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A general method for constructing explicit representations of the Pomeron propagator in the presence of
several dimensionless parameters is developed. Three cases are presented: the introduction in the bare
Pomeron of a cutoff in k, the calculation of the angular distribution for elastic scattering, and the
investigation of the behavior of the total cross section when the intercept of the renormalized Pomeron is less
than unity. It is found that in the one-loop approximation a perturbation expansion of the Pomeron
propagator in powers of the bare triple-Pomeron coupling constant is valid at intermediate energies, provided
that the intercept shift is evaluated nonperturbatively. It is also found that the first-order correction to the
asymptotic behavior of the angular distribution for elastic scattering is fairly small.

I. INTRODUCTION

After the work of Abarbanel and Bronzan' and of
Migdal, Polyakov, and Ter-Martirosyan' demon-
strated the applicability of the renormalization-
group approach to the problem of finding the as-
ymptotic behavior of Green's functions in the
Qribov Reggeon calculus, the problem remained
of finding explicit representations of these Qreen's
functions and thereby calculating quantities of
physical interest. For example, one would like to
be able to calculate not only the asymptotic power
behavior of hadronic cross sections, but also
terms which describe the rate of approach to this
limit. One would like to be able to exhibit not only
scaling laws, but also explicit forms for angular
distributions.

A method for finding an integral representation
of the Pomeron propagator was introduced by Sugar
and White, ' and developed and generalized by
Frazer and Moshe' and by Abarbanel, Bronzan,
Bartels, and Sidhu. ' The method consists of de-
riving differential equations for Green's functions,
in which the differentiation is with respect to the
dimensionless parameters of the theory. These
equations can be integrated to yield integral rep-
resentations for the Qreen's functions.

In this paper we confine our attention to the Pom-
eron propagator. The Pomeron propagator was
analyzed in Refs. 4 and 5, as a function of both
F= lns and of k'= —t. We extend previous work in
the following directions: (i) We avoid the & =4 —D
expansion, which was used in all the papers re-
ferred to above. By remaining in the physical
number of dimensions, D= 2, we avoid the ambig-
uities and gross approximations of the & expansion.
However, we do not go beyond the one-loop approx-
imation, which is the most serious limitation of

the present work. (ii) We are able to discuss not
only the asymptotic angular distribution, as in
Ref. 5, but also the finite-energy corrections, as
in Ref. 4. (iii) Working at D= 2 we are able to in-
vestigate more fully the nature of the infrared
singularity at J= 1 and to determine the limitations
imposed by this singularity on the validity of the
perturbation expansion. (iv) We develop a tech-
nique for investigating the dependence on additional
variables, working always at D=2 (in Refs. 4 and 5
additional variables were investigated, but in the
6 expansion). Three examples are discussed: the
dependence of the total cross section on a cutoff
in k', the angular dependence of the elastic cross
section, and the dependence of the total cross
section on the renormalized Pomeron intercept.

The organization of this paper is as follows: We
begin in Sec. II with a discussion of the Pomeron
propagator at k'=0, in the absence of a cutoff or
any other additional parameters. Although this
section is primarily a review, it serves to intro-
duce our notation and a few new technical features.
For example, the discussion is simplified by rec-
ognizing that it is unnecessary to renormalize the
slope parameter n,' when one is working only at
k'= 0. At the end of Sec. II we discuss the pertur-
bation expansion of the representation developed
for the Pomeron propagator. In agreement with
Sugar and White' we find that the intercept shift
(difference between bare and renormalized Pom-
eron intercept) cannot be evaluated perturbatively.
More positively, we find that one can use pertur-
bation theory to evaluate the Pomeron propagator,
provided that the intercept shift is evaluated non-
perturbatively and provided that

~

1 —Z~&E» a
quantity which determines the basic energy scale
of the theory. Translating this into statements
about the total cross section as a function of Y
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=lns, it means that at energies Y~ ED
' perturba-

tion theory should be valid, whereas for energies
Y» E, ' asymptotic formulas based on the re-
normalization-group analysis should be valid. Our
estimate of the energy scale agrees with that of
Ref. 5, ED '= 5-10, which places the transition
region (between perturbation theory and the as-
ymptotic region) at Fermilab and CERN ISR ener-
gies.

In Sec. III we discuss the effect of a cutoff in k'
on the Pomeron propagator at k'=0. Such a cutoff
is physically resonable and is necessary if per-
turbation theory is to be well defined at D = 2. We
use this simple case to describe the method for in-
troducing new variables in the problem. We find
that in our approximation the critical exponents
depend on the new variable, a dependence which
can be shown to be absent in the exact exponents.
We then use a simple approximation which elimi-
nates this problem.

In Sec. IV our method for incorporating addition-
al variables is used to investigate the 0' depen-
dence of the Pomeron propagator. Here we find
new complexities in the integral representation for
the Pomeron propagator. These can be reduced to
tractable form by a proper choice of variables.
We then are able to study the k' dependence of the
Pomeron propagator (a quantity related to the
angular distribution in elastic scattering} in a, man-
ner which combines the desirable features of the
calculations given in Refs. 4 and 5. The asymp-
totic form agrees with Ref. 5, if the critical ex-
ponents are evaluated in the e expansion. In addi-
tion we find the leading finite-energy correction.
In Sec. V the method is applied to the problem of
the noncritical Pomeron with intercept n~(0}& 1.
Since this problem is formally almost identical
to the problem of the k' dependence, the results
of Sec. IV can be used with very little modifica-
tion. One finds that for 6= n~(0) —1 small and
negative, the behavior of the total cross section
as a function of Y is modified by the introduction
of a new energy scale ~&

~

'. For Y&E, ' pertur-
bation theory is applicable, as discussed above.
For E, ' & I'&

~

6
~

' the usual renormalization-
group "asymptotic" result of a total cross sec-
tion rising as a small power of Y is applicable,
whereas for F&~&~ ' a simple renormalized Pom-
eron pole dominates. Although present data can
probably tolerate such a situation, the intercept
gap b would have to be quite small, ~b, ~&0.01.

II. THE SINGLE-POMERON PROPAGATOR
ATD=2 AND k2 =0

We begin with the simplest problem, the calcu-
lation of the single-Pomeron Green's function

G"(E,k'} in the absence of a cutoff or any other
additional parameters. As usual' we write

$Z'& &(E jP) —z[G& &(E yP)P

= E —n,'O' —Z(E, k')+ 54. (2.1)

and we impose the condition that the Pomeron
intercept lies at J=1,

r"'(0, 0) = 0. (2.2)

Under these conditions one finds that the intercept
renormalization 54 is not well defined at D = 2.
Both ultraviolet and infrared divergences are
present. The ultraviolet divergences are not
physically interesting, since they are a result
of oversimplification of the k and E dependence
of the theory. Although this problem can be re-
moved by the introduction of a physically reason-
able cutoff, such a procedure introduces the com-
plexity of an additional parameter. Deferring
discussion of the cutoff theory to Sec. III, let us
first consider the usual procedure of dimensional
regularization, working at arbitrary space di-
mension D and setting D=2 at the end of the cal-
culation. However, we shall not, expand in pow-
ers of &=4 —D.

At D=2 no divergences remain after the inter-
cept renormalization indicated in Eq. (2.1). If we
introduce, as usual, the quantity

Z,-'(E) -=—„zr"(E,0), (2.3)

2

z -'=~
3 —

g6
(2.4)

(2.5)

This expression for the dimensionless coupling
constant g0'(E) shows that an expansion in powers
of this coupling constant is unlikely to be valid in
the neighborhood of E=0. Later in this section
we shall find the region of validity of the pertur-
bation expansion in powers of g,. In order to dis-
cuss the neighborhood of E=O we follow what is

it follows that Z, (E) is well defined even at D = 2.
It is therefore advantageous to work with this
dimensionless quantity, developi. ng representa-
tions for it. Finally, when we integrate Z, (E) to
find iI""'(E, 0) we shall be able to study the nature
of the singularities which develop. .

Now we follow the procedure of Sugar and White'
to find a representation for Z, (E}. First one cal-
culates the lowest-order contribution to Z(E, O)

which arises from the single-bubble diagram.
From this, one finds at D=2
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called the renormalization-group method, in
which one seeks a new expansion parameter g(E)
which remains small as E-0. Following Abar-
banel and Bronzan we define

z(E)=—(2p) Z 3 I' ' (E E/2, E/2;0, 0, 0)

where

c.= r(g, ')/p'(g, )

=(3 —16ln2) '

= —0.124

(2.14b)

(2.14c)

(2.6)

g'(E) =- x '(E)
(2.7)

It is unnecessary at this point, since we are not
concerning ourselves with the k' dependence, to
define a renormalized slope G.'.

In order to investigate the dependence of g and

Z3 on E we introduce the usual renormalization-
group functions,

(2.8b)

p(g)= —-'g 1— (2.9)

P -=Eeg/SE~„„, , (2.8a)

r-=ES I Z, /SEi„. .., .

A perturbation calculation in the one-loop approx-
imation yields for p the result

and p'(g, ) = 1 in the one-loop approximation.
The above numerical result, C, = —8, differs

from. the result of Abarbanel and Bronzan, C3
= ——,', because different approximations have
been used: We have evaluated C, at D=2 instead
of employing an e expansion, and we have defined
the renormalized coupling constant g in terms of
np' instead of n'. Uncertainties such as these are
inherent in the crude one-loop approximation
which we are using. A reliable evaluation of C3
and other critical exponents is one of the central
problems which must be solved before the Reggeon
calculus can provide a quantitative theory of high-
energy scattering. In this paper me regard C3 as
a parameter, calculations of which have yielded
values in the range from about ——,', to ——,'.' The
best present estimate' is C, = —0.22.

Integrating Eq. (2.3) and using Eq. (2.14) we find
for the Pomeron propagator the result

where at D = 2

g, '/16'= (16 ln2 —3) '. (2.10)

iI" '(E, D)=JI dE (1 —;)',
p

where

(2.16)

Now the function p(g) defined by Eq. (2.8a) can
also be written in the form

2 2
~p ~p

Qpgy 16 p QpC3
(2.16)

p(g) = - -'g, d-
dgp

(2.11)

This form shows clearly the significance of the
function p(g) in defining the mapping from go to
g, as well as the significance of g, as a critical
point of that mapping. Substituting the one-loop
expression (2.9) into Eq. (2.11) one can solve for
g, with the boundary condition g/g, -1 as go-0,
to obtain the result

g = g.(I+ g.'/g, ') '" (2.12)

One then solves for Z, by recognizing that since
this dimensionless quantity can be expressed
as a function of g, Eq. (2.8b) can be expressed in
the form

r(g) = p(g) d
I z, (g) .d

dg
(2.13)

Zs = (I+ go /gi ) (2.14a)

Using Eq. (2.9), as well as the fact that in the one-
loop approximation r(g) = —g'/16p, one can solve
this differential equation with the boundary condi-
tion Z, = 1 at g= 0 to obtain

fi'4 ~(E) - E& (2.17)

is valid. For Y«E, ' it is commonly assumed
that ordinary perturbation theory in powers of gp
is valid. We shall examine later the extent to
which such an assumption is true.

To evaluate E, me require knowledge of the
bare triple-Pomeron coupling ~p. Interpreting
high-mass diffraction dissociation experiments
at Fermilab in terms of a bare triple-Pomeron
vertex, the Fermilab Single-Arm Spectrometer
Group' has found the value x,v2 =0.8+0.03.' Us-
ing the value of g, given by Eq. (2.10) and using
np'=0. 3, one finds that E, '= 6, indicating that the
transition region between perturbation theory and
the asymptotic form of the Pomeron propagator
may be occurring at ISR energies. Corrections,
such as inclusion of lower trajectories in analyz-
ing the Fermilab data, mill probably raise the
value of E, '. In Fig. 1 we compare the "exact"
propagator (calculated in the next section, using
a cutoff) with the asymptotic form, using a more

The quantity E, sets the scale for approximations
to iT ' . For E«Ep or Y 1ns»Ep ', the asymp-
totic form
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1 A E C3
= lim dx 1 — 1+ —p

~~p x (2.18)

As long as C, &0 one finds that 5~& 0 and the bare
Pomeron has an intercept at J & 1. However, as
written, the integral above diverges. Again this
divergence can be removed by a cutoff in O'. The
result is that E, is replaced by a function of E
which vanishes as 1/E for large E. Assuming
that a cutoff has been used to define the integral,
we can write for the propagator

conservative value of Ep '= 8.5.
Now we turn to the question of the perturbation

expansion of the Pomeron propagator given by Eq.
(2.15) in powers of E, (powers of ro') We see
immediately that, since the integration extends
to E=O, no expansion of the full propagator in
terms of this parameter is possible, as was
pointed out by Sugar and White. ' After we sepa-
rate out the intercept-renormalization term 64,
which is the cause of the difficulty, we shall find
that a perturbation expansion is indeed possible
f0r E & Ep In orde r to identify 5~ we note that
as E-— all diagrams with one or more loops
will vanish provided that the integrals 1 d'b are
cutoff (as we have remarked, such a cutoff is
physically reasonable). In particular, Z(—~, k')
=0 and according to Eq. (2.1) it follows that

M = lim [il'(E, 0) —E]

2.0
EXACT——A SY MPTOT I C

CO

Ib
1.5

b

1.0
5

Ferrnilab and ISR I SABELLE
IO

Y= lns

15

FIG. 1. Comparison between the total cross section
obtained by using the first two terms of the perturbation
expansion, the Sommerfeld-Watson transform of the
representation (3.24), and the asymptotic form of that
representation. See Table I for values of parameters.

infrared and ultraviolet divergences. The infrared
complication is essential, since it reflects the
nature of the singularities we are investigating at
E=o (J=1). However the ultraviolet divergences
are inessential complications which can be re-
moved by the introduction of a cutoff. We choose
an exponential cutoff in k', a form which is both
convenient and in accord with experiment. " That
is, we replace the bare Pomeron propagator as
follows:

oo E Q

ii""'(E,0) —E —bb = —
J

dE' 1 ——', —1
1 e"

E —.n,'0' —4, E —n,'k' —~, (3.1)

(2.19)

This integral can now be expanded in powers of E,
as long as E&Ep. However, note that no perturba-
tion expansion is possible for 54. We find then,
for E&.E„ that

iI"(E,b)=E Z(E, b)+ M.- (3.2)

The condition that the Pomeron intercept lie at
J=1 now reads

We shall consider here only the case k' =0, and
write

il "'(E,o) = E+ 56+ 0(r,') . r"'(0 b) =o. (3.3)

We shall discuss this expansion in more detail
in Sec. III, after introduction of a cutoff.

We have shown that one can use perturbatio~
theory for E&Ep provided that 5h is evaluated
nonperturbatively. However, it should be em-
phasized that the perturbation series is an asymp-
totic expansion. As one would expect in a non-
linear field theory it does not converge. ' The
corresponding situation in the F= lns plane is
shown in Fig. 1, where the lowest-order bare
Pomeron approximation is seen to be valid for

III. POMERON PROPAGATOR WITH CUTOFF

As we saw in Sec. II the calculation of the Pom-
eron propagator at D =2 is complicated by both

In the one-loop approximation one finds at D= 2
that

(3.4)

where the dimensionless variable ~ is defined as

v = —bE/no, (3.5)

Z,-'(E, b) =-, il""(E,b) .

and where the function E,(x) is the usual exponen-
tial integral. Again one finds that the intercept
renormalization 54 is undefined in perturbation
theory, as a result of the infrared divergence.
As in Sec. II, we deal with this problem by analyz-
ing the derivative
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2

Z, ' = 1+ ' [(oe"E,((u) —1], (3.7)

In the one-loop approximation at D = 2 one finds
from Eq. (3.4) that

is independent of (d. The result is
-C3(co )

Z, (g, &o)= 1+

where

(3.16a)

where, as in Sec. II,

ao'(@ = —&0'/o'oE ~ (s.6)

2(~
C, (&u) = —~' ' [1—(ue"E,((u)] . (3.16b)

We also retain the same definition of g given by
Eq. (2.7), but g is now a function of both E and b.

The dependence on an additional dimensionless
parameter ~ causes very little additional compli-
cation if one generalizes the method of Sec. II by
taking partial derivatives at fixed cv. For exam-
ple, P is now defined as

p(a~)=&-Bg
BE „

In the asymptotic region E-O, the parameter
co also goes to zero. Hence the above results re-
duce to the same asymptotic expression we found
in Sec. II, as one mould expect."

The function C, (&u) is a very slowly varying
function of co, going from a value of-o.&& at co=0
to a value of —0.0V at co=. However, it has been
shown in Ref. 5 that the critical exponent C, should
in principle not depend on ~ at all. The argument
is as follows: From Eq. (3.16a) one finds that

Bg= —2gPB
&0 ~

(3 9) =
d

'»(Z, '-a'}+ ~
'

~ „„'+" i

from which one obtains in the one-loop approxi-
mation the usual result,

p = a g (1 —Z'/8, '(&)}. (3.10)

The additional complexity enters only in the fact
that g, is now a function of co,

16'/g '=s~e"E (~) —3+16e" ""E,(-,' ~)

—16e""'"Z (-' ~) (3.11)

8 1nZ, (g, v) 8E 8 lnZ,
Bg Bg „BE (3.12a)

where

r(g, ~)
P(a~) ' (S.12b)

B lnZ,r(g, ~)=& 8z'
O'P, %Py 4)

One can integrate Eq. (3.9) at fixed ~ to find that
Eq. (2.12) again holds. To find Z, (g, &u) we ob-
serve that

(3.1V)

dC, /dto = 0. (3.16)

The fact that our result, Eq. (3.16b), does not
satisfy this condition is an inadequacy of the one-
loop approximation. In other words, C, would not
be independent of ~ if one works to finite order in
perturbation theory. The approximate constancy
of C, (&o) as given by Eq. (3.16b) is as good as we
have any right to expect in the one-loop approxi-
mation. It therefore seems quite mithin the spirit
of that approximation to simply set C,(~}equal to
a constant value,

C, (ro) = c, -=C,(0) . (s.19)

where the remaining terms are nonsingular at
g=g, . However, it is possible to derive a dif-
ferential equation analogous to Eq. (3.12) for
8 1nZ, /8~. When the right-hand side of that equa-
tion is evaluated in the one-loop approximation,
no logarithmic singularity at g=g, appears. Con-
sistency with Eq. (3.17) occurs only if the coeffi-
cient of the logarithmic singularity vanishes, or

B lnZ3= —a gp
Bgo

(3.13) Looking back at Eq. (3.16b) one sees that this
approximation implies another, namely,

In the one-loop approximation one sees from Eq.
(3.V} that g, '((u) = —16m c,[1 —(ue"E,((u)] '. (3.20)

2

r (g, &u) = —
16 [1 —&ue"E,(ur)] . (3.14)

Finally, we obtain for Z,

We can now proceed to integrate Eq. (3.12) at
fixed co, since the boundary condition

where

(3.21)

Z, (0, &u) = 1 (3.15} Eo((o) = Zo[1 —(ue"E,( &u)], (3.22)
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2
'V0

nog, '(0) ' (3.23)

The method we have used to obtain Eq. (3.21)
can be applied quite generally to the calculation
of the Pomeron propagator in the presence of any
additional dimensionless parameters. In the one-
loop approximation Eq. (3.21) always results;
only the form of the dependence of g, and E, on
the parameters will vary. In Secs. IV and V we
shall discuss two more examples.

Using Eq. (3.21) in Eq. (3.6) and integrating we
finally find for the Pomeron propagator

;r'(E, b)= I dE 1
0

where

~l bEI/ctl

(3.24a)

(3.24b)

This is the representation promised at the end
of Sec. II. Since as E- —~ all diagrams with one
or more loops vanish, it follows thai

&(-,b) =0,
and therefore from Eq. (3.2)

M = »m [fr''(E, b) E]

(3.2s)

(3.26a)

=J( dE Il — " '-1
El

0
(3.26b)

Subtracting this expression from Eq. (3.24) and
deforming the contour one can write finally

tr' ~(E, b) —E—66 = Z(E, b)

dE' I — ', —
1 I

.
Js E'

(3.27)

As we discussed at the end of Sec. II, one can
see from these representations that although 5~
cannot be expanded in powers of z0', the quantity
Z(E, b) does have a convergent perturbation ex-
pansion for E&E,. In fact, the lowest-order term
in the expansion of the right-hand side Eq. (3.27}
reproduces Eq. (3.4) correctly. A numerical in-
tegration of the Sommerfeld-%'atson transform of
Eq. (3.27} is shown in Fig. 1 in comparison with
the first two terms of the perturbation expansion,
which is a good approximation up to moderate
energies, and which begins to break down only at
the highest energies presently available. The

and where E„which is equal to the E0 defined in
Sec. II, is given by

2
'V0

16p ~'c3

values of 64 [the bare Pomeron intercept lies at
n, (0) =1+ 6&] calculated according to Eq. (3.26)
are given in Table I for various choices of the
parameters. Note that our values are several
times larger than the value 5&=0.01 found by
Capella and Kaplan, using a perturbative expres-
sion. "

One can also make an asymptotic expansion of
Eq. (3.27), the first two terms of which yield the
result

o r o"-(E,Y) s (1+ (EoY) ~[ao+ a, in(E, Y)]j,
(3.28a)

where

c,'(1 —c,)a0= -' ' 1+Vy—
2 —c3 2 —C3

+ &u into + ~((1—c,)

+ ~&cot&c,

(3.28b)

c,'(1 —c,)g, =—
2 —C3

(d = bEo/Qo.

(3.28c)

(3.28d)

TABLE L The value of 5b [the bare Pomeron inter-
cept is a, (01 =1+66] for various values of parameters c,
and Ep In case (a), which corresponds to Fig. 1, the
parameters have been chosen independently, whereas in
cases (b)-(d) they have been chosen to satisfy Eq. (3.23)
with rp2 =0.32 (see Refs. 8 and 9) and up=0. 3. In all
cases we take b =1, as found in Ref. 8.

C3 g -1
0

(a)
(b)
(c)
(Q)

-0.32
-0.22
-0.124
-0.32

8.5
10.4
5.8

15~ 1

0.069
0.043
0.038
0.046

y is the Euler-Mascheroni constant and g is the
logarithmic derivative of the gamma function.

In the one-loop approximation the critical index
X is found to have the value A, = 1. The above re-
sult differs slightly from that found by Frazer and
Moshe4 in the E expansion without a cutoff, in that
a term emerges of the form ln(E, Y)/E, Y, which is
multiplied by a coefficient proportional to the
cutoff parameter b. In other words, ihe intro-
duction of a cutoff influences the rate of approach
to the scaling limit, but not the form of that limit
itself.

The asymptotic expansion is also shown in Fig.
1. The two-term expansion is a good approxima-
tion down to energies approaching the highest pres-
ently available. Using perturbation theory at the
lower energies and the asymptotic expansion at
the higher energies enables one to approximate



REPRESENTATIONS 0F THE PQMERON PR0PAGAT0R

the Pomeron propagator of Eg. (3.27) quite well
over almost the entire energy spectrum.

IV. k~ DEPENDENCE OF THE POMERON PROPERAGATOR
ATB=2

A. Representation for Z3

The k' dependence of the Pomeron propagator
has been investigated previously by Frazer and
Moshe4 and by Abarbanel, Bartels, Bronzan, and
Sidhu. ' The present work avoids the e expansion,
working at the physical value a = 2, Rnd evaluates
corrections to the asymptotic limit. As in Sec.
II„we analyze the derivatives of the Pomeron
propagator in order to avoid considering the sin-
gular quantity 54. According to convention, ' we
define

p(g h)= —— 1 — =--gf g
2 g, '(8)

where

16 (2+ ~ h+Wq)(~+ 4h —vq)
vq (-';+-,' a-Wq)( ,'+-,'h+-~q)

—5(1+-,'h) ',
with

q = —,
'

(—,' k'+ 3k+ 1) .
For Z, (g, b) one finds that

(4.7)

(4 9)

Z '(E a')= -~1'"(E,a'),8
(4.1)

where

(4.10)

—~'(E, lP)Z (E, I') = —,ir "'(E,a'). (4.2)

The second dimensionless parameter is taken to
be

We find it convenient to define the renormalized
coupling constant ~ at R more general point,

x(E k') —= (2v)' 'Z ' 'I'"'(E E/2 E/2 k k/2 k/2)

(4 3)

and to define

Again we observe that C,(h) is a slowly varying
function of A, , although in principle should not de-
pend on h at all. As in Sec. IQ we make the ap-
proximation

which implies that

g, '(h) = —16vc,(1+—,
' 8) .

Finally, in this approximation we can write for
Z3

lz = —o.'k'/E . (4 6) where
The reader may wonder at this point why we

have introduced the renormalized intercept ~'
instead of using np' as in the preceding sections.
The reason is that, in contrast to the cutoff prob-
lem, the introduction of nonzero k2 does not leave
the asymptotic solution unmodified. We shall
find that it is not possible to derive a represen-
tation for il"'(E, k') by simply integrating Eq.
(4.1) at fixed k', but it will be convenient to in-
tegrate at fixed h. Were we to define h in terms
of np' instead of n', we would encounter difficul-
ties in the integration, as we shall point out at the
appropriate point.

We can now proceed to derive a representation
for Z, (g, h) exactly as in Sec. III, by taking par-
tial derivatives at fixed k. The dependence of '
on E, which we have not yet evaluated, causes no
additional complexity at the one-loop level, since
o."= o'0+ O(g'). One finds that

(4.6)

E,(I)=E,(I+-.'I) ', (4.14)

B. Integration to find I"' '

From Eq. (4.1) one sees that one can obtain I' '

from Z3 by integration with respect to E at fixed
O'. However, this is not suitable with respect to
the approximations we have made. If we hold k'
fixed and integrate up from X= 0 we force h. to
range to infinity. From Eq. (4.12) we see that at

g~ =-~ Rlso, Rnd our RpproximRtion scheme
breaks down. This is not unexpected; Rt fixed k2

the Pomeron trajectory is not at J= 1 and there
is no buildup of singularities.

However, one can circumvent this difficulty by

Rnd where E„which is approximately equal to the
@p def ined in

Sec�.

II, is given by

2

16' np'c,
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integrating at fixed h,

, irii'"'(E, h) =, dE' =,
&0 h

(4.16}

where h is related to E and k' through the implicit
relation

Note that this choice of path enforces the boundary
condition (2.2). Changing variables one obtains nok2 Eo(h)

E E (4.22)

~iX" air'! air' ~k'
SP. „&E y 8$ 8E „

(4.1Va)

=-Z,-'(Z, h) 1-c' —,

*

)
~k (4.1Vb)

)!1'"'(E, h) = t dE'Z, '(E', h)
0

9 lllQ'
1 )zz( —h) „,] '

(4.18)

Z (h h) = (1 — "
)

'"

where in the one-loop approximation
1C~=2 Cs ~

(4.19}

(4.20)

Putting the above results together one finds that

- -ZyZO(h&
fr"'(E, h) =- E,(h) dxx '&(I+x)"

(4.21)

To evaluate this expression we require knowledge

of 0.'=Z e,'. Analogously to the procedure above,

we find that

Note that the two terms inside the square brack-
ets in Eq. (4.21}give rise to the same asymptotic
power behavior as E-0. These two terms arise
from the two terms on the right-hand side of Eq.
(4.1Va). If one adopts the apparently simpler de-
finition h, = c(ok'/E, instead of defining h in terms
of the renormalized o.', then at this point one en-
counters the difficulty that the power behavior of
the two terms in the representation equivalent to
Eq. (4.21) no longer matches and one does not see
that scaling behavior found in Refs. 4 and 5.
Moreover, performing the integration at fixed h,
instead of A one finds that the representation will
give information on the scaling functions only at
&=0.

C. Asymptotic expansion and Sommerfeld-Vfatson transform

Although the expression for il' ~ '(E, h) given in

Eq. (4.21) is the representation of the Pomeron
propagator which we have been seeking, it is not
yet in a form which is tractable for explicit calcu-
lation. However, if we seek only an asymptotic
expansion (small E) of Eq. (4.21) we can do the in-
tegration analytically, leaving only the Sommer-
feld-Watson transform for numerical integration.
Expanding the integrand and performing the inte-
gration at fixed h one finds for the first two terms
that

E &-c3
—zT"/h = (—=- [1+lz(1—c„)]/(1—c) —=(1+—'h)[c+hc +c h(1 —c,)]/(h —c )

0 0

(4.2$)

It is reassuring that, despite the seemingly dif-
ferent approximations made, the leading term in

the above equation agrees with the result found by
Abarbanel, Bronzan, Bartels, and Sidhu [Ref. 5,
Eq. (V5)j provided that c» c, and g, are set equal
to their lowest-order c-expansion values.

In order to calculate the contribution of the
Pomeron propagator to the angular distribution
we must take the Sommerfeld-Watson transform
of the propagator at fixed k' = —t; that is, we wish

to calculate

—E/E„= py, (h)+ p y, (h)+. ~ ~,
where

(4.25a)

In order to perform this integration at fixed k' we

must take into a,ccount the fact that h is defined as
an implicit function of E and k' through Eq. (4.22).
Again, this can be made more tractable by an ex-
pansion at small E. Since it will prove convenient
to change the variable of integration in Eq. (4.24)
from E to h, we solve Eq. (4.22) by iteration to
obtain the form

j p ++$00

E(I', k')=- . [ZI"(E,k')j 'e s"dE.
~h[Q $ 00

(4.24)

(+hk2/E )1/(1-c(h)

y, (h)=h' "~ "(1+—,'h) '
q, (h) = y, '(h)(1+ —,

' h)c /(c —1) .

(4.25b)

(4.25c)

(4.25d)

-=:. " '.—.. .':"=z.'.=-h:1 .:hF . M .. hhh h''«-'aWW. 'm '-:. ~ .' WA " Zc . h:.Chh* " "mZ '~K4~~ hz f=:=WC~
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Q/Q phl/ fc~-I &(1 + 2 h) c~-/ (c~-i )
0 (4.26)

One easily sees, as pointed out in Ref. 5, that the
apparent singularity at E= 0 disappears when one
takes into account the fact that h -E ' as E-O.
Moreover, the singularity at h= —2 is mapped to
E=. The leading singularity in the E plane for
k'&0 is a moving (as a function of k') pair of com-
plex conjugate branch points which arise from the
singularities of h(E). Although it is not in general
possible to invert the mapping specified by Eq.
(4.26) to display the singularity explicitly, we can
locate the singularity by calculating the derivative
dh/dE. One finds that this derivative fails to ex-
ist at the critical point

(4.27)

The resulting branch points in the E plane are
shown in Fig. 2. The lowest-order amplitude
given by the first term of Eq. (4.23) also has a
pole, located at

h= ho=
1

c —1 (4.28)

We find, using Eqs. (4.26)-(4.28), that the lead-
ing branch point and the pole do not satisfy the
familiar relation

o,(t) = 2m~(t/4) —1 (4.29)

unless c =0. (This conclusion differs from that
of Ref. 5.) However, this should not cause con-
cern; Eq. (4.29) is the position of the two-Pomer-

Note that this expansion is in effect a small-p
expansion, and therefore limits us to small values
of k'.

Let us first discuss the Sommerfeld-Watson
transform of the leading term of Eq. (4.23), keep-
ing only the leading term in Eq. (4.25a),

on cut, and is recovered if one makes a pertur-
bation expansion of Eq. (4.21). The full amplitude
is doing its best to go beyond perturbation theory,
and the cuts we find should be regarded as singu-
larities which are trying to approximate the effect
of the sum of all higher-order multi-Pomeron
cuts.

The contour shown in Fig. 2 is inconvenient for
numerical integration. Fortunately, it maps in
the h plane into the relatively simple contour
shown in Fig. 3, which enables one to write

E(1', k')= "{' E, ( ),1"(1 —c,) (4.30)

where the scaling variable x is defined (following
Ref. 5) as

x=(pE, F)' ' (4.31)

&(1 —c,)h, 1 Im fo(h, x)
h —ho

—Re fo(ho+ it, x) (4.32)

where

f (h, x) = —„[&p,{h)]'3(1+-,' h)'~ y, {h)exp[&q, (h)],

]—x 1 / (1-c+)
9

p, (h) =1 —c —,'h(1+-,' h) ',

(4.33a)

(4.33b)

(4.33c)

and where y, (h) and y, (h) are given by Eq. (4.25).
Again, this result agrees with Ref. 5, Eq. (81),
provided that the e's are given their lowest-order
a-expansion values. The function E,( )ixs shown
in Fig. 4(a).

The second term in the asymptotic expansion of
E(F, k') can be found similarly. The result is of
the form

and where E,(x), normalized such that E,(0) = 1, is
given by

/

~c ~o

FIG. 2. Singularities of the asymptotic Pomeron prop-
agator [first term of Eq. (4.23)] in the complex E plane
for k~&0, for the case c~ =-0.1. Crosses show location
of poles.

FIG. 3. Singularities of the asymptotic Pomeron prop-
agator in the complex h plane. The cross at 50 shows the
location of the pole, and the point h~ denotes the image of
the branch points in the E plane.
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E(Y, A') = '
( E,Y) '~[E,(x) + E,(x)( E,Y) 'c,'(1 —c,)/(2 —c,)], (4.34)

where E,(0) =1. The integral expression for E,(x) is shown below and the numerical results are displayed
in Fig. 4(b):

E,(x) =Iz,'I (I —c,) —,I ' I(x),(2 —c,)

)
1 " f,(h) —f,(Iz,) f (Iz) —f (Iz, ) —f,'(Iz, )(jz —Iz,)

(4.35}

—Re[y4()z, )fo(h, )+ f,(h, )]+ —Im[p~(h, )f,'()zo)+ f,(Iz,)] ln ' + —Im 2 f,(Iz,) (4.36)

where

f,(a, x) = f,(I,x)+ f,(a, x)y, (a),

f(h, x)=(f(A, x) (rp(h)+c, '~ +
~

h '„+ '—((1+-', h)q, (h)),
(p, (Iz) c y, (Iz) c

(4.37a)

(4.37b)

y, (Iz) = —', , (p, (Iz)(l+ —,'Iz)[c,+ c,Iz(1 —c )+bc ],1 —c„) 2 —c,)
(4.37c)

(4.37d)

and where fo(k, x), y, (Iz), p, ()z), and y, (h) are
given by E(ls. (4.25) and (4.33).

The contribution of the Pomeron propagator,
E(I. (4.34), to the angular distribution of a 2-2
process is given by

d(x [ p, (t)p, (t)]'
dt 16p

(4.38)

where the Pomeron residue functions p, (t) are.
arbitrary functions of t. In order to see how much
of the observed angular dependence in high-energy
p-p scattering might be attributed to the Pomeron
propagator, we have set the residue functions
equal to constants and have adjusted the param-
eters of the theory (E„c&,') within reasonable
Limits imposed by theoretical and experimental
uncertainties. Comparison with experimental
data is shown in Figs. 5(a)-5(c}.

Although the qUalitative resemblance between
the data and our calculated Pomeron-propagator
contribution is remarkable, we have neglected
many effects which would have to be considered
in a careful phenomenological treatment. In Eq.
(4.35) only the imaginary part of the amplitude
has been included. A rough estimate of the real
part shows this to be negligible near t = 0.'~ Non-
enhanced graphs must be considered, as well as
the possibility of important four- (or more-}
Pomeron couplings. Finally, we have no justifi-
cation for believing in the validity of our approxi-
mations out to the large values of t in Fig. 5,
where the parameter p of E(I. (3.40b) is no longer

small.
One new feature has resulted from the evaluation

of the correction term E,(x): Note that E,(x)
drops very steeply to zero at x=0.OV. This re-
sults in a sharpening of the angular distribution
at small t, qualitatively similar to the behavior
of the data. However, the coefficient of E,(x) is
too small by an order of magnitude to account
completely for this effect with the values of the
parameters we have chosen.

zr "'(E, 5,) = E Z(Z, 5,) 5,+ 5~, (5.1)

with the condition that the Pomeron intercept lie
at J=1 when 5, =0,

zr"(0, o) = o. (5.2)

That is, the new parameter 5, measures the dis-
placement of the bare Pomeron intercept from the
critical value which results in a renormalized in-
tercept a~(0) =1. Again we define

Z,-'(Z, 6,) =,Z zr "(Z, 6,), (5.3)

V. POMERON INTERCEPT 0|~~0~(1
The method developed in Sec. IV for investigat-

ing the k' dependence of the Pomeron propagator
can be applied with very little modification to the
formally similar problem of the subcritical Pom-
eron, that is, the Pomeron with intercept n~(0) & l.
The Pomeron propagator at, k'=0 is modified from
the usual form given in Eq. (2.1) to the form
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and, in parallel to the definition of n' in Eq. (4.2),
we define a renormalized intercept parameter 5,

E, 5 )Z '(E, 5 )=6 f1 "(E,6 ). (5.4)
0

The renormalized coupling constant ~ is defined
at the point

z(E, 6) =(2 )' 'Z, ' 'I"'(E E/2, E/2;k=0, 5 ),
(5.5)

with the dimensionless coupling g given by

IO

IO

10

U

IO

)
x'(E, 6)

~r@0
(5.6)

IO

IO

We shall be concerned with calculating Z, and Z,
where

IO

5 = 5oZ~. (5 'I)

The dimensionless Z's are now functions of the
two dimensionless parameters g and p, where

IO
I

IO

I

I2

p = —45/E. (5.8)

Again proceeding just as in Secs. III and IV we
write IO-l

(5.9)

In the one-loop approximation in perturbation
theory one finds that

2

(1+~ap) '

and, as usual,

(5.11)

where

IO-

IO—

IO

IO

(b)

16v/g, '(p) = 16 ln
2+p 6
1+p 2+p

' (5.12) IO—

Proceeding as above one solves Eq. (5.10) to find

+ 2 - -C&(p)

Z, (g, p)= 1+
gy kP)

where

2(
(5.14)

IO—

IO—

-8
IO

IO 12

Again it is possible to show that C,(p) should
be independent of p. The expression above is in
fact a slowly varying function of p, varying from
C,(0) = -0.124 to C,(~) = —0.20. We again make
the approximation of setting C,(p) = C,(0) = c, .
Then Eq. (5.14) implies the approximation

(5.15)

FIG. 4. (a) The square of the asymptotic scaling func-
tion E&~(x) [Eq. (4.32)]. The values of the parameters
are c3=-0.25, Eo = 0.2, and eo-—0.45. (b) The square of
the first correction term E& (x) [Eq. (4.35)] to the as-
ymptotic behavior of the Sommerfeld-Watson transform
of the Pomeron propagator. The values of the parame-
ters are the same as in (a).
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FIG. 5. Comparison between the ISB data, the differential cross section obtained by using the asymptotic form
do/dt ~5'~(F, k~) [Kq. (4.30)J (dashed curve), and the two-term asymptotic expansion dg/dt o-E~(F, k~) [Eq. (4.34)] (solid
curve) for (a) Ms=23 GeV, (b) Ms=53 GeV, and (c) vs = 63 GeV. The values of the parameters are the same as in Fig.
4(a).
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Finally, in this approximation one has for Z3 where

&.(p) "
(5.16) 0 ( E F)l-cg4O

6 ~ 0
0

(5.22)

where

(5.17)

and where E,(x) =E,(x) is given by Eq. (4.32), ex-
cept that c —c, and the pole position h0 should be
replaced by p„where

Eo = —ro'/16 proc, . (5.18)
4

6
(5.23)

Comparing these results with Eqs. (4.12)—(4.15}
one sees that they are identical if one identifies
A with p. We can therefore apply the results of
Sec. IV, suitably reinterpreted, to the solution of
the problem of the noncritical Pomeron. How-
ever, there is one point at which a difference
occurs. If we proceed as in Sec. IVB to integrate
at fixed p to find F"'(E,p) we find instead of Eq.
(4.21) the result

zr"'(z, p) = E,(p)
~E /E (p)

dxx '~(1+ x)'3

x ].+ — ].

Note in the final brackets the factor p/4, instead
of the factor h which appears in Eq. (4.21). Note
also that in this and all other formulas the critical
exponent c is replaced by the exponent c,. In the
one-loop approximation one finds that

For large Y the cross section falls off approxi-
mately exponentially with increasing rapidity Y,

or(Y, 6,) -e (5.24a)

at a rate which can be found from the pole term
to be

(6 /E )1 (~ ~&)(1 —c )(1+c )c~/(1 c6)-

(5.24b)

The results of this calculation of the Pomeron
propagator for 60&0 are the same as those found

by Abarbanel et al." There are three important
rapidity domains. For E0 '& Y one can use pertur-
bation theory in the sense described in Sec. II.
For E0 '& Y&4 ' one finds essentially the same
results obtained in the case of the critical Pomer-
on. This is apparent from the "uncertainty prin-
ciple" which indicates that at rapidity Y the reso-
lution in the Z plane is of order 4 J= 1/1'. For
Y& ~ ' the renormalization-group analysis still
holds but the renormalized pole dominates.

C6= —C3 &
(5.20) VI. CONCLUSIONS

(1 —c,}(E,F) '&

I' 1 —c, (5.21)

in contrast to Eq. (4.20).
These small differences between the present

problem and the problem of k' dependence treated
in Sec. IV have a major effect on the structure of
the J-plane singularities of the Pomeron propaga-
tor. We shall analyze in detail only the asymptot-
ic form of the propagator and we shall assume
that 6&0 [intercept o.~(0) &1]. The effect of the
factor p/4 in Eq. (5.19) is to move the pole onto
the positive real axis in the E plane. The branch
point also moves onto the real x axis, and the
singularities appear as shown in Fig. 6. This is
in accord with one's expectations that a pole
should be the leading singularity when the Pomer-
on intercept is less than unity.

Although the movement of the pole away from
the branch cut simplifies the numerical evalua-
tion, the expressions found in Sec. IV are formally
almost unchanged. The asymptotic form of the
cross section is given by

We have developed, in Secs. III and IV of this
paper, a general method for constructing explicit
representations of the Pomeron propagator in the
presence of additional dimensionless parameters,

I

I

I

I

I

I

I

IJ
1

I

I

I

I

I

I

Y
I

I

FIG. 6. Singularities of the asymptotic Pomeron prop-
agator in the complex E plane for the case of a renormal-
ized Pomeron intercept e&(0) & 1. The figure is drawn
for the case c6 ——0.2.
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and have applied the method to three examples:
the introduction of a cutoff in k', the calculation
of the angular distribution of the Pomeron-prop-
agator contribution to elastic scattering, and the
investigation of the behavior of the total cross
section when the renormalized Pomeron inter-
cept is slightly less than unity.

The representation with a cutoff in k' permits
investigation of the regions of validity of the as-
ymptotic and perturbation expansions. We find
that in the one-loop approximation, a perturba-
tion expansion of the Pomeron propagator in pow-
ers of the bare triple-Pomeron coupling x, is
valid, provided that the intercept shift is evaluat-
ed nonperturbatively, and provided that

~

1 —J
~

& E,. In terms of rapidity Y= lns this means that
for Y&E, ', the perturbation expansion is valid,
whereas for Y&E, ', one can use the asymptotic
expansion. We expect the same results to hold in
general, although perturbation theory will lead to
an asymptotic (for small ro) rather than a con
vergent series expansion of the scattering am-
plitude for Y&E, '. The most recent measure-
ment of x, combined with our one-loop calculation
of the fixed point g, ' yields a value Ep 6, with
uncertainties of the order of a factor 2. It seems
that the transition region between perturbation
theory and asymptotic expansions very likely lies
in the Fermilab and ISR energy range. We em-
phasize that the existence of an energy region in
which perturbation theory can be used —a con-
clusion which is nontrivial in the presence of the
infrared singularities of the theory —is necessary
if we are to be able to identify the parameters of
the bare theory with physically measurable quan-
tities.

The determination of the parameters of the the-
ory by comparison with measurements at Y & E, '
requires a formidable phenomenological effort,
including many effects not considered in this pa-
per, such as nonenhanced graphs, more general
interactions, and multiloop diagrams. The im-
portance of nonenhanced graphs and more general
interactions is greatest at low energies, whereas
the one-loop approximation is best at low ener-
gies. From Eq. (2.12) one sees that

g'(E) Eo
g~ E+ Eo

At E=Eo the effective coupling constant squared,
g'(E, ), is only half as large as its asymptotic
value g'(0) = g, '. Quite possibly the one-loop ap-
proximation is useful at ISR energies, even though
it has been found not to be quantitatively reliable
at asymptotic energies.

The problems considered in Secs. IV and V, the
k' dependence and the subcritical Pomeron lre-
normalized Pomeron intercept o,~(0) &1], are
qualitatively different from the cutoff problem of
Sec. III. The cutoff introduces a type of dimen-
sionless pa.rameter, ~= —bE/n, ', which we might
call an irrelevant parameter. That is, it has no
effect on the asymptotic limit. As E-O, ~-0,
and all quantities return to the values taken in the
absence of the cutoff. In other words, the solution
is driven to the same stable fixed point, and the
absence of dependence on the cutoff is an example
of Wilson's universality. " On the other hand, the
k' dependence and the subcritical Pomeron intro-
duce "nontrivial" parameters. For example, the
quantity 5 introduced in Sec. V is a measure of
how far the Pomeron intercept lies below unity.
The corresponding dimensionless parameter,
p = —45/E, is nontrivial in that it does not leave
the asymptotic behavior unaffected. The limit
E-0 does not force quantities to their values in
the critical theory with 5 = 0. In other words, the
fixed point is unstable with respect to variations
in the bare intercept.

Physically, the absence of a stable fixed point
for the subcritical Pomeron is to be expected: At
asymptotic energies the leading singularity is a
simple renormalized Pomeron pole. Since there
is no buildup of singularities, and no critical
phenomenon, the asymptotic solution should not
be characterized by an approach to a fixed point.
It is nevertheless possible to extend the method
developed in Sec. III for an irrelevant parameter
to the case of nontrivial parameters. The trick
is to form the integral representation of the prop-
agator by integrating with the appropriate chosen
dimensionless parameter held fixed (fixed k or p,
not fixed k' or 5). The result for the subcritical
Pomeron is that for sufficiently small 5» the
displacement of the bare-Pomeron intercept below
its critical value, there exists a large energy re-
gion Ep & Y&4 ' in which the asymptotic solution
found for the critical case is still valid to a good
approximation. Qnly for Y&& ' does the behavior
change to that of a simple renormalized Pomeron
pole. Since a value of 4 much larger than 0.01
would be difficult in fitting the rising cross sec-
tion observed at the ISR, it is sufficient at today' s
energies to treat the Pomeron as critical, even if
it should eventually turn out to be subscritical.

Our results on the k' dependence for the leading
asymptotic behavior are in agreement with those
of Abarbanel, Bronzan, Bartels, and Sidhu' pro-
vided that we set our critical exponents equal to
their e-expansion values. This is not too sur-
prising since, although we work at D= 2, just as
in their case we do not go beyond the one-loop
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approximation. In addition we have calculated
the first correction term to the asymptotic be-
havior coming from the Pomeron propagator. The
fact that this correction is small for reasonable
values of the parameters is certainly encouraging.
However, the remarkable similarity between the-
ory and experiment should not be taken too seri-
ously because there is not good justification for
including only the Pomeron propagator at ISR
energies. It should also be noticed that we have
neglected the k' dependence of the particle-Pom-
eron couplings.
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