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We investigate the efIIects of adding a set of 1 gauge fields to a chiral SU(4) )& SU(4) cr model of the 0 fields.
Special attention is given to calculating the entire mass spectrum with the choice of symmetry-breaking terms
which transform as the smaller-dimensional representations of SU(4). Hadronic currents and some vector-
meson decays are also discussed.

I. INTRODUCTION

The discovery' of narrow 1 resonances in the
3-4 GeV range has increased the speculation that
SU(4) rather than SU(3) might be the symmetry
structure of the hadrons. To further investigate
this possibility we wish to consider adding a set
of 1' gauge fields to a previously discussed' SU(4)
o model. '

The extension of the SU(4) v model in this man-
ner' allows for a large number of possible sym-
metry-breaking terms which can then lead to an
extremely complicated Lagrangian. In our case
we have assumed that all symmetry breaking oc-
curs in the 0' potential terms, and that the possi-
ble symmetry-breaking terms themselves trans-
form as the smaller-dimensional representations
of SU(4). Thus, all the terms involving the gauge
mesons are chiral-invariant. We then calculate
the vector and axial-vector mass spectrum and fit
the q, q', g" masses. Assuming renormalizability
of the potential we then calculate the pseudoscalar-
and scalar-meson masses. As a check of the
model, we also calculate various two-body vector-
meson decays. Hadronic currents which can be
used in weak decay models are also calculated.
The f„/f„ratio is compared to the experimental
results using the standard Cabibbo scheme.

II. MASS MATRIX

The model of Ref. 2 is described by

V„=—. g A.[(M):+(M'):]

with

+2 B~ M, M b+ M,"M b,
a, b

(2.4)

ga, =o.

I, =TrMM

I = TrMM MM~,

I3 = TrMM MM MM

I4 ——TrMM MM MM MM

I, =detM+detM

In analogy to the basic SU(3) o model, Vs~ is
taken to be a simple linear and bilinear combina-
tion of M,' and (M"),. Since M,' transforms as
(4,4*) and (M ),' as (4*,4), the linear term is pro-
portional to (Mt);+M', . The coefficients of these
terms can be considered as analogous to "quark-
mass terms. "

The bilinear terms are of the form +~M,'(Mt)~
+H.c. and Q„M~M', +H.c. The first of these trans-
forms as (1, 15)+(15,1) and it has been discussed
in Ref. 2. The second term transforms as (10, 10*)
@ (10*,10)+ (6, 6) (see the Appendix for further de-
tails). This is the bilinear term to be used in this
paper since its irreducible representations are of
lower dimension than those of the Mt(Mt)~~ term.

Thus V» is then

g =-2 Tr(8~ Ms~ Mt) —V,

where

(2.1)
As in Ref. 2, we define the "ground state" as

V =Vo+V»,

M~ =$t+ i Qt,
(M1')b $b i yb

(2.2)

and $,' is the 16-piet of scalar fields and Q, is the
pseudoscalar 16-piet. V, is the most general poten-
tial without derivatives of the following chiral
SU(4) x SU(4) invariants:

($1) 65

cy~ = (y2, g~ = Q2, Bj —B2 .
It is also convenient to define

(2. I)

where ( )0 indicates that the enclosed object should
be evaluated at its classical equilibrium point. As-
suming isotopic spin invariance for the entire
Lagrangian, we have
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Q=Q~ =Q2~ w =
~

w
Q I Q

Q Q
(2.8)

We then add the gauge fields' to Eq. (2.1) in the
usual manner. We replace 8„by its covariant de-
rivative S„and we add a spin-1 kinetic Yang-
Mills' term E~,. We also add a chiral-invariant
term which, after a spontaneous breakdwon of
symmetry, will yield masses for the gauge par-
ticles. The Lagrangian (2.1) then becomes

2 =-2 Tr(g)qiVISq M ) —2 Tr(E'„,E'„, +E"„,E"„„)

(X )2 1
g' (n(( —n()

a(( 4m2 (Vb)

lg(n. —n&)
'b 2m(v.')

g(n, +n, )
2m(A.')

where

—Vo- Vsq+RI, (2.9)
m*(v'(= —''(

( (~~ '~ ~)
(2.13)

Q~ M =8~ M —igl~ M+ igM&„,

S~ M =8~M +igM /~ —i~~Mt,
lq

——2 (Vq +Aq),

rq ——,'(Vq -Aq),
E'„„=8 „1„—9,1„—ig [I„,l, ]

E"„„=s„r„—s,~„—i g[r„,r„],
Z, =-C Tr(l„Mr„M )

2
——Tr(lplqMMt +r„r~M M) .

(2.10)

m'(A,') = —(n, + n, )'1 2 2g +D —C

Here m(V,') and m(A,') are the masses of the ap-
propriate vector and axial-vector mesons.

The mass terms for the gauge mesons are usual-
ly added by a term

Here V& and A& are respectively the vector and
axial-vector gauge fields. The constants A„B„
C, D, and g are to be determined later.

As in Ref. 2, we expand (2.9) in normal coordi-
nates where

s =s+(s), (2.11)

We then identify the coefficients of second-order
terms as the masses of the mesons. After the
substitution of (2.11) into (2.9) we find that it is
necessary to redefine the vector and axial-vector
gauge fields in order to eliminate terms propor-
tional to V„B~S and A„S„Q. After this is done it is
then necessary to "renormalize" the scalar and
pseudoscalar fields so that the coefficients of the
kinetic terms are all -2. The physical fields, de-
noted by the tilde, are then given by

rn, ' Tr (V„V„A+„A„), (2.14)

TABLE I. Input values (Ref. 9) and mass predictions
for the spin-1 mesons. All masses are given in GeV
with experimental values in parentheses.

Quantity Prediction Quantity Prediction

but Cl yields a more realistic mass spectrum' than
does (2.14). In fact, from (2.13) we see that if we
identify (1/W2) [(V& )', —(V& ),'] =p(0.780), (V& ),'
=C (1.020), (V„),'=4(3.095), and (I/v2)[(A„)',
—(A „)',] = p„=A, (1.04), the rest of the spin-1 mass-
es can be calculated. They' are listed in Table I.

The p and ~ are degenerate as are the pA and ~A.
The chiral invariance of V, gives Ward-type iden-

tities among some spin zero masses. These can
be obtained by referring to Eqs. (2.7)-(2.11) of

1 -b -b
4a

~ob eb

(v„).' = (v„).'+ "a„(s).',
ab

(A„)!=(A„).'+ " s„(0).',

(2.12)

m
p
(0.780)

m g(1.020)

m, , (3.095)

mp (1.04)

my*(0. 892)

m~*(1.24?)

Input

Input

Input

Input

0.914

1.206

m& (1.42?)
A

m of:

mr+
mD+

A

my*

1.359

2.477

2.479

2.831

2.933

4.127

where



MASSIVE GAUGE FIELDS IN THE SU(4) o MODEL

Ref. 2 and noting that we are now dealing with the
"renormalized"' fields S and Q. Thus

B Pm'(S, ) = —,
BS,' BS',

m'(y') =
B2V'

sy.'sy; }. (&.&)' n. —~&

x[2(&.-&o) —(n. + &n)(B. —B~)l (&»).
1

(Z„)' o., + o.,
x [2(A, + 4,}+ (o..—n, )(B, —B,)j (n g b)

By referring to Eq. (2.13), we see that

~11 ~18 ~22 ~ 33 ~44 ' (2.16)

(2.15)
The mass-squared matrix for the four neutral

pseudoscalars (w', q, q', q") is just

B2+

9(gsp o (Z )

Q, Q, Q4

Q~ Qj

~A.
U

Qj Q~Q@

Q2 Q2

-UQ2Q4

Q~ Q2 Q4

Q~ Q3

—UQ~Q~

(2.1V)

-UQ, Q,

where

Bv
BI5

(2.18)

2~ =(Z„) m (w')
Q

and

2~ =(Z,') (1+w)m'(K) r —m'(w')
Q ~~ Vf'

K —1— (B —B )(Z )2 3 1 (2.19)

From (2.13}we see that

(~) =1 30'
m(p)

This is just Eq. (3.3) of Ref. 2 with the substitution
of 2/(Z„)' for the factor 2 multiplying the matrix.
By Eq. (2.15) we can identify

BP . B2V'

11
0 1 1 p

we note that the renormalizable Vp is just

Vo =[V, —(I,),V„jl, +2V„(X,)'+V2I, +UI,

(2.22)

(w')' =0.0182 GeV',

(K )' =13.60(w ),
(q)' =16.54(w')',

(q')2 = 50.35(w')',

where for brevity, the particle mass has been re-
placed by its symbol. Equation (2.15) tells us that
with the exception of m'(S,') —= m'(z), this is all we
can calculate. From (2.17) we see that the q-7l'
-q" mass matrix does not depend on the value of
B„and from (2.15) chiral invariance gives no
information on the masses of the I = 1 scalar me-
sons. Thus, as an additional condition we shall
assume that the potential V is renormalizable.
%'ith the notation that

and

(~) =3 968
m )

(2.20) (2.23)

The additional information comes from the sta-
bility equations

We can then use the method described in the Ap-
pendix of Ref. 2 to calculate the mass of the q" in
terms of B, —B, and (Zw/Z, ), using as additional
input,

BV B V Bgs~

which take on the explicit form

(2.24)



M. SINGER

n, (V + 2 V, n, '}+n, n, n, U = A, —B,n, ,

n, (V, + 2V, n, ') + n, nmn„U = A, —Bsn, ,

n, (V, +2V n, ') +n, n, n, U =A, -B,n, .

(2.25a)

(2 25b)

(2.25c)

and from the trace of (&'V/&S; e S', )0,

From Eqs. (2.16) and (2.25) we now see that

~'(S,') = —
}, [(V, +B,) +6V, n' —mw'Un'],

(2.28)

~w — — +Un m ——~e +(B —.8 }3

K 3 ' l
V +B =---

l l sv —1

~- —(B —B ) —Un'm' ~ ——
o. uNVn ——

2 (1 —w')

Thus if we identify the I =1 scalar mesons with
the 6(0.965), we can fit most the scalar and all the
pseudoscalar masses since (B,—B„)and (Z, )' are
now determined by the masses of the & and the q".
The quantity B, can be calculated through Eqs.
(2.5) and (2.25). Along with the masses of the
mesons, we can also calculate the g-q'-q" mixing
angles. Again as in Ref. 2, we let

q cosy 0

0

siny 0

—siny 1 9 0 cosx —s iQx 0 '/zan

0 0 cosa —sim sin& cosx 0

cosy 0 sin 8 cosz 0 0 I 'gy~

(2.29)

0 0

1 1 2

We ve ve

0 0

(2.30)

the analysis in the Appendix of Ref. 2. It tells us
that the mass of a large q" is extremely sensitive
to the value of A, /n, so that if we set (Z, } by the
6(0.965), then by (2.19) a slight change in (B, —B,)
will drastically change the value of q". This is
also shown in Table II. By (2.15) a slight change
in (B,—B,) will not appreciably effect the mass of
the ~.

%'e now turn our attention to the I =0 chargeless
scalar mesons, the 0'-o'-0". These are the scalar
analogs of the g-g'-q". Explicit differentiation of
the renormalizable potential V shows us that

Values of meson masses and the q-g'-q" mixing
angles for some specific choices of q" are listed
in Table II.

For each choice of q",

an

(Z~)' = 0.390 (2.31)
L ngf

(2.33}
and rn(z) =1.11 GeV, both independent of the spe-
cific choice of q". Furthermore, (2.13) and (2.20)
tell us that

Reference to (2.V} and (2.13) tells us that

ll 12 22 ~33 X44 (2.34)

(z,/z, )' =1.o1.5, (z, /z, )' =1.262,

(Z, /Z, )' =1.196, (X„)'=O.981,

(X,4)' = 0.763, (X~4)' =0.810.

(2.32)

Again, we can understand this by referring to

All the parameters above except V» are known
for various choices of g". For completeness we
shall identify the S*(.993) with the u'. Then using
the same formalism as was used to calculate the
q-q'-g" masses, we fit the value of the g" to
various choices of the g". In all cases, the mass
of theo was about 0.728 QeV. Again, thecr mass
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TABLE II. Masses, mixing angles, and some system parameters for various choices of g".
In all cases m(~) =0.965 GeV, m(i) =1.11 GeV, and (&~) =0.390.

m( rj") m(D) m(F) m(D $ ) m(F$)
(GeV) (deg. )

B3—B)
(Zr)'

[units of m (r )]

2.80
3.05
3.40
3.53

1.90
2.20
2.61
2.76

1.97
2.26
2.64
2.78

2.79
2.86
2.96
3.00

2.85
2.91
3.00
3.04

—11.9 0.28
—11.9 0.24
-11.9 . 0.19
-11.9 0.17

0.90
0.75
0.59
0.54

—8.495 10
—8.498 00
-8.50043
—8.501 04

is relatively invariant under changes in the g"
mass since it does not depend onB4. The mixing
angles x$, y$, and z$ are the exact scalar analogs
of the x, y, and z mixing angles. The results are
listed in Table III. We note that if m(q") &3.40 GeV,
then m(o ")& nz(q ), contrary to the usual expecta-
tion.

III. CURRENTS AND VECTOR-MESON DECAYS

In addition to calculating a mass matrix, we can
also use the basic Lagrangian to calculate hadronic
Noether currents. These currents can then be
used to test various models of current-current
hadronic and semileptonic weak interactions. In
the case of the Lagrangian in Eq. (2.9) the vector

(V.„).' =(~v +~"")'

(A„.).'=(&„'.—&",u)'

(3.2)

After substituting in the physical fields of equa-
tion (2.12), the currents become

current (g„), and the axial-vector current (8„),
are

(~„).' = —i [n„y, yl.' —i [u„s,s].'

—i [A p p, A p]g —i [Vq „,V„],

(3.1)

(a„).'=(~.~, s].'-(~„s,~].'
—i[A~y, V„],—i[Vip, A„j, ,

where

(&p) = i(&a & )Xeas&S —
2 (a~ —&q) (V&)~

ix„x.,

+ ~ ~ ~

and (3.3)

(+„)a = (~n + ~a)Za»„ks —
2

(o'. + ~~)'(A„).'

I

Z I
S+sPQ~ Zzb —Fo~(A++(Ry) —s&S 4 X~+~~+'L —Az~(cvz+txy) ]'c (~acZcb '" ' ' 2

p', BqS, X,g' —i —&,p(a, +a~) —sqp', S, Z„' ——I'„(a,+a~)
ac cb

+ ~ ~ ~
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m( g") m(0") x q

(CeV) (deg. )

V((e2

(Z7I)
I. units of m2(&0)]

TABLE III. Mass and mixing angles of the 0" and sys-
tem parameters for various choices q". In all cases
m(0') =0.993 GeV and thus m(0') =0.728 GeV.

where 6~ is the Cabibbo angle. If we let' sin8~
=0.230, then' by (3.5)

f»/f, = 1.163 and f, = 0.99m())'). (3.6)

Independently from (2.20), (2.30), and (3.4), we
see that

2.80
3.05
3.40
3.53

3.13
3.17
3 23
3.25

13.6 3.30
13.6 3.16
13.6 2.97
13.6 2.90

7.37
7.02
6.59
6.42

11.65
11.40
11.15
11.05

From (3.3) we can identify the pseudoscalar de-
cay constants as

f /f, = .'(I+w-)Z /Z,

= 1.162,

f~/f, = —,'(1+w')Z~/Z,

= 2.790,

f./f, =-'( )Z./Z,

= 2.884.

(3.7)

f, =2nZ„

f» = n(l +w)Z»,

fD = n(1+w')ZD,

f~ = n(w +w')Z».

(3.4)

x(l -[m(p, )/m(K}]']2

Assuming the usual Cabibbo scheme' for weak
decays and using the explicit currents of (3.3) we
see that

G2
I'(K-P v) = —sin'(ec ) (f»)'m'(((() m(K)

The f»/f, ratio comes out in remarkably good
agreement with experiment. We also see that
SU(4) is more seriously broken in the values for
f, andf,

In addition to the calculation of hadronic cur-
rents, we can also use the simple phenomenologi-
cal Lagrangian (2.9) to calculate in the tree ap-
proximation some simple two-particle decays of
vector mesons. Specifically, we wish to calculate
the width of a vector meson which decays into two
pseudoscalars, such p-gg. In general, such a
width can be written as

and

G2
I'(m - p, v) = — sc'o(e }(cfog)' m(p) (m)v

x/1 —[m( p, )/m(w)]'j',

I'(v,'yfy:)= &, v, 3 p lT(v.'y„'y;)l', (3.8)

where k is the momentum of a daughter particle in
the rest frame of the parent. For our specific
Lagrangian

gQ I T(va»&c)l —
16(z ).(z ).

[1 —(Z, )']m'(p„)m'(V', )(n, + n, )(n, + n, )
2m'(W', )m2(a,')n'

, [m'(p~)+ m'(p)](n. —nb)(n. + n.) -4m'(p)(n. )'
2m'(A,')n'

(~'(P, )+~'(P))(~b —~.)(& +~.) —4~*(P)(~5)'

j2m'(A,')n' (3.9)

=—4.56 (3.10)

Using the values in TaMes I and IT. , and also
(2.13), (2.20}, (2.32), (3.4), and (3.6), we see that

m (Pg) Z2(1 Z 2)
2

which are close to the experimental values'

I', „,(p-m)) ) = (150+ 10) MeV,

I„...(K+- K~) = (49.8+ 1.1) Mev,

I', „,(Q -KK) = (3.4 a 0.4) Me V.

(3.12)

Assuming, for example, that the m(q") = 2.80 GeV,
we then calculate that

1, „,(p-g)) ) = 124 MeV,

I'(
q

q(K* K7(')= 50.7 MeV,

I'q,
q )(Q -KK) = 4.3 Me V,

(3.11)
I',.„,(&~-Dm) =135 Mev,

I'„,~„(E* DK) = 22.1 MeV.
(3.13)
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A, /n = 0.196m'(m'),

A, /n = 6.53m'(m'),

A, /n = 328m'(m'),

B,= 16.53m'(ma),

B,= 13.22m'(m'),

B,= —46.28m'(g 0),

U~ g = —0.587m'(m 0).

(3.15)

The values of zo and co' in (2.8) and (2.20) are
not changed. They depend only on vector-meson
masses.

It is interesting to note that even though the sym-
metry of the vacuum as measured by zv and se' is
not too badly broken, the "quark masses" are in
the ratio

A~ A3 A4 1 33 1681

while the B's, the coefficients of the quadratic
term, are in the ratio

B,:8,:B = 1.25:1:—3.50.

IV. COMMENTS

(i) The vector and axial-vector mass spectrum
generated by S~ is in reasonable agreement with
the limited experimental data that is available.
Since Zg has the full U(4) x U(4) symmetry, we find
that the p and ~, and p„and co„are degenerate. For
the pseudoscalar mesons, this problem is allevi-
ated by the addition of a term proportional to I,.
The I, term breaks U(4) x U(4) to SU(4) x SU(4) and
thus creates the "U(1) problem. "" This suggests
a possible method to break the p-(d degeneracy:

The suppression of the E*decay as compared
to the D* rate is almost entirely due to phase
space. The same holds true for the p and K*rates.
Since the Q is pure (V~)'„ there is no Q-mq de-
cay.

Note added. A candidate for the D meson has
recently been found at m(D) = 1.87 GeV [G. Gold-
haber, Berkeley colloquium (unpublished)]. Since
we only need one new pseudoscalar-meson mass
to specify the other meson masses, we have in-
verted the previous procedure and used m(D) as
input. Thus with m(D) = 1.87 GeV, we obtain

m(q") = 2.78 GeV, m(F) = 1.94 GeV,

m(F g) = 2.84 GeV, m(D g) = 2.79 GeV, (3.14)

m(z) = 1.11 GeV, m(5) = 0.965 GeV,

and x = —11.9', y = 0.29', z = 0.92'
At this point it may be interesting to look at the

symmetry-breaking parameters: the A' s, B's,
and U. We thus have

Add a new U(4) x U(4)-breaking term Z~g to Zg,
namely

1 abed1
~r = —

4) & &eggs

(Ie fy Ms~~n+~' r~ Mtg~a)
2 d Vg Pb (4.1)

(summation convention).
This only compounds the problem. One would

like to keep all the symmetry-breaking terms
strictly in the spin-zero-meson potential terms.

(ii) The scalar and pseudoscalar mass spectrum
of this new a model seems to be more reasonable
than the mass spectrum of the old model. First,
in this model we can see from Table IG that
m(F)&m(D). The old o model gave the opposite
result. We get this new result because of the
"renormalization" constants Z~ and Z~. From
(2.15) we see that the masses are inversely pro-
portional to the Z's, while from (2.32) we see that
Z~ &Z~.

Second, from this new model we see that the
g-g' mixing angle is always —11.9', while the old
a model, the angle was an order of magnitude
smaller. This new value of the g-g' mixing angle
x is in agreement with the original Gell-Mann-
Okubo" (GMO) value of —10'. This is remarkable
since the o model does not generate masses by
any GMO-type term. This —10' mixing angle is
also important in the observed electromagnetic
decays of the g and the g'."

Third, the masses of the new mesons E and D
are much lighter in this new model. This is again
caused by the renormalization constants Z~ and
Z~. Still they are both greater than —,m(P). In
particular, if the mass of the g" is 2.80 GeV, then
Table II tells us that both the E and the D are under
2 GeV. In a recent neutrino-induced dilepton ex-
periment, "the results were consistent with the
decay of a particle with a new quantum number and
a mass between 1.5 and 2 GeV.

(iii) The calculation of the fr/f, ratio and the
vector-meson widths shows the consistency of the
model. The only input data were masses. The
parameters of the theory, ze, zv', A„B„C,D,
and g, were all fitted to those masses. The fact
that these new quantities fz/f, and the widths came
out so near their experimental value is remark-
able. It then seems highly reasonable to assume
that the model will also predict the decay con-
stants and widths of the new particles.

The reason for these good results in the 0 mod-
el with gauge mesons seems to lie with the vector
mesons themselves. The only "hard" evidence of
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a new quantum lies in the g(3.095). If we assume
that V» transforms as (4, 4*)$(4*,4) only, then
V cannot be renormalizable and still fit the g
mass. If we do not assume renormalizability, then
there seems to be little that can be said about the
scalar masses. More serious than this is the fact
that in such a model (Z,)'= 0.0946, and thus
I'(p-mw) = 0.390 GeV, and f„/f, = 1.21. Thus the
addition of vector mesons to the original 0 model
caused us to reexamine our original V» and in-
clude the necessary extra term.

APPENDIX

Consider the chiral SU(4) object H;„'=T;V~ (a, . . . ,
0= 1, . . . , 4), where T~ and V~ both transform as
(4, 4*). The upper (lower) index denote the 4 (4*)
SU(4) index

II is a reducible representation. Using the stan-
dard Clebsch-Gordan SU(4) series for the direct
product of irreducible representations, we have

4 x 4= ]O(96,

4* x 4*=10*@6

and thus

(4, 4*) x (4, 4*)= (10, 10*)6 (6, 6) 63 (10, 6) 6 (6, 10*).

Decomposing H into its irreducible parts we have

Ht, „'= 4(T;V—~+ T„'V;+T~V~+ T'„V',) ~ (10, 10*)

We now note that for a tensor to be an irreducible
representation, it must have certain symmetry
properties and be traceless. Thus, for example,
to examine the SU(4) properties of the (6, 6) part
of H, we see tha, t (repeated indices here denote
summation)

(6, 6)» [T~V„—T~V~ —TfV~+T~V; —, 5f(TyV—~—T„Vy —T~V„+T~V~) j ~ 20

+ 8VV(T~V' —T~V~e) ~ 1,

where 20, 15, and 1 represent the SU(4) representations generated. The same procedure can be applied to
the other irreducible components of H.

Thus, the quadratic part of Vss in (2.4),

a M' ' M' '+M'Mb
a, b

tra. nsforms as (10, 10*)EB (10*,10)8 (6, 6) under chiral SU(4). The 15-piet in each of these irreducible parts
can be obtained by subtracting the trace. Applying this concept to the symmetry-breaking terms also, we
have

B,=O.

A more general symmetry breaker can be constructed by removing the trace condition. This will give a
16-piet in each of the irreducible parts of the quadratic V»."
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