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Summation of two-pion inserts to the o.-meson propagator and nucleon forces*
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Each pion-pair insert into a o.-meson propagator leads to a factorizable contribution, a function of the
magnitude of the o.-meson four-momentum. The sum of the resulting geometric series produces a modified
propagator with a mass shift and a width which are determined by the physical mass and decay rate of the o.
meson. The modified propagator is used to calculate the contribution of all nucleon-nucleon scattering
diagrams in which the nucleons can be separated by cutting only a o.-meson line. This replaces the treatment
of F, Partovi and E, L. Lomon in which the effect of the o.-meson width was approximated by averaging the
potential obtained from an unmodified propagator over the a.-meson mass distribution. The new potential,
when the general chiral constraint is imposed on the coupling constants, is small, in spite of large coupling
strengths, due to cancellations between terms. It is similar to the previous approximate result and is less
sensitive to the o.-meson width. The size of the potential is reasonable for widths greater than 300 MeV. As
before, the %einberg-model prediction of a o. meson which has a p-meson mass and a width of 620 MeV leads
to the best cancellation of nucleon-pair terms away from zero four-momentum transfer. The addition of this
contribution to the theoretical potential of M, Hossein Partovi and E. L. Lomon tends to decrease the
agreement with several realistic potentials. The size of the o.-meson-exchange contribution is decreased if the cr-
meson width is increased; but neglecting exchange contributions a zero-isospin two-pion bound state also
arises.

I. INTRODUCTION

The use of quantum relativistic fieM theory to
calculate fundamental particle processes is com-
plicated by radiative corrections to vertex func-
tions [Figs. 1(a), l(b), and 1(c)] and propagators
[Figs l(d) and 1(e)]. One-pion exchange (the two
nucleons are separated on cutting a single pion
line) will dominate the nucleon-nucleon force at
low momentum transfer over all other single-

partic le and multipartic l.e exchanges. However,
radiative corrections such as those shown in Figs.
1(a), l(c), and 1(d) contribute strongly in this
kinematical. range and must be included with the
simple one-pion exchange. Fortunately, in this
case of one-pion exchange all possible vertex and
propagator inserts have much higher masses than
the pion [ M, + p, in Fig. 1(a) and 2M in Figs. 1(c)
and l(d); we use p. and M for the pion and nucleon
masses, respectively]. This means that the radi-

(d)
FIG. l. Representative radiative corrections to one-pion and one-o.-meson exchange contributions to the nucleon-

nucleon interaction.
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ative corrections can be approximated as inde-
pendent of q (nucleon momentum transfer) and
are therefore absorbed into the renormalized
mNN coupling constant and pion mass, which are
given by the physical values.

In many important cases radiative corrections
may be taken into account to a good approximation
as in the above case. In other cases, such as
that of vN scattering (Fig. 2), the sum of all ra-
diative corrections that overlap two of the ele-
mentary vertices [Fig. 2(f) is the simplest ex-
ample) is largely absorbed into resonances (nu-
cleon isobars in the example shown). These iso-
bars can then be treated as elementary particles
to a good approximation. ' Resonance masses and
coupling constants can be obtained from high-
energy-production exper iments.

There are cases, however, in which radiative
corrections cannot be treated to good approxima-
tion by q-independent constants. Figures 1(b),
1(e), 2(c), 2(d), and 2(e) are examples. The g
meson decays into two pions whose mass is con-
siderably less than M, . The resulting vertex and
propagator radiative corrections are strongly
q-dependent and are not well accounted for by the
coupling and mass-renormalization constants
determined at q = 0 and q =M„respectively (O'=C
=1 in the units of this paper). Because of the
strength of the ovv coupling (the large width of
the o meson) this q-dependent correction is large.
The effects must be treated to all orders.

F. Partovi and E. L. Lomon' have previously
derived the exact q dependence of the vertex cor-
rections [Figs. 1(b) and 2(c)] and applied the re-
sults to the nucleon-nucleon force. In Ref. 2
(hereafter referred to as FPL) the effect of the
sum of all pion-bubble inserts on the o-meson
propagator as in Figs. 1(e) and 2 was approxi-
mated by averaging the 0-exchange potential over
the Breit-Wigner mass distribution corresponding
to a o meson. In this paper we derive the exact
q dependence of the 0-meson peopagator summed
over all pion-bubble inserts (Fig. 2). This enables
the exact treatment of all o-exchange contributions
to the nucleon-nucleon force.

There is no double counting of the cr exchange
with two-pion-exchange terms if the 0 meson is
treated as an el.ementary particle in the Lagran-
gian of the system. The modified o-meson propa-
gator may be used to replace the sum in Fig. 3
in any Feynman diagram. Here we apply it onl.y
to nucleon-nucleon scattering. A similar modifica-
tion may be made for other bubble inserts on the
propagators of other particles, for instance two-
pion bubbles on the p-meson propagator. The
effect of the latter will be relatively small be-
cause of the small p-meson width.

In Sec. II the modified propagator will be ob-
tained and related to the physical mass and to
the requirements of the chiral (soft-pion) con-
ditions. The application of these results to the
nucleon-nucleon force will be treated in Sec. IV,

(c)

FIG. 2. Representative radiative corrections to nucleon and one-0-meson exchange contributions to the pion-nucleon
interaction.



2404 EARLE L. LOMON

Go(q') =G, (q')+G (q')I (q')G, (q')

+G,(q')Iz(q')G (q')Is(q')G, (q') p ~ ~ ~

q-k
q

Gg k Gcr where

=G (q')[1-IB(q')G (q')] '

= [G. '(q') -I.(q')] -',

1(q2) q2 (~0)2 (2)

q
q-k

q
q-k'

q

Go k Ga kI Gg
+ r r ~

Elf', is the bare mass of the cr meson, and the two-
pion-bubble loop integral is

FIG. 3. The modified 0-meson propagator G~ com-
posed of any number of pion "bubbles" inserted into the
bare g-meson propagator G~. See Eq. (11).

after the general. approach to the nucleon force
calculation has been reviewed in Sec. III.

with

(q')=(i J d'q(q' —r'qiq) '

x [(q —k)' —p.
2 y ie]

II. TWO-PION-BUBBLE MODIFICATION OF THE

0-MESON PROPAGATOR

As indicated symbolically in Fig. 3, the modi-
fied o-meson propagator is

As =6(2w) 'g„2.

The constants are appropriate for om. m coupling
of charge-symmetric pions to the 0 meson. Using
the usual Feynman technique Eq. (8) becomes

Is(q2) =its d'k
~qp

dz ((k' —l(, '+ ie)z + [(q —k)' —p, '+ ie] (1 —z)}

with

= —2w A~
t 1 OO

dz k'[k' —m(q') —ie] 'dk,
p

(5)

m(q ') = q'(z —z') —p, 2.

ReIz(q ) is logarithmically divergent. This divergence will be absorbed into the renormalization of
M [Eqs. (1) and (2)], as specified later. At this point we proceed with an explicity limiting procedure
for k2-~. Integrating Eq. (5), we obtain

Iz(q2) =lim —w2Az dz ln, —1+iwe[m(q')]
A —m(q')

A=~ p m(q')

It is convenient to subtract at q' = 0

I,(q') =I,(q') —I, (o).

Note that iz(0) is real and divergent, but ia(q2) is finite. From Eq. (6)
1

Iz(q2) =m2xz dz[lnI 1 —q2p '(z —z')I —ive[q (z —z2') —p2]].
p

Equation (8) is analytically integrable. When q'~4g2 or q' ~0

IB(q ) =7P)(&( —2+ (1+ I
1 —4q 'p'I 'I') in[ I 1 —q'(2l1) 'I"+ I ql (2(u) ']

+(1 —
I 1 —4q '(a'I'I') lnI[I 1 —q'(2((1) 'I'I' —

I ql (2p) ']I)
—in AaI 1-4q 2p. 2I'I28(q2-4g2).

(6)

(8)

(Qa)

~hen 0 ~q ~4p,

Iz(q') =&'&2)[ —2+2(4q 'p, ' —1)'I2 tan '(4q 'p, ' —1) 'I2]. (9b)
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The following limits are of interest:

Is(q') - ——,
'

v'Asg 'q' for
~

q'~ «4p, ' (10a)

nance pole alone. We shall therefore assume that
I', & I""", as determined by the vanishing of Eq.
(11);

and

Is(q')-2n'Xs Ln[ p, 'q[ for (q'[»4g', (10b) ReI""(M ) =—r "[r 'ReI (M )]

=-M,' —[ q
' —I~ (q')],2,„2

Is (4p') = —2v'As. (10c) = M, ' —(4p'+ 2v'As ),

From Eqs. (1), (2), and (7) we have the modified
propagator

G, '(q') =q' —(M', )' —Is(q') —Is(0)

= q' —M, ' —Is(q') —[Is(0) —ReIs(M, ')]

=q' —M, ' —Is(q')+ReIs(M, '), (ll)
where

M, ' =- (M'. )'+ReI, (M.')

is defined by the observable mass, i.e., the peak
of the mv resonance. The divergence ReIs(M, ')
is canceled by the divergence in the square of
the bare o-meson mass (Mo)'. Every term is
finite in the last line of Eq. (11). Equation (11)
displays the structure of a resonance with mass
M, because

where r, 'ReIs(M~') is independent of the choice
of I', and ~~ depends linearly on I","' through Eq.
(14).

A complex pole of G, (q') corresponds to the
Breit-Wigner-type resonance at q'=M '. The
pole can be found numerically, but a good ap-
proximation to the position of the pole can be found
by using the fact that q' —M~' is rapidly varying
for q' near M, in Eq. (11). Because of that we
can set

ReIs(q') —ReIs(M, ') = 0

and [see Ecl. (14)]

ImIs(q')= —M, r when q' is near M, ', (18b)

which lead to the simplified relativistic Breit-
Wigner form

ReG, '(q') =q' —M, ' —Re[Is(q') —Is(M ')]

(13)

G.(q')= (q' —M„'+zM.r.)-'
for which the pole q~' is given by

(17)

vanishes at q' =M, '. The width is determined by
Eq. (9a);

M r, —= ImG, '(M, ')

Req =2 '/'M [1+(1+M 'r )'/']'/'

Imq~ = ——,M, [Req~] '1,.

(18a)

(18b)
= —ImI~ (M, ')

v3g (1 4~ 2M -2)1/2 (14)

Note also that ImG~ '(M, ') has the correct thresh-
old behavior for an S-state resonance, vanishing
at q = 4p, as (q' —4p, ')'/'. The simple Breit-Wigner
structure of the resonance is modified by the
branch points of ReIs(q') at q =2y. , v2 p, , and ~.

The modified propagator [Eg. (11)] develops a
pole when G~ '(q') =0. For real values of q' this
can only occur if q'& 4p. ', because otherwise
I~(q') is complex [see Eq. (9a)]. Using the limits
of Eqs. (10) and derivatives of Eqs. (9) it can be
established that Is(q') is monotonically decreasing
for —™&q'& 4p, '. Also it can be seen from Eqs.
(4), (8), and (13) that Is(q') is proportional to
I', . For a given M, there is then a critical value
of r, at which a pole in G,(q') occurs at q' = 4p, ',
and larger values of I'~ will bring the pole, q~',
of G~(q') to smaller values of q'. When 0& q~'
& 4p, ' the pol. e in the propagator implies a bound
pion-pion state. If q~'& 0 finite results are ob-
tained, but the pion-scattering prediction would
strongly differ from that obtained from the reso-

Note that Req~& M„so that the pole is distant
from the branch points, which makes Eq. (17) a
good starting point for an iterative solution of
the resonance pole of G, (q').

fn Fig. 4 the curve of
~ G, (q')~' given by Eq. (11)

is compared with the result of the relativistic
Breit-Wigner form that includes the threshold
dependence [instead of the simplified Eq. (17)
form], given by

G,„'(q') =q' —M '+fr, M, 'q '(q' —4p, ')'/'

x(M,' —4p, ') '/'8(q' —4p, ').

The values M =765 MeV and I' =620 MeV are
us ed.

The curves are quantitatively alike in the vicinity
of the resonance peak but are very different else-
where, although they have similar structure at
the two-pion threshold. The exact modified propa. —

gator given by Eq. (11) does differ substantialiy
from that given by Eq. (19) in the region —2M, '
& q'& 0 which contributes most to the value of
a 0-exchange potential at && M



2406 FAR LE L. LOMON 14
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I

2po. p 5. M~

f G ~i ( 2)FIG. 4. The linear and nonlinear terms o G,q
[Eq. (1l)]: The straight lines represent

(7r A,g) [q —M~ +BeI Pf~2)]

for M =765 MeV and the several indicated values of l~.Wx
The slopes depend on l ~ throug z qs.h A. [K s. (4) and (14)],
but all the lines cross at q =M~ 2, becau

ilarl theI7i„n~BeI (M ) is independent of I' . Simil y,
G~i 22X ) BeI ( ) is independent of I"~. BeG (q )curve (& ~g) g q

i ht line in-vanishes at the values of q where the straig i
tesects the curve ws'th the cusp. When this intersection
occurs for q2& 4IM2, where G~ is real, a real pole of
G~ results.

The values of M, and I' used ' 'g.in Fi . 5 are those
that correspond to the steinberg n', o, p, A meson
modeP (with the Goldberger-Treiman value g„j

=1.3'7) and also correspond to the results ofgy = . an
th

' roduction data analysxs of Kim and Band-e pion-p
= 818er. ' For this case Eg. (18) gives Re(q~ =

MeV. II instead we use I', =1193 MeV (corre-
sponding o et the Gel. l-Mann-Levy model' with g&

g» = 1.3V or to the Weinberg model' with g~/g» =

we obtain e q~R t ) =912 MeV. The latter is c:lose
to the pole analysis of the data by Hyams et al. '
for wh~c i q~=h ch =1049 MeV. Another analysis by
Basdevant et al. ' suggests M, =500 MeV and I'
= 700.™1.200 MeV.

Although M and I', are not uniquely defined
by the high-energy data or by chiral models, we
will. see that the predictions for nucleon-nucleon
forces are reasonbal. e for the wide range of cases
described above. A better determination of M,
and I' may come first either from high-energy
production data or from a comparison with nu-
cleon-nucleon data after an adequate specification
of the rest of the medium-range theoretical po-
tential.

To complete our preparation for examining nu-
cleon forces we neee need to calculate the radiative
corrections to the ONN vertex, including the ef-
feet of the modified propagator, and determine
the consequent renormalization of the crNN cou-
pling cons an . it t Figure 6 il. t.ustrates the series

exlO—
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IG.I'
Of

IGswl
(p")

4xIO

2xlO
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0 =-

-lO.
I

20.
I l II

25 M' 35 40-5. 0 4. 5. I Q. I 5.

ble sum, "with the Breit-gligneror ~G l, which includes the complete pion u e suFIG. 5. Comparison of the propagator lG&l w lc inc
form for s-state resonances lQs&l .
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FIG. 6. The exact os vertex function expanded into all terms arising from the decay of the 0. meson in.o two pions.
Corrections to O.NK or zNÃ vertices arising from mesons which are emitted and absorbed on the nucleon line are in-
cluded in the definition of the coupling constants g~~ and g, &. The two infinite series are exactly summed by the two
modified-0-propagator diagrams. See Eq. (20).

x [g~» —6(4r) g~» go~MR(0)],

where

MB(0) =—8(M)

(20)

=-M '+M '(M' —p') In(M/g)

+ p M '(4M' —p, ') '~'(3M' —p') cos(~g/M).

The resulting g",„is the appropriate coupling
constant to use in the chiral. condition [Eq. (1)
of FPL] which requires that the sum of pion-nu-
cleon scattering amplitudes [Figs. 2(a)-2(e) and

6] vanishes in the limit of zero four-momentum
transfer q = 0; viz. ,

g"»g „=—M '(M ' —p, ')g„»'. (22)

of Feynman diagrams that contribute to the ver-
tex function, and the two diagrams with modified
cr-meson propagators that sum up the whole series.

The momentum-transfer dependence of the nrN
loop is given by the function A(q') defined by Eq.
(37) of FPL, and the q' dependence of the modi-
fied propagator is given by Eq. (11) of this article.
To define the renormalized coupling constant
g"„in relation to the coupling constant g,~ which
does not take into account the radiative correc-
tions of Fig. 6 [but takes into account others
analogous to Fig. 1(a)] we evaluate Fig. 6 for q' =0
us ing the modified-propagator diagrams. This
is equivalent to Eq. (3) of FPL with a modification
of the propagator on the right-hand side:

M~ g~» = [Ma —Ref~(M )]

Equations (4), (8), (10), (13), (15), (20), and (22)
define all. the quantities needed for application to
nucleon and pion scattering problems.

If in addition we impose the constraints of the
Weinberg model' that gs» =W2(g„/gv)g, » and M,
=765 MeV there are no free parameters [except
those due to the ambiguity of the appropriate choice
of (g„/gv)]. If the Qell-Mann-Levy model' is
imposed, then g",„=(g„/gv)g„» but M, is a free
parameter.

III. ROLE OF THE RADIATIVE CORRECTIONS AND THE
0 MESON IN THE NUCLEON FORCE PROBLEM

The longest-range interactions between particles
are caused by the exchange of the l.ighest particles
or groups of particles. This implies that detailed
calculation of the interaction is easiest at the
longest range where one-particle exchange suffices
and becomes successively more complicated at
shorter ranges. The manifestation of this effect
in dispersion relations is the relative simplicity
of the singularities due to one- or two-particle
exchange; in field theory it is the small number
of required integrations in the Feynman amplitudes
and the small number of diagrams.

In configuration space the range dependence of
an interaction is exponential, so that contributions
which differ discretely in the mass exchanged
have rather well-separated domains. Thus the
configuration-space description of interactions
has the advantage that the longer-range part, cal-
culable from theory, is separated in a compara-
tively clean way from the shorter-range part,
which needs to be approximated or parameterized
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FIQ. 7. Representative radiative corrections, whose sum can be represented by nucleon resonances (but only approx-
imately in the narrow-width, or isobar, limit).

phenomenologically. The usual conf iguration-
space description is a potential, local or non-
local.

A potential. description is of special utility if
it can be used in a Schrodinger equation, for then
the many-body problem can sometimes be treated
with accuracy. M. Hossein Partovi and E. L.
Lomon' have shown how the 8 lankenbec ler-Sugar
reduction of the Bethe-Salpeter amplitude could
be extended to defining a potential which would
generate the relativistic amplitude when used in
the nonrelativistic Schrodinger equation. This
method was applied in Ref. 8 to obtaining the nu-
cleon-nucleon potential generated by the exchanges
of single pions, g mesons, p mesons, and & me-
sons and by the exchange of two pions. The re-
sult was qualitatively similar to realistic phenom-
enological. potentials for ranges r& & p,

In that calculation strong-interaction radiative
corrections to single-meson exchange, such as
those in Figs. 1(a), 1(c), and 1(d), were treated
as renormalizations of coupling strengths or
masses only. The momentum and energy depen-
dences of these corrections were ignored be-
cause the vertex or propagator insertions were
always of mass greater than that of the meson
being exchanged. This large mass results in a
slow dependence of the radiative correction on
kinematical variables and is therefore absorbed
into the renormalized constants with adequate
accuracy. '

The decay of the p meson into two pions is an
exception to the above type of radiative correc-
tions, but was assumed to have a small effect on
the q' dependence because of the relatively weak
coupling (small width) of the p meson to two pions.
The validity of that assumption will. be discussed
in Sec. V. Radiative corrections to two-meson
exchange, as for example in Fig. 7, are related
to nucleon-isobar intermediate states in mN scat-
tering' which have not yet been treated in the
program outlined by Ref. 8 for calculating the
nucleon-nucleon potential from field theory.

The exchange of the o meson was omitted in
Ref. 8 because (a) the mass, the width, and even
the existence of such a low-mass T =0, J= 0 reso-
nance were uncertain, and (b) if such a resonance

did exist its width was certainly large enough to
necessitate the calculation of diagrams such as
Figs. 1(b) and l(e). When the existence and nature
of the o meson (usually called the & meson phe-
nomenologicaliy) became clearer"' this cal-
culation was undertaken by FPL.

They considered all the diagrams in Fig. 8.
These are the diagrams in which the two nucleon
lines can be separated by cutting a 0-meson line
only, and so are called v-exchange diagrams.
Other diagrams containing g mesons (see Figs.
2, 3, and 4 of FPL) are wNN vertex corrections
[such as Fig. 1(a)] or are part of the wN mN

amplitude that must be considered together with
nucleon isobar intermediate states, such as the
last diagram of Fig. 7.

------ + —W--- + -~-~-+.~ ~

+ -M-Q + -N-~-Q+"

p-Q + p-MQ + p-O'-4 -(+ " =

FIG. 8. Series of 0-exchange contributions to the
nucleon-nucleon interaction, which are represented by
a single "modified-propagatox"' 0-meson-exchange dia-
gram. (a) V, (b) V ', (c) V
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The leading diagram of each series (a), (b), and

(c) of Fig. 8 (i.e., those without two-pion "bubble"
insertions in the v-meson propagator) was cal-
culated accurately by FPL. In addition FPL ap-
proximated the effect of al.l orders of the pion-
bubble insertions in Fig. 8(a) by averaging the
potential given by a variable 0-meson mass, m,
over a Breit-Wigner mass distribution:

V'(r) =X-'
~4p 2

V(r; m)p(M„ I'.; m)dm', (23)

where p(M„ I', ; m) —= m '(m' —4p, ')( G~~(q'))' is
the modulus of the Breit-Wigner amplitude [see
Eq. (19)] for the c resonance and &= f,„2p(M„r.; m)dm'.

This approach (which we call the p-integral
approach) is qualitatively, but not quantitatively,
equivalent to the summation of pion-bubble dia-
grams (the modified-propagator approach). Equa-
tion (23) was not applied by FPL to Figs. 8(b) or
8(c) because the leading diagrams in those cases
are already of approximately 2p ' range owing
to the two-pion vertices. The effect of Eq. (23)
on spreading out the short-range potential. of the
first diagram of Fig. 8(a) is therefore more im-
portant. This is borne out by the present cal-
culations; neverthel. ess, the spreading effect of
the bubble insertions in Figs. 8(b) and 8(c) is not
negligible.

The only parameters in the calculation of FPL
are the physical mass and decay width of the o

meson, both of them now known within wide limits
from analysis of high-energy pion-production ex-
periments, "'as discussed in Sec. II. It was also
noted in Sec. II that the Weinberg' and Gell-Mann-
Levy' chiral models make predictions consistent
with the experimental analysis. Both theoretical
and experimental sources indicate that nucleon-
nucleon potential predictions should be constrained
by 500 MeV & M, & 1200 MeV and 500 MeV & I',
& 1300 MeV.

Choosing values of M, and I', and using
(4m) 'g „'=14.4, Eq. (14) [Eq. (12) of FPL], Eq.
(22) [Eq. (1) of FPL], and Eq. (20) with I s(M~')
ignored [Eq. (3) of FPL] determined g„and
g,„in accordance with chiral conditions. The
results (see Table I and Figs. 8-16 of FPL)
showed the following.

(i) There is an important degree of cancellation
between the leading diagrams of Figs. 8(a), 8(b),
and 8(c).

(ii) The cancellation is better maintained over
the medium-range values of r when the bubble
diagrams of Fig. 8(a) are approximately taken into
account by the p-integral method [Eq. (23)j.

(iii) The resultant g-exchange potential is I ~
dependent and is smallest at medium range for

I', = 620 MeV.
(iv) For I', =620 MeV the o-exchange potential

approximately cancels the "pair potential. ""
(v) The addition of the o-exchange potential for

M, = 765 MeV and I', = 620 MeV improved the re-
semblance of the theoretical potential (which al-
ready had m, 2v, q, p, and e exchanges) to the
phenomenological Hamada- Johnston potential. "

The result (iii) shows that the chiral restrictions
do not remove all ambiguity and that the effect
may differ considerably from the extreme soft-
pion assumption (no q dependence) made by Brown
and Durso. " The more accurate calculations of
this paper do not change any of the above results
qualitatively but shift the values of I', for which
cancellations occur. For I', & 100 MeV the o-ex-
change potential predicted by the exact o propaga-
tor differs in shape from that of the p-integral
method.

We now use the modified v-meson propagator
to obtain an exact description of the potentials
arising from Figs. 8(a), 8(b), and 8(c), including
the bubble sum. The relativistic Feynman am-
plitude for the modified 0-propagator diagrams of
those figures is reduced to a potential using the
techniques of Ref. 8 and of FPL." In momentum
space we have (V' = —q'; "c" stands for "central"
and "so" stands for "spin orbit")

'V:(&)=(») 'g.~'0(&')G.(- ~')

'V.:(~)= - 4(2 )-'g..'[ e(~') - I]G.(-~'),

(+) = 3(2") go gong nr M

x y(b, ')G, (—&')g(- b,'),
V'"(&) =12(2w) 'g„g,„g,„'M

x[y(~') 1]G.(
V~~~(g) — 9(~)3(2v) ~g 2g

(24a)

(24b)

(24d)

g(A') = [1+(2M) 'b, ']'~'

and [as defined by Eq. (37) of FPL]

(25)

&(-&') = y(1-y) '4
"0

1
x x(1 ~)-~[62+ r j -~dr

0
(26)

x p(A )G (- b, )[g(-6 )], (24e)

V;."(&)=9(-,')(2m) 'g„'g, ~M'

x [ y(a') —1]G,(-a')[R(- s')j',
(24f)

where
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with

r„,=x '(1 —x) '(1 —y) '[M'x'y'+ p, '(1 —xy)].

The configuration-space potentials are obtained
here by numerically evaluating the Fourier trans-
form directly from

approximation than was V ' of FPL with the pole
approximation.

Analogously to FPL we define the total central
and spin-orbit o.-exchange contributions to the
potential:

I'Vaz(&) —I'Va(&) I'Var(&) 1 Var&r(&)

V, (r) = 4nr '
J

6 sinew V, (b.) dh
0

V (r) = —4m' '
J( 6 '(sinb, r —6xcos6x)

0

(28) rVas(&) =I'Vo(&) r Var(&) rVaww(&)

We note that there are no spin-spin or tensor
contributions of o exchange; hence V',~= V& =0.

Pf. RESULTS FOR THE 0-EXCHANGE CONTRIBUTION TO
THE NUCLEON-NUCLEON FORCE

x V,.(b, ) d~, (29)

with V, (b, ) [V (6)] obtained from Eqs. (24a),
(24c), or (24e) [Eqs. (24b), (24d), or (24f)] to
generate V;(~), V (x), or V;"(x) [ V'(r),

V "(r), or V"'(r)], respectively.
In the present work it was not found to be con-

ven. ient to use the pol. e approximations to Eqs.
(28) and (29) which were used in FPL. ln FPL
the pole approximation was shown to l.ead to neg-
ligible error (& 1%), which has been confirmed
by the present method of calculation. However,
the use of the pole approximation to Eq. (26) for
A(-&') resulted in the need for numerical inte-
gration over both the variables x and y instead
of the analytic integration over x [Eq. (3l) of FPL]
which we can use for 8(-&') in Eqs. (24). Con-
sequently there is a computing advantage as well
as greater accuracy in the direct use of Eqs. (28)
and (29) as regards "V" and V"'. Moreover,
the present modified-propagator method does not
require another integration in order to obtain the
spreading due to the o-meson width as does the
p-integral method [Eq. (23)]. It follows that even

V' is no harder to compute without the pole

The strong decay of the 0 meson into two pions
affects the o-exchange contribution to the nucleon-
nucleon force through (i) the renormalization of
the gNN vertex, (ii) the momentum dependence
of the vertex corrections represented by V" and
V'"' [the leading diagram of Fig. 8(b) and of
Fig. 8(c)], and (iii) the modification of the o-me-
son propagator via the "bubble sums" in Fig. 8.
The effect (ii) was completely and accurately
treated in FPL. That reference also treated ef-
fect (i) in the approximation that the modification
of the propagator, represented by the term
Reft(M', ) considered in Eq. (20), was ignored.
FPL also treated effect (iii) but treated it only
for V~ and then only in the p-integral approxi-
mation. The full and accurate treatment of (iii)
and the propagator-related modification of (i) is
the contribution of the present paper.

To investigate the effect of the total. o-meson
exchange and especial. ly that of the propagator
modification we have made calculations for M,
of 500 and 765 MeV and for I', of 100, 300, 620,
1193, and 2386 MeV. I";"'=625.2 MeV for M, =765
MeV [ see Eq. (15) and Fig. 4], and I",'"=458 MeV

TABLE I. &-meson coupling constants determined by I'~ and the chiral condition with g~z /4m

=14.4. [g~z is obtained from Eq. {20) by setting He&g(M~ ) =0. This corresponds to ignoring
the modification of the 0'-meson propagator, as in FPL.]

M~ 4a~ )'/4&
(MeV) [Eq. (14)] [Eq. (22)]

g ~'/4&
[Eq. (20)] (g Q )2/4g

100

300

620

765
500

765
500

765
500

765
500

2.81
2.06

8.43
6.19

17.43
12.78

33.53
24.60

67.07
49.20

343.59
77.77

114.53
25 „92

55.42
12.54

28.80
6.52

14.40
3.26

387.0.
112.3

160.6
66.7

105.6
63.4

86.4
75.5

87.4
109.9

423.8
111.8

203.1
66.1

157.5
62.6

154.9
74.3

190.7
107.8
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l2
M0. = 765 MeV

y PAIR
C

lt93 ~ ~

N

0 Ol
O

-l2
b~0
L

-24

Ol

p
0

0

l.2.6
56

.4 .8 l.O

r (%/~c)
FIG. 13. The total 0-exchange central potentials and

the nonrelativistic "pair potential. " The 0-exchange cen-
tral potentials ~V,~ = "V, + ~V, + ~V,~~ using the
bubble-summethodare given for the values of I ~ indi-
cated on the curves in MeV and with M~ =765 Mev. The
V~~ is the adiabatic limit of the sum of time-ordered
two-pion-exchange diagrams with one and two nucleon
pairs.

.8.6 l.2.4 l.o l.4
r (5/p. c)

FIG. 12. The parts of the 0-exchange potential rV,
V~ are compared with the sum M+,

for the (a) central and (b) spin-orbit potentials. The
case corresponds to M~=765 MeV and I'~=620 MeV.
(See Tables II and III.) The varying signs of the parts
lead to a large degree of cancellation, which is nearly
complete for I'~=1193 MeV.

of the Lagrangian is also dependent on the 0-meson
mass. For M, =500 MeV and I', =620 MeV Fig.
14 shows that~V'~ only cancels about half of V~

although "V, stiI. I. cancels V~~ quite well at me-
dium range.

l2
Ma- = 500 MeV

V
PAIRi C

= 765 MeV and I', =620 MeV correspond to gv/g„
=1.37) very nearly cancels the "pair" potentials,
even more so than in FPL (see Figs. 8 and 9 of
FPL).

Thus, as suggested by Weinberg, the good
asymptotic behavior of the model tends to extend
the range of q which chiral conditions are main-
tained. For other values of I'„although the
chiral. condition is imposed so that the diagrams
in Fig. 6 cancel the diagram of Fig. 2(a), the
"pair" potential is not fully canceled at most
ranges because of the q dependence of the dia-
grams. This effect can be cal. led "hard-pion"
corrections. What our specific Lagrangian il-
lustrates is that the hard-pion correction can be
large at moderate values of momentum transfer,
especially when I ~ & 300 MeV. The "softness"

O

-l2
b0

-24

-36
l.O l.24 .8

r (h/pc)
FIG. 14. The total 0-exchange central potentials and

the nonrelativistic "pair potential. " Same as Fig. 13 for
M~ =500 MeV.
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IVIy = 765 MeV
l.6i e

0
04

V

LaJ 2
bo)
C

S yso
y hl yo yHJ

yFL

-8
4 I.O I.2

r (%/pc)

FIG. 15. The total 0-exchange spin-orbit potentials
and the nonrelativistic "pair potential. " Same as Fig.
13 for the spin-orbit potentials and M, = 765 MeV.

0
4 I.O l.2

r (5/p, c)

PA IR
~ yso

IVIO- = 500 IVley

FIG. 17. Comparison of various nucleon-nucleon T
=1 spin-spin potentials. The meson-theoretical poten-
tial V of Ref. 8 is compared with the dispersion-theo-
retical potential V of Ref. 16, the adiabatic meson-
theoretical potential V" of Ref. 15, and the phenomenol-
ogical Hamada- Johnston potential VHJof Ref. 11. As
0 exchange does not contribute to the spin-spin or ten-
sor potentials, V+ represents the one- and two-pion and
one-boson exchange potential.

N "2
4.

-6

- l04
I

.6
I

I.O I.2

r (5/p c)

FIG. 16. The total cr-exchange spin-orbit potentials
and the nonrelativistic "pair potential. " Same as Fig.
15 for M~ =500 MeV.

Figures 13 and 15 show that ~ V,'~ and ~ V '~
both nearly vanish for r& 0.4 p.

' &&hen M~ = 765
MeV and 1', =1193 MeV. In spite of the large
value of g ~„ the resulting potential is negligible
because of the cancellation occurring betiveen the
three classes of diagrams, Figs. 8(a), 8(b), and
8(c). The use of the contribution of Fig. 8(a) alone,
@faith values of g"„of the order indicated by theo-
ries such as Hefs. 3 and 5, leads to much larger
o -meson-exchange predictions. Consequently,
one-boson-exchange fits'4 have u-meson (or &-

meson) coupling constants (squared} about 4 that
of theoretical models. "

Figures 17-24 illustrate the total theoretical
potential. obtained by adding ~V ~ for M =765
MeV and I' =620 MeV to the potential, V~, pre-
viously calculated for exchange of m, 2w, g, p,
and co mesons. ' For compar ison those figures
also include the medium- and long-range parts
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FIG. 22. Comparison of various nuc eo-leon-nucleon T
=0 spin-orbit potentials. SaIne potentials as Fig. 21.

-.6
.4 .6 .8 I 0

r (h /p c)
t.2 l.4

FIG. 23. Comparison of various nucleon-nuc-nucleon T
=1 central potentials. Same potentials as»g. 21.

of V~ itself and of three realistic potentials, that
of Ha, mada and Johnston V ~, that of Feshbach

V . All of these potentials fit the nucleon-nucleon-
scattering an eund deuteron data moderately well and
all have one-pion-exchange long-range tails. The

medium-range part of the potential of Ref. 11 ~s

phenomenological, as are the short-range parts
of all three. The medium-range potential of Ref.
15 is theoretical. , including the same exchanges
as in Ref. S, but in the static limit. Reference
16 is a recent dispersion-theoretical. calculation
of the medium-range potential, but includes a
phenomenological. core contribution for r ~ 0.'7p,

Figures 17-20 show that in both the T =1 and
T = 0 states the spin-spin and tensor-meson theo-
retical potentials of Ref. 8, V~, are quantitatively
similar to the dispersion-theoretical potentials
of Re.f. 16, V As V' vanishes in these states,
th

' 'l. 't of V" and V indicates that the
intermediate isobar contributions neglected in
V" may be small in the tensor and spin-spin po-
tentials. Moreover, as it was recently shown
that the V potential is phenomenologically con-
sistent with a boundary-condition core, " it can.
be inferred that V" will also be able to fit ihe
tensor and spin-spin components with a boundary-
condition core.

For bo th the T=1 and T=-0 spin-orbit potentials,
Figs. :21 and 22, we notice that V~ zs again sama ar
to V, although slightly more attractive. How-
ever, V"+ V' (620) is substantially more at-
tra, ctive than V in both cases. This difference

t ery s ignif icant phenomenologically: Be-
cause of the short range nature of the spin-orbit
potentials the data can be fi.tted by varying the
core properties. That can be inferred by noticing
that both V and V~~ can fit the data, with a, bound-
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ary-condition core"'" even though the latter has
no medium-range spin-orbit potential. A shift
in value of the boundary condition makes up for
the difference.

In the central potentials, Figs. 23 and 24, the
differences are more serious (because of the phe-
nomenological core in V one need only compare
for r a 0.7p, '). In both the T = 1 and T = 0 cases
V is much more attractive than V, and it is
also substantially more attractive than V"' for
T=1. In these cases rV's(620) is attractive and

significantly increases the above disparities. As
intermediate-isobar corrections to V" are at-
tractive, they would only make the disparity worse
if added to V". About half of the difference be-
tween V" and V is due to the choice of ~NN
coupling consta, nt. The &-exchange contribution
is repulsive and large in the central potentials,
especially in V, for which g „'/4m = 9.52. In
V" the value is g z'/4v =6.36. The rest of the
discrepancy between V" and V (in both the con-
stant and spin-orbit potentials) is likely to be due
to the different treatments of two-pion exchange
with pion-pion interaction.

In V the two-pion noninteracting continuum is
supplemented by the decaying o-meson exchange
as derived in this article. The e-exchange con-
tribution is attractive for 1",= 620 MeV, only be-
coming repulsive for l, ~ 1193 MeV. By contrast
the noninteracting two-pion continuum in V j.s
suppl. emented by the difference between the total
two-pion-amplitude contribution and the T = 0, J = 0
projection of the continuum. This supplement
is in the right direction to account for the dis-
parity between V and V~, as the above difference
is positive.

The present article does not consider any pion-
pion interaction other than through the 0 meson.
The small experimental pion-pion scattering length
is an indication that there is a repulsive inter-
action in the background (resonance fits give a
larger scattering length'"'). Diagrams that pro-
vide such background pion-pion repulsion could
in principle be added to the meson theoretical
descriptions of the nucleon-nucleon potential.

When I" =1193 MeV and M ='765 MeV the values
of V,' and V' are negligible at medium and long
range. Hence the need for additional pion-pion
interaction contributions is less if we choose such
values of I' . Nevertheless, the T=1 central
meson theoretical potential is still likely to need
a substantial correction.

In addition it must be remembered that I'~ =1193
MeV entails a pole in the modified propagator,
which in turn implies a pion-pion state in the ab-
sence of strong exchange effects. As 1","depends
on M~, the situation may be improved by choosing

a value of M, for which 1';"' is larger than 625
MeV.

V. OTHER APPLICATIONS FOR THE
MODIFIED PROPAGATOR

Q(

(a)

q)+Qp
Q/+ ql

Qp

I
Q p-qp

q

(b)

Qp

FIG. 25. o-meson contributions to pion-pion scatter-
ing. (a) A o-meson contribution containing all pion-
"bubble" contributions in the intermediate state. Q) A
o-meson exchange containing all pion-"bubble" contribu-
tions.

It was remarked in Sec. III that the p-meson
decay into two pions presents similar complica-
tions for p exchange as for the o-meson case, but
the effect was expected to be less severe because
of the smaller p-meson width. Because of dif-
ferences in spin and isospin the o-meson equa-
tions of this paper cannot be directly applied to
the p-meson case. However, a qualitative in-
dication of the severity of the complications for the

p exchange may be obtainable by using the ap-
propriate p-decay width and pNN coupling strength
in the 0-meson equations.

There is no equivalent constraint to Eq. (22)
for the p meson. To simulate p exchange quali-
tatively a value of g, was used as determined
from Eg. (14) with I', =100 MeV and M =765 MeV
the width and mass of the p meson. The criterion
for g,„[with g",„determined by Eg. (20)] was
that the resulting central potential. be of similar
strength to the central simple p-exchange po-
tential (see Fig. 11 of Ref. 8).

We must take the p-meson spin into account
when renormalizing the pNN coupling constant
with diagrams analogous to Fig. 6. The term
proportional to R(0) in Eg. (20) will. vanish as it
will have a q' factor due to the P state of the two
pions, and Fig. 6 is evaluated at q'=0. The cor-
rection term M, 'ReIB(M ') will remain, as it
corresponds to the mass renormalization, but
this is only 0.05 for g, =+5.94 as determined
by the p-meson width. Hence g ~= g~~= + 4 in
order to obtain a simple scalar-exchange potential
of the same magnitude as the simple p-exchange
central potentials. With g« = g~~= 5 the contri-
butions of Figs. 8(b) and 8(c) are of the same order
as that of Fig. 8(a). Of course, spin and isospin
effects will modify all three diagrams and may
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well enhance the ratio of Fig. 8(a) to the others,
but a full calculation along the lines of the present
o-meson cal.culation is needed in order to de-
termine whether the corrections to simple p ex-
change are important.

Pion-pion scattering, insofar as it is mediated
by o-meson exchange, has contributions from
both Fig. 25(a) and Fig. 25(b), each of which in-
cludes the bubble sum. " The first diagram con-
tributes only to the I =0 pion-pion state, but the
second diagram contributes to al. l three isospin
states T.he q' dependence of Fig 25.(b) is given
by Eq. (11), while the contribution of Fig. 25(a)
has an m' dependence (m is the barycentric mass
of the pions) given by Eg. (11) with 6'-m'.

At least p exchange must be added to obtain a

model of pion-pion scattering. A short-range
interaction may be treated approximately by a
subtraction adjusted to give the correct I = 0, J = 0
scattering length. Such a model would predict
an I =2 scattering length and an m' dependence
determined by the behavior of the modified prop-
agator.
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