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5+ pole parameters from a dispersion-theory fit to photopion production
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%'e use our multichannel dispersion-relation formulation of photoproduction to obtain excellent fits to lom-

energy yp reactions and y n ~m p data. As expected, these fits are quite sensitive to the values of the h, + mass.

We obtain a 5 pole position m —iI /2 = 1208 —53i MeV. Predictions of the 6 parameters are made.

Very accurate experiments by Carter et al. ~

have determined the P33 phase shifts for n'p and

g "P scattering. Prom these results, the 8-ma-
trix yole parameters for the &" and &' have been
determined. "' The pole yarameters were shown2

to be considerably more model-independent than
the usual Breit-signer position and width param-
eters. These results make it important, in test-
ing theoretical models of electromagnetic mass
splitting in the baryon decuplet, to have a deter-
mination of the &' parameters.

We have previously develoyed4 a phenomenologi-
cal model of yhotoyroduction and have obtained
good fits to the low-energy data for the yP re-
actions

yP -1r'P

and the less-well-known reaction

(2)

The essential ingredients of this model, based on
a multichannel ND"' descriytion of the strong gN
partial-wave scattering, are the following: The
usual yN-gN Born terms are unitarized, and,
via the rescattering integrals, the inelastic chan-
nels influence the multipole amplitudes even at
low energy. Parameters are introduced to de-
scribe the photoyroduction Born terms for the
phenomenological inelastic channels (used in the
previous strong fit). We found, as one wouM ex-
pect, that the fits were sensitive to the details of
the &33 phase shifts for the &'.

In the present payer, we analyze more recent
data compiled by Donnachie, ' and determine
the &' resonance parameters: In our two-chan-
nel ND"' fit' to the P33 data for the &", one input
pole was used for the left-hand cut of the form

gr~, ear grx, ax
!

(@rE,BE @BN~BF

We assume that the main changes for the &' and
&' are yossible corrections to the diagonal cou-
pling in the gN channel. Thus we take g,~,N

=-g~+ for &' and g~o for &' as parameters to be
-varied in the fit to the photoproduction data. Ap-
propriate kinematical factors are used both in
the strong ND ' solutions for &' and &' and in fit-
ting the reactions (la), (lb), and (2).

We fitted some 725 data points from threshold
to E„=400MeV. Our 10-parameter fit (eight
multiyole photoyroduction Born terms for the in-
elastic channels coupling to the 8 and I' ~N states,
g~+, and g~o) gave a y' of 1.1/point. An illustra-
tion of this excellent fit is shown in Fig. 1. Fur-
thermore, we note that the fit to 675 yP data
points yielded a y' of 1.0/point.

As was done in Ref. 2 for the &", we extrapo-
late the explicit XB"' solution for the &' to its
pole in the second sheet of the complex energy
plane. We find a pole position

M' -=m' —i I /2 = 1208 —53i MeV.

We estimate the errors in (3) to be 2 MeV. As
can be seen from the X' of our fit, errors in the
data for reaction (1) must be decreased in order
to get a better determination of &'. In contrast,
the position of &

M"=1211-SORY MeV,

is very accurately determined to about 0.5 MeV."'
The value Mo has been determined to be3

Mo=1211- 53' MeV

from a fit to they P data. '
The data for the yn process (2) are less well

determined than the data for the yP processes (1).
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FIG. 1. As an example, we show the fit to the yp ~+f1, and yp 7t'Op data at E&-—320 MeV. Our fit to 725 data points

for reactions {1)and (2) (from threshold to E& =400 MeV) coxnpiled by Donnachie (Ref. 5) had a g of 1.1/pt. The

values of our ten fitted parameters (see Hef. 4 for notation and details of our multichannel dispersion calculation) are
go+=84.80, gg0=95.8, y(~&gp~) =0.1156, y(Eg~~) =0.00265 y{&&I~( ~) =0.003 58, ygp~) =0.1501, y@ g~) =0.00373, p{Mg )
=0.01274, 7'(Eg&) =0.00472, 7'(M(&9}=0.01228. (Tabulations of our multipoles can be obtained from Shaw. )

We found that our fit was insensitive to the &'
yarameters. The resulting + mass ~ frolxl the
yr esent yhotoyroduction fit is consistent vrith the
value (5) determined from a fit to jt P data, al-
though the ex'x'ox' ls many times lax'gex'.

Our method of yarameterizing the electromag-
netic changes in the P» yhases yroduces a yar-
ticular correlation between the shifts in the real
and imaginary yarts of the yole yosition. A more
general method would be to vary both g,~,„and
g,„»for &' (and &'). However, the additional
parameters cannot improve our fit (j('=1.0/pt)
and hence cannot be independently determined
from these data.

The most general mass formula for the & charge
(Q) states (consistent with the extablished isovec-
tor nature of the photon) is'

M=A+BE+ CQ3.

Equation (6) must, of course, be satisfied sepa-
rately by the real (m) and imaginary (I'/2) parts

of the yole yosition M. Using the determined val-
ues (3)-(5) for M', M", and M', we obtain from
(6)

M =1217—50t' MeV. (7}

There are many theoretical calculations of mass
differences. However, we will only comyare the
above results with the exact-SU(3) predictions
which give a result similar to (6) for the (4= —, )
decuylet

M = a+ bQ+ cQ' (8)

in which b and c are constants for the entire de-
cuylet. ' Then using resonance yarameters for
Z(1385} and "(1530)given by the Particle Data
Group' along with (8), we obtain the & mass split-
tings from the &". This is summarized in Table
I along with the resonance yarameters of & de-
termined in the yeriyheral yroduction experiment
of Gidal et al." Clearly, more accurate mea-
surements of the & yarameters would be ex-
tr emely inter esting.
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Theoretical work on electromagnetic mass dif-
ferences has concentrated on the behavior of the
real parts (which is of course the entire mass
difference for stable particles). These calcula-

TABLE I. 6 mass splittings. The numbers listed first
for each b splitting are the values corresponding to
{3)-(5}and (7}. The SU(3) predictions are in parentheses
( ) and the number in square brackets for the b,

entry is from Ref. 10. (Note that the quantities in brac-
kets and parentheses refer to resonance parameters. )

r (MeV)

tions are inherently difficult (although for the
same reason quite interesting) since they involve
contributions from high-mass intermediate states.
On the other hand, the electromagnetic width dif-
ferences have been ignored by theorists. At first
sight, one might expect that the splittings in the
l"'s are simply explained in terms of (a) the kine-
matics due to the mass differences of the decay
products, and (b) the contributions of the y-hadron
channels. However, we note that these effects are
too small to explain the substantial splittings in
I' for the &'s. This is also clearly true for the
Z(1385) for which' 1 (Z ) —I'(Z') = 7 MeV. Thus
we stress that these splittings in I." depend on the
details of the dynamics and are of as significant
interest theoretically as the real parts of the elec-
tromagnetic splittings.
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