to remember that our grid stays
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fixed through the entire calculation. The metric
components are regarded as functions defined over
the grid, which vary in time. At a given time one
can plug in the appropriate (an,A&) or (Az, Ap) to
a metric component and read off the proper dis-
tance between two points on the mesh. For in-
stance, as the holes fall together, our grid lines
do not get bunched up between the throat and the
saddle; rather the metric function A =y,,/¥* will
drop from unity toward zero in this region, im-
plying that the proper distance ¥2VA Az is becom-
ing smaller there.

APPENDIX B

Starting with the metric tensor from [Eq. (12)]
and the extrinsic curvature from [Eq. (13)], we
evaluate the right-hand sides of the Einstein evolu-
tion equations (for the full details see Eppley®).
The nonzero contravariant metric components y*’
=¥~4f¥ are given by

F=Bb, f*P=f**=—Cb, [P=AS, [**=D7p",
(B1)

with 6= (AB - C?~!. Assuming that we have formed
the first and second spatial differences of A,B,C,D
J
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to represent the z and p derivatives (see Appendix
A), we proceed to construct the conformal Chris-
toffel symbols:

Gia=2S" (i, +Si1 p =Fin1) - (B2)

The nonzero ones are Gi,, Gy, G5, Ghp, G5, G5
Gﬁm with a representative example being

G5, =3(2™C ,=F*B . +/"'B ,) . (B3)

The Christoffel symbols of the full metric y;; may
now be found using the formula for conformally
related metrics (see., e.g., Hawking and Ellis*).
This will yield, for instance,

%, =G5, - 2U ' B(f* ¥  +/*"¥ ) . (B4)

Using these we can now construct the four Ricci
tensor components R,,, R,,=R,,,R,, Ry - Again
splitting off the conformal factor pieces (Hawking
and Ellis) and writing the conformal part of the
Ricci tensor, we have

Ri; ==Y (fij mn +Fur,ii =Fus i1 =Fiv 1)
—Ykl')’mn(G;e"t 7;' - Glrz'; G:"l) . (B5)

For instance,

R, = "'%fpp[A,PP - 2C.PZ +B 22 _A,PGzP _B,Z GSZ + (ZC'P _B~Z)G§z +B-pG£Z]
+3[-D,../D +3(D ,/D)*+(D ./D)G%, +(D,,/D +2/p)G%,]

—2W TNy, +AS ) + 2973 ALY W),

where ¥,;; =¥ ;; - Gi;¥ ,. Finally, the Ricci scalar
R is formed by contraction R =y* R;;. Given the
metric coefficients, full Christoffel symbols, and
Ricci components at each point on the grid, one
solves for the lapse o numerically (for instance,
Aa —Ra =0 for maximal slicing—paper II) and then
forms its Hessian a;; =a ;; - I';;a ,. With these
and the components of K;; we now evaluate the
right-hand side of the finite-differenced evolution
equations (14). These equations must be modified
on the axis (p =0) by the use of L’Hospital’s rule to
remove any terms of the form 0/0. For example,
in Eq. (B6) for R,, the term p~'Gf, is replaced by

pPTiGE, ~0,GE, . (B7)

In our first computer calculations, the em-
phasis was on demonstrating the possibility
of evolving the nonspherical Einstein equa-
tions by finite-difference techniques. As a result,
we were not as much concerned about the details of
the numerical techniques used as about obtaining
an evolution. For this reason, we took what we

(B6)

I

felt was the simplest straightforward approach:
Use the differential equations in the standard geo-
metric Hamiltonian form [Egs. (11a) and (11b)] and
use first- or second-order accurate finite-differ-
ence approximations for the space and time deriva-
tives. With the right-hand side of the evolution
equations [Eq. (14)] evaluated, the first time de-
rivatives were approximated by first-order ac-
curate finite difference:

3 H; ;=(HIM-HE /At (B8)

where H; ; is A, B, C, D, K,, Kg, K;, or K, at
the (Z,7) grid point.

As related in paper II, this scheme did enable
us to obtain an evolution. However, the solution of
these finite-difference equations contains a numeri-
cal instability of the static type common to such
forward time difference, center space difference
schemes (see, e.g., Roache®). A later paper will
describe the instability and show how to avoid it
by using a more sophisticated differencing scheme.
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