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We consider induced second-class nucleon currents in a light-quark model generated by unequal u and d
quark masses. The effect produced by gluon vertex corrections is strikingly large without confinement effects.
Restricting the quarks to the limited spatial region of a physical nucleon changes the energy scale from the
quark mass to the quark-bound-state energy and thereby reduces the second-class form factors well below

their first-class counterparts.

I. INTRODUCTION

The results of recent angular correlation mea-
surements in the g decay of some light nuclei have
opened a new chapter in the tortuous history of
second-class weak interactions. The experiments
of Sugimoto e? al. on the mass-12 system and the
experiment of Calaprice et al. on the mass-19
system support the existence of second-class
currents.” 2 In contrast, the experiment of Nathan
et al. on the mass-8 system does not find a com-
parable second-class effect, in agreement with
older experiments on this system.3® The ex-
perimental situation is, therefore, in a very un-
settled state.®

It is well known that second-class currents are
alien to conventional quark models with degenerate
u and d quark masses.” However, it is not clear
whether an appreciable second-class current can
be induced in a model in which (m,— m,)/(m +m,)
is of order unity. Such a mass relation has been
suggested by Leutwyler® and can also be accom-
modated in the MIT bag model.® In this paper we
examine the second-class currents induced by
gluon-exchange effects in a model with low, un-
equal quark masses. In Sec. II, we consider in-
duced second-class current matrix elements taken
between free-quark states. In Sec. III, we consider
the modifications due to confining both quarks and
gluons to the interior of a physical nucleon. Sec-
tion IV summarizes our results. In the main body
of the text, we shall neglect the Cabibbo admixing
of the d and s quarks in weak interactions. We
shall comment on the induced second-class cur-
rent effects in ] AS]: 1 B decays in the summary.

II. SECOND-CLASS CURRENTS WITH FREE QUARKS

The weak charged- current matrix element be-
tween # and d free-quark states canbe expressedas

lf}.

(u I]B(O) ld> =ﬁ[75 (fv“‘f,q 75) + (q‘a /zm)(fs +fp'}’5)
+1054(q%/2m) (fy+frpys)1d, (1)

where # and d are the 4-spinor functions, and
q =p,— P, is the momentum transfer. The G parit-
ies of first-and second-class vector (axial-vector)
currents are, by definition, even (odd) and odd
(even), so that in the limit of equal quark mass only
fs and f are second-class form factors.
In this section, we consider the form factors in

a weak-interaction theory of the conventional

type, in which the quarks are coupled to the

charged intermediate-vector-boson field by

L (%) =2, 0u(6) v (1 + 7 Yp(x) W (%) . @)

The strongest quark interaction is assumed to be
with a massless Yang-Mills field (gluon) whose
coupling is

L (%) =g PNy (0)Af(x) ®3)

where i is the color SU(3) index. The strong cou-
pling constant is assumed to satisfy g2/4r=0.5
at a subtraction point characterized by the mass
scale p2<1 GeV? in accordance with the ideas of
asymptotic freedom'® or the MIT bag model,® so
that it makes sense to treat L perturbatively.
We shall distinguish between 2, and m, but will
otherwise ignore electromagnetic interactions.

’
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FIG. 1. Feynman diagram for the gluon-exchange
correction to d—u +w~. The wavy line is a gluon.

2343



2344 A. HALPRIN, B. W. LEE, AND P. SORBA 14

To first order in g, and zero order in g,
fvr=f4=1 and the remaining form factors in Eq.
(1) vanish. To second order in g,, we have the
gluon-exchange correction shown in Fig. 1. The
second-class form factors generated by this dia-
gram can be calculated without renormalization
difficulties by standard methods. After Feynman
parameterization and some algebraic manipula-
tion, the integrals for f¢ and f;; can be written as

?fm --2ig? [ ledZZdZS(dz;;};
X6(1=Z,~Zy— Z)F;H"S,
€Y
where
j=SandII,

and
H=k*+q*Z,Z,—- m*(1 - Z)?
- 2mAmZ,(1- Z,) - (Am)*Z,(1- Z,) +ie,
Fg=2m[2Z,(Z, - 2)+ (1= Z,)?+ (1= Z})]
+2Am[22,2+Z,(32,- 4)+ (1 - Z,)?
+(1-2))],
Fu=mZ (1-2,-2Z,)+AmZ,(1-2Z,-2Z,),
m=m,, m+Am=m,.
To first order in Am/2m, we find that
fs(0)/2m =~ (4a,/9mm)(Am/2m) , (5a)
F11(0)/2m = — (4ot ,/3mm)(Am/2m) , (5b)

where a =g ?/4r. Further details and expressions
to all orders in Am/m, together with Am #0 cor-
rections to first-class form factors, are given in
the Appendix.

In addition to fy;, the gluon-exchange mechanism
therefore generates a nonzero f;, which violates
the conserved-vector-current (CVC) hypothesis.
This is a consequence of our assumption that
m,#m,, and is experimentally acceptable, since
the present experimental tests of CVC are essen-
tially restricted to the first-class current.”

We now turn to the analogous nucleon form fac-
tors, g and g,;, associated with neutron 8 decays
through the #» - p second-class current matrix
element

(p|7220) |n) = (@2M) T )(q g s +10500°S 1%y »  (6)

where u, and #, are free-nucleon spinors and M
is the nucleon mass. Ignoring quark-confinement
and gluon-exchange effects between different
quarks within a nucleon, the nucleon form factors
are given by

da, M\ Am
50 =52 (%) 3o (72)
_ 4a, M Am
£ul0 == 52 o (7b)

If we use quark masses like those suggested by
Leutwyler,® say m,=4 MeV, m,=6 MeV, and if
we use a,=0.5, then g,,(0) =+3g,(0)=-11. Such
a value of the tensor form factor, g;;, is com-
parable to the weak-magnetism term, as sug-
gested by the experiments of Refs. 1 and 2.

III. EFFECTS OF CONFINEMENT

In this section we estimate the effects of con-
fining quarks and gluons to a nucleon of finite size.
The estimates are made within the framework of
the MIT bag model, but we believe they are sub-
stantially model-independent. The effects are of
two types. The first is the generation of a second-
class current to zero order in @, which owes its
existence not only to m, #m,, but also to the
mixing of upper and lower components in the
transition matrix element and reflects the rela-
tivistic nature of light quarks. The same phenom-
enon allows zero-mass quarks to produce a non-
vanishing nucleon magnetic moment to zero order
in a,.'"* The second type of confinement effect
consists of those modifications of the order a;
terms of Eq. (7) that result from quark and gluon
confinement.

We begin by reminding the reader that the nu-
cleon magnetic-moment form factor, g,(0), can
be expressed in the Breit frame as

2,0

o

U}8U,(27)%6%(0) = f (b | X V(F,0)[pd*r,
(8)

where V, is the vector current field operator,
|p;) and |p,) are initial and final zero-momentum
nucleon states, and U is a two- component spinor.
The analogous expression for the second-class-
current tensor coefficient, g.;(0), is

igII(O)
2M

UL, (2m)°6%(0) = f (p,|TALF, 0) | pydr ,
(9)

where A, is the axial-vector current operator.

In the rigid sphere approximation to the MIT
bag model, the lowest-energy single-quark wave
function is given in the rest frame by®

i(w+m>l/2jo(kr)U

=re| ' @ (10)

1 _‘/4—" w—m 1/2 ’
-(£52) e su




where
N2=j,(RR)*R*[2w(wR - 1) + m]/w(w - m) .
(11)

U is a 2-spinor, and j, and j, are spherical
Bessel functions. R is the bag radius, and w is
the single-quark energy which is related to 2 by

w= (B2 +m2)t/2, (12)
The eigenvalue equation for the wave number is
tankR =kR[1 - mR - R(¥% +m?)/2] ™", (13)

The wave function has been normalized to
fq*qd31’= 1. Thus, to zero order in a,

(0) 0
g%M(—L 70" (7)Y ysq(r)d>r
N2 Am R . .
== — 3o (kr)i, (v)dr
Am N? R*

=TT4_B3 <cosZB+2——23-B sin2B ) ,
(14)
where we have introduced
B=EkR.

In the above, we have ignored the difference be-
tween the energy of a quark when it is in a neu-
tron bag as opposed to a proton bag. The second
line of Eq. (14) shows the cross term between
upper and lower components of the nucleon. For
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m < w=400 MeV, R=(200 MeV)™, we find

g11(0) =~ Am/w, so that for Am equal to a few MeV,
g is very small. This zero-order second-class
effect is, therefore, not of any practical interest
at the present time.

For the calculation of confinement effects on
order-a, terms we can neglect the non- Abelian
nature and it will be convenient to treat the quark-
gluon interaction in the radiation gauge, where we
can write the interaction Hamiltonian as'?

H=H"+H®,

H® =~ (ara ) ? [ Femn o) K dx,
(15)

H§2)=% f w*(x)Kiw(ﬂi)¢'£y)K¢¢(y) d3xdd.
IX-yI

The associated old-fashioned, time-ordered per-

turbation diagrams are of two kinds: @, modifica-

tions of a single quark within the bag, and modifi-

cations involving more than one of the three

‘quarks. Representative examples are shown in

Figs. 2 and 3. Self-energy insertions have been
omitted, since we are using the “physical” quark
mass.

We single out Fig. 2(a) as the lowest-energy
intermediate-state contribution to the single-
quark vertex correction, when intermediate
quarks and gluons are in their lowest modes, and
the bag within which they are contained is at rest.
This contribution to g(0) is given by

G — ; _ _ - -
g¥oU }m U;=%g? f Y7.(2)Y 00 (2)T 0 9)Y°Y 60 0o( ¥)T 0o (¥)y ‘9 (%) G} (2)G ¥ (0)ky (ko + E )t d3x d Py d 3z |

where E, is the W-boson energy and %, is the
energy of the lowest gluon mode in the cavity.
The gluon wave functions are'®

G (D) =V X FY (0, ), (k7)
=N, [Bim — ¢(|m|cos6 - 6,,sinb)]j,(kr)ei™®
and (17)

N, =2 2T (L | )7 R 5o 6RY R RY

so as to normalize to

-

iij;,*(r,t)aitG,’;(r,t)d”r:ém,,,

(16)

where
Gl(r,t)=Gi(r)e ot
Here the smallest wave number is k=k,=2.73/R.

Since the y-dependent factors in Eq. (16) are iden-
tical to those appearing in the evaluation of

/
Ve
/
/ 7
/
d u_u HS RS
T ”
(a) (b)

FIG. 2. Single-quark modifications to order aj.
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(a) (b)

FIG. 3. Modifications involving quark-quark correla-
tions to order o . The blob in (b) is the instantaneous
Coulomb interaction, H (52) .

2{9(0) [see Eq. (14)], we may write

gn(O)U;ZEUi =g (0) (O)gsz

% [ 02y 0.0 ULBUZ 00 0 )

X Gl2)GE (x)ky (ko + E ) 'd°x d 2 .

(18)

We can make an order-of-magnitude estimate of
the integral by noting that the quarks are highly
relativistic, so that f gyq d3x~1. The normaliza-
tion factor for G,, implies that |G, |~ (47k,R3)™.
Thus,

S5a
gzlga)(o) ~g g)(o)-(z(')R—s)g

o)
~g1P (04 (19)

This estimate is certainly within an order of
magnitude, and provided that the a expansion of
g11(0) converges, makes it clear that setting
£11(0) =g {$(0) does not give a misleading picture
of confinement effects. To strengthen this con-
clusion, we note that a factor of g {$(0) will arise
from the ggW vertex in every diagram, including
those in Fig. 3, in which only ground- state
quarks are included; inclusion of higher modes
of excitation will produce a similar factor at that
vertex proportional to Am. "A similar reduction
of the scalar form factor, g (0), will obviously
also result from confinement.

In order to convince the reader (and ourselves)
that this result is essentially model-independent,
we attempt to modify the free-quark vertex cor-
rection of Eq. (4) without the introduction of ex-
plicit bound states. Examination of the % integra-
tion in Eq. (4) shows that the major contribution
comes from small Euclidean %® values. But con-

finement of the gluons to a finite spatial region
implies that Euclidean %k® can be no smaller than
the square of the lowest gluon bound-state energy,
k,>. We have evaluated Eq. (4) for f,,(0) with this
lower limit for %, The modification to Eq. (5b)

is essentially to replace m by 2,. Since gluons
and light quarks confined to a radius R will each
have an energy of order R™, the numerical result
obtained in this way is about the same as that of
the a, bag-model contribution. More specifically,
we find that

gl =g

Translated into coordinate space, this estimate
recognizes that the radius of the nucleon, R,
places an upper limit on the wavelength of gluons
that can communicate with quarks confined to this
region.

IV. CONCLUSION

We have shown that light-quark models of the
nucleon in which the #-d quark mass difference
is taken into account predict second-class form
factors of order MAm/m? (M =nucleon, m =quark
mass), if confinement is totally ignored. The
first effect of confinement is to replace the quark
mass by the much larger single-quark energy,
which reduces the second-class form factors to
values well below those of the first-class form
factors. The lesson to be learned is that free-
quark results are totally misleading when the
quarks are, in fact, confined and highly relativ-
istic. Finally, we note that in | AS[ =1 baryon
B decays the relevant Am is m,-m, ,, so that
here Am/w is of order unity. We expect that
gul|as|=1)/g,~gs(|As| =1)/g,~1 as a conse-
quence of a mechanism analogous to that de-
scribed here.
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APPENDIX

In this appendix we give details associated with the free-quark vertex correction of Eq. (4). As in the
analogous vertex correction inQED, the vertex diagram can, except for a color factor of ;2=18 be writtenas
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d*e -1 i i
7y . 2 — v
Au(p, ') = (- 1g) (27)* k"’-x2+iey"ﬁ’—lé—m+iey“(1+y5)ﬁ—Ié(m+Am)+i€Y

== Zig: fd4kdzié(1' Zy=Zy— Zs)'y,,(if’ -K+m)

Xy, (L+y)(B=B+m+ Am)y?[F? = N2, + ¢*Z,Z s — m*(1 - Z,)* = 2mAmZ,(1 - Z,)
- (Am)?Z,(1 - Z,) +i€] 3. (A1)

A is the gluon mass to handle the infrared divergence. Separating off the logarithmic infinity, we have

AP D) =52 [ 42,01~ 2,~ 2, - Za)['yu(1+y5)<— %+In%+ 1n%9>—%%], (A2)
where

Dy=m?(1 = Z )2+ X2 Z, + Aom(2m+Am) Z,(1- Z,) ,

D=D,-q*Z,Z,, (A3)

Ne=n[0'(1=2Z,) = Z+m] y,(L+ v )[H (1= Zg) - /' Z, + m+ Am]y”, (A4)

and 9N is a high-energy cutoff on k% Since A, is to be multiplied by free-quark spinors, N, can be written
as

N,=7,7:[2(1- Z,)(1 - Z)(~ ¢*+ m* + mAm + (Am)?) = 2(m + Am)*(1 - Z,)Z,
—2(1-Z,)Z;m?+2Z, Z ,m(m + Am) + 2m(m + Am)]
+4p,vs M Z,(1= Z,) + (m + Am)Z 2] - 4plys[(m + Am)Z (1 - Z,) + mZ,7]
+7,[2(0- Z,)(1 = Z)(- ¢®+ 3m® + 3mAm + (Am)?) — 2(m + Am)*(1 - Z,)Z,
—2Z,(1= Z,)m? - 2Z,Z,m(m + Am) = 2m(m + Am)]
+4p,[2,(1 - Zm-Z2(m+ Am)] +4p,[Z,(1 - Z,)(m + Am) - Z,*m]. (A5)
The Gordon identity and its axial-vector counterpart are (free-quark spin factors understood)
(P =), vul== 0L +D,) + Cm+ Am)y, , (A6)
(@ =), vulvs=— (DlL+DuYrs— Amy,vs. (A7)
N, can therefore be rewritten as
No=7,[-2(1-Z,)1-Z)¢?+2(2- (1 - Z2)* - 2(1 - Z,)) (m + Am)m + 2Z, Am?]
+ ¥, Ysl= 201 = Z) (1= Z)@?+ 2((1 = Z)Z, + 1+ Z, Z 4= Z,(1 = Z,)) (m+ Am)m + 2((1 = Z)Z, + Z, Z,) Am®]
+d, v 1[-2,1-2)m-2,(1-2,- Z,)Am]
-20,75[(42,2 - 4Z,(1-Z )+ (1= Z )+ (1= Z)Im +(2Z,2 - Z,(4 - 3Z )+ (1 - Z))*+ (1 - Z,)) Am]
+2¢,[RZ,(Z,-2)+ (1= Z )+ (1= Z))m+(22,2+ 2(3Z, - )+ (1= Z,)*+ (1 - Z,)) Am]
+ld v lv2,(1-2,-Z)Am+Z2,(1-2Z,- Z)m] . (A8)

The renormalized vertex is obtained by performing one subtraction at ¢g>=0. To first order in g, we
therefore obtain after integrating over the Z;
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CARE S e (J_”_
Ay _q“75<— 411){Am T 2m+ Am) 3-2 Am

2(m+ Am)
T (2m + Am)Z(Am)?

m(m + Am)

o 1
[, ar [:2(2m+ Am)

o 1 2
" Zr Vom+dm T (@m+ Am)PAm

4(m + Am)m

* Am(2m + Am)

[B3m(Am)? + 2m*(m + Am)] In (1 + Ay:ln >}

A
= 1n(1+ __m_)]
m
[5m2 + 6mAm + 3 (Am)?]

A
[5m?+5mAm+ & (Am)?] In <1+ _.mﬁ>}

* (2m + Am)3(Am)?
U7l (‘ Za?) [ZAlm ‘(AZ[)z ;:22% 1“(“ ATT)] ‘ (49)
To first order in Awm/m,
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