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Self-consistent quark bag in three space dimensions*
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A schematic model of a quark bag with scalar gluons is considered quantitatively in three space dimensions.
Stable spherically symmetric solutions of c-number self-consistent bag equations are obtained numerically. The
structure constants of hadrons are calculated as functions of the coupling constant and the gluon mass. Good
agreement of absolute values of the proton magnetic moment and the bag mass with experiment is found.

The forces between the quarks are not under-
stood. Bardeen et a/. have suggested' that the
structure of hadrons may be described in a model
theory in which the forces between quarks are
mediated by scalar mesons (SLAC quark bag). In
our model we adopt the simplest choice for the
Lagrangian Z of the interacting quark-gluon sys-
tem and investigate the properties of solutions in
the large coupling constant, g'» 10, limit:

Z=e(y P-m, )e--.'(ec bc+1'4')+gcÃe, (1)

where 4' is the quark field, all quarks have mass
m„and p, is the mass of the scalar gluon field.

Our investigations differ in two essential points
from those of Befs. 1-3: (1) We discuss the quark
bag quantitatively and obtain actual solutions by
extensive numerical studies in the physical space
rather than in a one-dimensional space; (2) we
choose the gluon potential U(C ') = ——,

'
p, 'C ' and show

that in the physical space the existence of the
quark bag does not critically depend on an inherent
nonlinearity of the gluon field but is rather a con-
sequence of the quark-gluon interaction.

Following Ref. 1 we reduce the q-number theory
to the associated t."-number bag model by consider-
ing an. expectation value of the Hamiltonian belong-
ing to Z. Our trial state It) is formed in the di-
rect-product space of mesons and fermions from
a localized, coherent meson state'~ I c) and a
quasifermion state' '

I f). We work in the zero-
average-momentum frame of our trial state' and
obtain for the dominant term

M&",
&

'=-(f ~II ~t)

d'x g(-)~*(P';[o'. p+P(~, -gg, )] P;)

We understand the resulting c-number function
M as the quark-bag mass. The subscript N
stresses its dependence on the number of quarks
present in the bag. M is a functional of the mean
meson field &f&, =(i I C I f) and of the quark wave
functions g, = (t I b tg

I t ).

N is 3 for the (qqq) baryons, and 2 for the (qq)
mesons. Each g,. is normalized to unity. We solve
the self-consistent set of Dirac and Klein-Gordon
equations following from variation of M, Eq. (2),
subject to the normalization (3) for the lowest-
positive-energy state. With (dropping henceforth
the indices i, e)

(4n)' 'xP~(r) = (u(x), 0, iv(x)cosy, -iv(y)singe ")
(4)

for the spin-up state and a similar wave function
for the spin-down state we find

u' —x 'u —(~n, —gQ+ E,)v = 0,
—v' —~ 'v+ (m, —gP —&,)u=0,
-~ '(~gy)" + p'gy=Ng '(u' v', ) ~ '. -

(5a)

(5t )

(5c)

All radial quark densities are equal, even if dif-
ferent spin states are occupied. The (-) ~ sign and
the sign of the negative-frequency scalar density
cancel each other. Therefore all sums over the

We note that M, Eq. (2), is a bounded-below
functiona, l of fP;, Q,) since P; are eigenmodes of
the Dirac field. The negative-frequency modes
become positive-energy antiparticle states in con-
sequence of the normal ordering of anticommuting
fermion operators. This gives rise to the factor
(-)~~; P = 0 for positive-frequency modes and P = 1
for negative-frequency modes. We consider Eq.
(2) as the basis of our investigations.

The model defined by Eq. (2) is not to be taken
seriously as an ultimate phenomenological de-
scription of the hadrons, which would perhaps in-
-clude other mesons than the scalar gluon and a de-
tailed treatment of the internal quark variables.
However, it appears to provide a useful test case
for the investigation of the consequences of quark
bags in three-space dimensions, in particular,
their hadronic structure.

The normalization of the quark wave function g;
is
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quark wave functions reduce to N times a single
term in Eq. (5c) for an arbitrary number of quarks
and antiquarks in the bag. For large x Eqs. (5
decouple; the spectrum of the Dirac equation is
of the usual type with bound states for m, &E,&

—rn, and the continuum solutions elsewhere.
The coupled nonlinear Eqs. (5) have been solved

numerically for various values of g', p.. Assum-
ing a form for (g@)o, we obtained uo and so from
Eqs. (5a) and (5b). Then (gp) was calculated by
solving Eq. (5c). The above steps were repeated
until a self-consistent solution emerged. A solu-
tion is characterized uniquely by the choice of
N g and g and can be obtained from differ-
ent starting functions (gP), . To prove stabili y
of our solutions it would be necessary to shorn that
M is increased in second order by arbitrary varia-
tions of P, with u and v chosen to give the least
posi ive L ~g ~t E, L ~& The necessary constrained varia-
tion calculation requires a major computational
effort and has not been carried out in that form.
However, a larger number of 6g were chosen at
random and the change in M was positive in every
case. A separate investigation of nonradial solu-
tions has shown that the spherical solutions are
stable against deformations. In passing me note
that our self-consistent solutions are stable soli-
tons of relativistically invariant field theory in
three space dimensions. '

In Fig. 1 we show some of the typical solutions.

The self-consistent quark mass m*= m, -g is
graphed for several values of the gluon mass and
coupling constant. For p, =0.04nz and p, =d = 0.02m
we also show the radial vector [pv= g~g/(4w)] and
scalar [p~ = P(/(4n)j densities (in Fig. 1 pz is en-
hanced by a factor of 10 in relation to p„). For p,

of the order of the bare quark mass, m*(r) has a
pronounced minimum. For coupling constants
smaller than those considered here, i.e., for
'~ 10 we have also found solutions that wereg ~ )

evenly distributed over the volume, in contrast
to a conjecture made in Ref. 1.

In Fig. 2 the masses of the bound states M, »
are given as functions of g' for the gluon masses
of 0.4yyg„0. 1m„0.02m, . We see that smaller
gluon masses give considerably smaller bag
masses. As g rises we find a point g,' such
that

2 M&.~& p, a'&a. '(p)

Beyond this point quark bags are stable against
annihilation into a gluon. We also found that M&»
can be made arbitrarily small (in units of m, ), a.s
' is increased, for fixed gluon mass p..g i 1

H
'

g calculated the wave functions we can p ro-avlng
e millceed to evaluate the hadronic structure. We mi

use as an example the SU(6) classification and an
extra internal quantum number —color —in
which the baryonic wave functions ar e antisym-
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I.O p,&
———— vgx dh M&» .

3 0
(7)

We consider also the axial-vector coupling con-
stant g~ of the neutron decay process'

0.8 jg„= —' (u' ——,V') dI .
3

0
(8)
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FIG. 2. The mass I&&& of the bag in units of the quark

mass for several quark states [baryons (M=3), mesons
(N = 2), and exotic baryons Pl = 6)] as a function of the
coupling constant g2 for values of the gluon mass
p 0 02mq 0 1mq 0 4mq
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metric. ' Introduction of color excludes all colored
states from the spectrum. ' As was shown in Fig.
2, we have found weakly bound exotic colorless
states. When more complicated interactions are
included in our model, those may easily become
unbound.

Since we do not know the absolute value of the
bare quark mass m„which fixes the scale in our
model, we may consider only quantities that are
scale independent. The most prominent ones are
the products of the rms radius of the baryons and
mesons with their masses [Figs. 3(a) and 3(b)].
The experimental number to compare with for
baryons is, most likely, the product of the proton
charge radius, 0.8 fm, with the average mass of
the 56 multiplet, M~5= 1280 MeV, which is 5.2 [II c].
We see that this lies well within values spanned by
our calculations.

We can also calculate the absolute value of the
magnetic moment of the proton, using as the basic
unit eK/2M„c. Scaling up the experimental value

- to account for the larger multiplet mass than that
of the proton, we obtain for comparison with Fig.
3(c) a value uP'= 2.79(1280/938) = 3.8. p~ was
calculated from'
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FIG. 3. The structure constants of SU(6) hadrons as a
function of the coupling constant g2 for values of the gluon
mass p=0.02m, O.lm, 0.4m . (a) The product of the
mass of the baryon with its size ((x ) l' ). (b) The same
as in (a) for mesons. (c) The magnetic moment of pro-
tons. {d) The axial-vector coupling constant g&. {e) The
ratio R~ of the energy (momentum) carried by the quarks
to that carried by the neutral glue.
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Here we do not expect a, good agreement with the
experimental value, g„'"'= 1.25, since the axial-
vector current is nonconserved in all models with
massive bare quarks. The results are shown in
»g. 3(d).

Another interesting function is the ratio R, of
the mass of the baryon carried by the charged
quarks to that carried by the neutral glue. From
deep-inelastic experiments it is believed that this
number is of the order of unity. In our model we
have

M(~) =NE+(I+A+ ) i

and using Zqs. (5) and (2)

(Qa)

2E
a-

f (u2 „2)d (9b)
0

In Fig. 3(e) our results are shown: 1&8,~ 2. For
the SI.AC bag' R, = 2 and for the MIT bag' A, = 3.

The strongly bound solutions show very small
expectation values of the quark mass m*= m, -gP
in units of M&». We find„ for example, for the
bag with p= 0.02 m, shown in Fig. 1 that the ef-
fective quark mass m„« ——fm*p„d'x to be
0.013M&»=17 MeV. Empirically one needs a
number around this magnitude to explain the mass
splitting in the 56 multiplet. '

Finally we mention that the hadronic structure

constants are not independent of each other. We
can express the matrix element for p~ with the
help of Eq. (5) in terms of g„,

p„= (0.5+ 0 3g„. )N(1+8„') .

Furthermore, the deeply bound solutions satisfy
E =—(x') 'i2 Therefore

which implies for 56 baryons that B„=1.4, if we
want a bag of the right mass and size. Prom Eqs.
(11) and (10) we find for protons

which suggests that if we want the right value of
the magnetic moment„ then g„will be -0.7.

The above qualitative discussion shows the inter-
correlation of the hadronic structure. There is
a Priori no reason that our self-consistent solu-
tions yield the correct hadronic structure. A sur-
prising characteristic of our model is that our
solutions have the desired properties. We have
studied several other self-consistent bag models
and found significantly worse phenomenological
behavior.
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