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We estimate the contribution of Regge-cut graphs to the single-polarization measurements such as the

polarization of the outgoing particle P„ the polarized-beam asymmetry X„and the polarized-target asymmetry

X„ for inclusive reactions in the triple-Regge region. We find that in the energy region where these cut graphs

may be important relative to other contributions, all the single-polarization observables are small, roughly

&S%%uo. Comparisons are made with the available data on these spin observables. We also discuss the
implications of those results for triple-Regge phenomenology.

I. INTRODUCTION
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Data are starting to become available on polar-
ization phenomena in inclusive reactions. In this
paper we study the description of such data in
the triple-Regge kinematic region. The unpolar-
ized cross section in this region is well described
by diagonal triple-Regge pole graphs, those in
which the two Reggeons with nonzero momentum
transfer are identical. ' It turns out that polariza-
tions arise only from nondiagonal pole graphs
or from Regge-cut graphs. ' Thus, the study of
polarizations should provide a more detailed test
of the Regge description of inclusive reactions.

Consider the one-particle inclusive reaction

Q +6 ~ C+X)

where X denotes anything (see I'ig. I). In the
triple-Hegge kinematic region t=(p, —p, )' is
small, while s =(P, +P,)', M'=(P, +P, —P,)', and
s/M' are all large. Besides the unpolarized cross
section three single-polarization parameters can
be measured' ', the polarization P, of the ob-
served particle c and the asymmetry parameters
2, and Zb for polarizations of the initial particles

a and b. More complicated double- and triple-
spin correlations can also be investigated, but
we do not consider them here. By a trivial gen-
eralization of Mueller's optical theorem" all
observables can be expressed as discontinuities
of amplitudes for a+b+c-a'+b'+c' with ap-
propriate helicities.

The simplest graphs applicable to inclusive re-
actions in the triple-Regge region are the triple-
Regge pole graphs" shown in Fig. 2. All of the
helicity dependence of such graphs obviously comes
from the external. two-body Regge residues, which
are presumably known. Thus the contribution
of such a graph to any spin observable can be
calculated once the triple-Regge vertex is known.
In particular, the asymmetry parameter Zb van-
ishes for any such graph since it turns out to
involve a helicity flip at the n, bb vertex, which
has zero momentum transfer. 3

For P, and Z, not much can be said at present
about the triple-Regge pole graphs. ' Fits to the
unpolarized cross sections' have determined only
the tripl. e-Regge vertices with n, =n„and these
do not contribute to P, or Z, . Whil. e the graphs
with o., +n, do contribute to the unpolarized cross
section, it is not possible to separate them in
practice. Thus the nondiagonal vertices must
be determined by fitting polarization data as a
function of s and M'. The graphs which are ex-
pected to contribute to several reactions of in-
terest are given below. For PP-AX there may
be a term which is independent of s at fixed
x= 1 —M'/s, but in most other cases P, and 2,
should decrease like (s) '~' at fixed x. Thus, ex-
periments at relatively low energies are appropri-
ate.

The Regge-cut graphs which contribute to in-
clusive reactions in the triple-Regge region could
be almost arbitrarily compl. icated. However, we
bel. ieve that Pomeron interactions are weak, so
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FIG. 2. The triple-Regge graphs (&f o'2 0'3). FIG. 3. The Regge-cut graphs (&f ~2 ~3, o.4).

that it makes sense to keep only those graphs with
a single triple-Regge vertex; see Fig. 3. This
is similar to the approximation generally made
in absorption-model calculations for two-body
reactions. "' While such an approximation is
too crude to describe the physical Pomeron cor-
rectly, it should provide a reasonable estimate
of the effects of Pomeron cuts on meson-exchange
graphs, and this is all that is required.

The contribution of the graphs shown in Fig. 3
to the unpolarized cross section has been studied
previously by us." Here we study their contri-
butions to the polarization parameters P, , Z„
and Z„. For P, and Z, we concentrate on graphs
in which n, and n, are both Pomerons, since
such graphs give polarizations which are indepen-
dent of s at fixed x within logarithms. Our main
result is that the polarization arising from such
graphs is only a few percent in all cases. Graphs

in which ~, or ~4 is a meson could also be cal-
culated, but we believe that they are not very
important even at moderate energy. In any event
their contributions would be difficult to isolate
experimentally since their energy dependence is
similar to that of allowed pole graphs.

For Z, we need a helicity flip on the bb side
of the graph, so we must consider graphs in which
either a, or n, is a meson. These graphs be-
have like (s) '~'.

The plan of the rest of this paper is as follows:
In Sec. II general. formulas for the polarization

parameters in terms of the Mueller amplitude
are given and the contributions of triple-Regge-
pole graphs are studied. Several specific re-
actions are discussed. In Secs. III Regge-cut
graphs of the sort shown in Fig. 3 are analyzed.
In Sec. IV specific models for the Reggeon ver-
tices are introduced. Numerical results are pre-
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sented for several specific reactions and compared
with experimental data. In Sec. V some general
conclusions are drawn. There are three Appendix-
es containing technical details.

II. TRIPLE-REGGE POLE GRAPHS

A. Kinematics

Consider the inclusive reaction

+X. In particular let o, be the one-particle un-
polarized inclusive cross section, P, be the polar-
ization of c, and Z, and Z, by the asymmetry
parameters for polarizations of a and b. By parity
invariance these polarizations should be normal
to the scattering plane. Then if the polarized
particles have spin 2,' '

do'

dt d~2

a+b c+X, (2 1) A
1

(2 1)(2 1) Z k k„k;k k k

where particles a, b, and c have spins s„s,,
and s, , and where X denotes anything. The in-
dependent kinematic variable can be taken to be Pcoi =

(2s, + l)(2s, + 1)

(2 4)

s=(p, +p, )',
M' = (P.+Pa P.)', —

t=(P. -P.)'

It is also convenient to introduce

(2.2)

(2.3)

2(2s, + 1)

xg(A, ~ )„. q, „-A ~,q ., ~~q ), (2.6)

Then the triple-Regge kinematic region is that
which s, M', and s/M' are all large while t is
small. (The particles between which the mo-
mentum transfer is small shall always be labeled
a and c )

According to Mueller's generalized optical theo-
rem' all of the observables for this reaction can
be expressed in terms of amplitudes A~g)„'q, .)„),~),„
each of which is the M' discontinuity of an S-
matrix element for a+b+c-a'+b'+c' with a
—ie prescription for the outgoing energy s' = (p,'

+P,')'. '»" See Fig. 1. The helicity labels A., are
the s-channel helicities for the reaction a+b- c

2

2(2s, +1)

These formulas are derived in Appendix A.

B. Amplitudes and observables

The triple-Regge pole graphs, Fig. 2, have
been discussed extensively in the literature. In
what follows such graphs shall always be labeled
by their Regge trajectories in the order (n,n, n, ).
The Mueller amplitude for these graphs is'

& x,'z„' z,';~,z, x, =
16 s I P),' z,'(t )P z,x, (t )5 T(t )$ 2 (t ) + P z,x, (t )|8x,z, (t )& 2(t )& i(t )l

s +(')+ %(') +(')
xgi2, (t, t, 0)p'~ „ (0) 2 (M') (2.8)

where n, (t) and pI, „(t) are the usual Regge trajectory functions and two-body residues, with s-channel
helic ities,

(2.9)
e -i»'ng (t) + ~
—sinsn, (t )

are the signature factors, and g», (t, t, 0) is the triple-Regge vertex. It should be noted that all helicity
dependence in Eq. (2.8) comes from the Regge residues. For n, =n, there is only one graph, and it is
conventional not to include an extra factor of 2 such as would be obtained by setting n, = n, in Eq. (2.8).

From Eq. (2.4) and Eq. (2.8) the unpolarized cross section is
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Parity invariance implies that

j3x„(t)=)7(-1)' "P-x-((t), (2.11)

where g is the naturality of the trajectory. From this it is trivial to show that 0, is zero if n, and n, have
opposite naturality or if a3 has unnatural parity. ' Hence o, can be written as the sum of a natural- and

an unnatural-parity component:

N U
(Xj =Q~ +0j. (2.12)

It is also easy to see that Re($*,$,), and hence &x„vanish if o., and n, are exchange-degenerate and have
opposite signature.

For spin-& particles and natural-parity trajectories Eq. (2.10) simplii'ies to

e,"=
(6 (()!,()!, eg', ()'.)&Re((, ()g„,()'„( ', '

(ee*)e',

From Eq. (2.5) and Eq. (2.8) the polarization of particle c is given by

1 ag+ a

b

(2.13)

(2.14)

As for the cross section, it is easy to show that P, vanishes if n, and m, have opposite naturality or if
lx 3 has unnatu ra l parity .' Hence P, can be expres sed as the sum of a natural - and an unnatural -par ity
component:

Pg ay PP'0
y

+ PU(x y ~ (2.15)

It also follows from Eq. (2.14) that P, vanishes if o(, and n, are exchange degenerate and have the same
signature, or if their residues are exchange degenerate. Finally, since the polarization arises from an
interference between helicity-flip and nonf lip amplitudes, both types of couplings are needed. These con-
straints strongly limit the set of triple-Regge graphs which can contribute to P, .

For spin- —, particles and natural-parity trajectories Eq. (2.14) simplifies to

Z„e,"=
(6 (()'„))',-()',(t'„)Srm((, (,)a, ,g'„(~,) (M')W.
16ws

From Eq. (2.6) and Eq. (2.8) the asymmetry parameter for polarization of particle a is given by

(2.16)

(2.17)

Comparison with Eq. (2.14) and Eq. (2.15) shows
that

soy — pro y Uo y

S U (2.18)

Hence all of the comments about P, also apply
to Z, , although the two are not equal if there is
unnatural-parity exchange.

Finally, from Eq. (2.7) and Eq. (2, 8) it follows
that the asymmetry parameter Zb is proportional
to (8~+ (0), which vanishes for a factorizable Regge
pole. ' Hence

Kb =0

for any triple-Regge pol. e graph.

(2.18)

C. Specific reactions

A nonzero P, or Z, can be obtained only from
nondiagonal triple-Regge terms, those with &,«, .

Consider just the high-lying, natural-parity trajec-
tories P, e, f, p, A„K*, and K**. Then the
only possible nondiagonal, scaling terms are PfP
and K*K**P. The PfP term should not contribute
to P, or Z, since both the P and the f have only
nonf lip couplings. ' '" The K*K*~Pvertex woul. d

vanish if the P were an SU(3) singlet, ' but need
not be zero otherwise. Its contribution to P, and

Z, will. vanish if the K* and E**residues are
exchange-degenerate.

The possible nonscaling terms are of two types,
PMMand M'M'"M"', where M denotes any of the
meson trajectories. Both types can contribute
to I', and Z, . Of course if the PMM coupling
should be large, then the Regge-cut graphs con-
sidered in this paper would not be the dominant
ones, but it need not be negligible.

The triple-Regge terms (and also the Regge-
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TABLE I. Dominant graphs for P~ and Z, . We list what we expect to be the dominant
graphs for oi and for P, or Z, in the triple-Regge region. Pole graphs are labeled by
cL f Q 2Q 3, cut graphs by n, n 2n 3n 4. M refers to any of the cu, f, p, A2 Regge poles . The be-
havior given is that of the invariant cross section oi, or P~vi or Z oi assuming that e~ =1,

ez~ = —and ignoring logarithms. EXD stands for exchange-degenerate.

Reaction Graph Behavior Comments

pp -(A,z')x

p ~-(A, z0)x

pK-(A, z0)X

KW+P K++K++P

K*K~*M

K%*PP, K*%**PP

(1 -x)i/2 (s)0

(1 —x) (s)

(1-x)'(s) '/'

(1-x)'/' (s)'

P, =O dominates oi

P, =O if residues
EXD; absent if P
is SU(3) singlet

P~= 0 if residues EXD

P small

z-p- (A, z0)x ppP, A2A2P

pA2~, pA2A2

ppPP, A2A2PP

(1-x)'( )' P =0; dominates oi

(1 —x) / (s) / P =0 if residues EXD

(1 —x) 0 (s)0 P small

PEP

PfP
Ppp, PA2A2

p~A2, etc.

(1 x) (s)

(] x) 1/2 (s)0

(] x) i (s) i/2

(1 x)-i/2 (s)-i/2

P, =O; dominates o.i
for x &0.9

P, =O; dominates o.i
for x~0.9

P~=O 1f P =Pf =0

P, &0; nondiagonal
triple-Regge vertex

P~ 0; nondiagonal
triple-Regge vertex

cut terms) which could contribute to some typical
reactions are listed in Table I. In the construction
of this table it has been assumed that P, ~, and

f couple only to nonf lip, that p and A, couple
mainly but not exclusively to flip, and that K*
and K**couple both to flip and to nonf lip ampli-

III. REGGE-CUT GRAPHS

If Reggeon interactions are weak, as we be-
lieve, then the most important Regge-cut graphs
should be those of the form shown in Fig. 3. Such
graphs shall always be labeled by their Regge
trajectories in the order (n„n„n„n,) The.
neglect of other Regge-cut graphs is an approxi-
mation similar to that made in. the absorption
model for two-body reactions": The graph shown
in Fig. 4(a) is kept while ones like that shown
in Fig. 4(b) are discarded. Obviously this ap-

proximation is justified only if the relevant Pom-
eron-Reggeon-Reggeon vertices are small enough.
Except for the triple-Pomeron vertex, which is
small, these vertices have not been determined by
the existing triple-Regge fits, ' but some of them
could be determined from measurements of polar-
izations. In particular the Ppp and PA, A, graphs
contribute to the polarization in PP-PX.

This section is devoted to a general. analysis
of the graphs shown in Fig. 3. Numerical results
for particular reactions are given in the fol.lowing
section.

A. Amplitudes and observables

By assumption the vertices of the graphs shown
in Fig. 3 do not contain any additional Begge poles
or other high-lying Regge singularities. Then
the Mueller amplitude is
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(0)

FIG. 4. Regge-cut graphs for two-body reactions.

(3.1)

1 1 s M2 af s "& (3.3)

where the factor in square brackets and the (s) 4

where here and in what follows

f= —q ', t'= —k ', t, = —(q —k~)'. (3.2)

This formula was derived in Ref. 17 and Bef. 18
and is rederived in Appendix B. The factors
N+z „), and N~), „,z, are the usual Gribov
Reggeon-particle vertices, which also appear in
the formulas for Regge cuts in two-body reactions.
(These vertices are real for spinless particles but
not for particles with spin, as is shown below. }
The factor g», (t, f„t') is the triple-Regge ver-
tex, which for t' =0 is just that of the triple-Reg-
ge pole graph discussed in the previous section.
Finally, the energy-dependent factors can be
written as

correspond to the triple-Regge graph and the Reg-
ge pole o.„respectively, and the 1/s is the usual
Jacobian.

There is in general. another pair of graphs having
+, and n, interchanged. These two pairs are in-
dependent in the sense that they involve different
Reggeon-particle vertices. If n, =+„ then there
is only one triple-Regge graph and only one pair
of Regge-cut graphs.

Equation (3.1) can be simplified by noting that
if o., and a, have natural parity, as is assumed
henceforth, then"

(3.4)

so that N+& ), can be factored out of the square
brackets.

The Regge-cut contribution to the unpolarized
cross section o, is obtained by substituting Eq.
(3.1) into Eq. (2.4):

(3.5)

This formula may appear strange because the imaginary part acts on N+&, „z as well as on f„*,$,$, As.
will be shown below, the Reggeon-particle vertex is not real for particles with spin, but its imaginary
part comes only from phase factors associated with azimuthal rotations. These phase factors are such
that Im(N) vanishes when integrated over all angles of k~, so Eq. (3.5) is unchanged by the replacement
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(3.6)Im(N~1 „,), ) si)2$,)-Re(N+1 ), ) Im($*, $2$,).

It is then clear that the contribution of the cut graph subtracts from that of the pole graph if n~ is a Porn-
eron.

If n, is a Pomeron, then the (o„o„n2) and the ( o„n„n„o,) graphs are comparable except when
lns» 1, so that o, is not guaranteed to be positive. If it were found to be negative, then additional. Regge-
cut graphs would of course have to be included. In practice the cut contribution turns out to be small
enough that these additional graphs are not needed. "

The contributions of the Regge-cut graphs to the polarization parameters are obtained by substituting
Eq. (3.1) into Eqs. (2.5)-(2.7) and using Eq. (3.4). Then the outgoing polarization P, is

1 "d'k,
lsms (sS +1)(sa,+() (sw' z

' ~ s' "' ' ' 's' " ' ' ' ')}

x N~g ~ g gi23 2 M (3.7)

The beam-asymmetry parameter Z, is

"d k
is 2, +i .' is' ~"'((s'.' ~""-

C

x +~,a N4
(3.8)

The target-asymmetry parameter Z~, which vanished identically for pole graphs, is

1 2 "d2k a +a ++4-i

16,2 &'1,~.Re(N~~„,~, (1$,$,) Re(N~+, ~-)g'1, ~2 (~')

(3.9)

where the fact that

(3.10)
Of ~ Ofg+ Ofs+ 2 COL

has been used. Factors of the form Re(N+1 „1 g*, (2)~) appear in each of these formulas. As in the case
of o„only the real part of N contributes to the integral, so that the replacement

Re(N+), , „,), $*,$2$,)-Re(N+1 „1 )Re($*,$2$,)

can be made in each case.
t

By parity invariance the Reggeon-particle vertices satisfy

(3.11)

(3.12)N, ~, ,p=n&n~( 1)' "N (-
where g, and p; are the naturalities of n, and n, . Since ~, and n4 have natural parity, n, and +, must
then have the same naturality, so that just as for the pole graphs each observable can be written as the
sum of a natural-parity and an unnatural-parity part. In particular, if all trajectories have natural parity,
then

Z, =P .
If in addition all particles have spin 2, then the formulas for the Regge-cut contributions become

2 "d'k Otj + O(2+ Q4 1

ol 15 s 15
2L ™H~++ (22+, (24+ t -+ 0(2-, s(&+)~ 1~2~4' s(2+ ss4+g12 2 ~2 (m') +' "~-',

(3.13)
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(3.16)

Formulas for any other special case can also be
readily obtained.

P 00

N (y X
0

ds' fmIl ~q „~ (s'). (3.17)

where Impel, & „~ (s') is the imaginary part of
the Reggeon-particle ampl. itude. In the absorption-
model. ansatz for X+z „q, the sum rul. e is sat-
urated by the one-partic1e intermediate state.
Thus, for spinless particles

(3.18)

This ansatz reproduces in the framework of the
Reggeon calculus the usual absorption model for
two-body amplitudes. " (Of course more com-
plicated absorption prescriptions are often used
in detailed fits to two-body data, but these pre-
scriptions are generally similar. )

For particles with spin the absorption model
is more complicated than Eq. (3.18). The vertex
is still obtained by saturating the sum rule with
the one-particle intermediate state, giving

B. Absorption model

The Reggeon-partic le vertex N+z ~ z is
original). y defined as an integral over the full
Reggeon-particl. e amplitude with the contour shown
in Fig. 5(a).""This contour can be distorted as
shown in Fig. 5(b) to give

t= —2k, '(1 —cos&),

t' = —2k, '(1 —cos &'), (3.20)

t, = —2k, '(1- cos& cos8' —sin& sin&' cosy'),

d 2k'& = 2 d t ' dip' .
The calculation of the phase factors in Eq. (3.19)
is straightforward and is carried out in Appendix
C. The result is

(3.19)

where P' and A.
' are the momentum and helicity

of the intermediate particle. However, according
to Jacob and Wick, "the matrix elements in this
equation have phase factors associated with az-
imuthal rotations. Take p, to be along the z axis,
p, to be in the xz plane. with polar angle 8, and
p' to have polar and azimuthal angles 8' and cp',

respectively. See Fig. 6. Then the variables used
previous ly area'

....~/////////il
I/////////////I

I /II I///II I II.
I'////////////. „

{b} IIII////////I
..j//////////I /i

I///4// //////. ..lf I///I I //II II

FIG. 5. Contours for Eq. {3.17). FIG. 6. Definition of the angles &, 6)', and p'.
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where

cos —,'6 sin& 0' siny'
—tan ~ 1 1 1 ~ 1—sin2 0 cos 2 0' + cosy8 sin 28 cosy

(3.22)

is the azimuthal angle for P(').
If the overall scattering angle is zero, as for

N+q ~q„, then the two azimuthal angles are
equal. Thus '8

f)f3) y, ~kg

s (xy xy) lp Q ( 1 )xj x p(3) (f l)p(4) (f I)

(3.23)

It should be rioted that siny' and siny" are odd
functions of y' while cosy', cosy", and all mo-
mentum transfers are even functions. Thus justi-
fies the assertion made in Eq. (3.6) and Eq. (3.11)
that the imaginary part of X+z „q does not con-
tribute to the cross section or the single polari-
zations.

If the absorption model for the Reggeon-particle
vertices is used, then the Regge-cut amplitude
is expressed in terms of two-body Regge residues
and the nonforward triple-Regge vertex
g», (t„t„t, ). At t, = 0 this vertex is just that
measurable in inclusive reactions. For fixed t,
and t, its dependence on t, is presumably similar
to that of an ordinary two-body residue. Thus
while g», (t „t„t, ) is not precisely known, it
is strongly constrained, so a reasonable estimate
of the Regge graph can be made.

IV. SPECIFIC REACTIONS AND NUMERICAL RESULTS

The purpose of this section is to give final. ex-
pressions for P, , Z, , and Z, after the Gribov
N functions have been replaced by their appropri-
ate absorption-model prescriptions, and also
to present numerical results which can be com-
pared to the available experimental data. In so
doing, we make assumptions about the values of
certain parameters which we believe are reason-
able and conform with what we know from two-
body phenomenology. General expectations of the
behavior of the single-spin observables are given
in Tables I and II.

A. Unpolarized cross section 0

In an earlier paper, "we estimated the cut con-
tributions to the unpolarized inclusive cross sec-
tions in the triple-Regge region for m p-m'X,
m' P-gX, and K P-K'X and found these contri-

and

Gpps ——G~ ~2~ =G~„~ (4.1)

I
GKOKgp GEwwlcwwp Gggp (4.2)

Again, this is a reasonable assumption to make
in the face of lack of any other alternative which
is better and at the same time uncontroversial. .
Note that we do not assume that G»~ and G~~p
are equal or that either of them is the G»~ used
in triple-Regge pole phenomenology. Since in
all. the reactions under consideration the dominant
Hegge poles are either (ppP) and (A,A, P) or
(K*K*P) and (K**K**P),we have

S 2 a(t)

where we assumed that & = + Regge poles ar e
approximately exchange degenerate.

B. Polarization of the outgoing particle P&

At the present time, inclusive polarization data
are available on some of the charge- and hyper-
charge-exchange reactions given in Table III.
For relatively high energies, the important triple-
Regge pole graphs are the scaling contributions
such as (p, p, P) and (A„A„P) or (K",K*, P) and
(K**,K**,P). In the same energy region, the
important cut graphs are (p, p, P, P) and

(A„A„P, P) or (K*,K*, P, P) and (K"",K**,P, P)
in the notation explained in Sec. III. We restrict
our attentionhere to such scaling graphs, although
we recognize that for most of the existing data
the energy is rel.atively low, so that some of the
nonscaling terms listed in Tables I and II may
be important.

The contribution of the (8, 8, P, P) graph to P,
is given by Eq. (3.15) with o.„=o., =o. and o(, =a,

For the Gribov N functions we use the ab-

butions to be about 30% of the pole contributions
for —t ~ 0.4 (GeV/c)'. The charge- and hyper-
charge- exchange inc lus ive process es under con-
sideration here have comparable cut contributions
to their unpolarized inclusive cross sections.
Since our estimates of the single-spin observables
can be reliable only for small values of momentum
transfer t, it is a reasonable approximation to
drop the small cut contribution to the unpolarized
inclusive cross section o, In the expressions
given below for P, , Z, , and Z~, we have there-
fore replaced o, by o„„,. Since the present triple-
Regge analyses' cannot isolate the individual tri-
ple-Regge couplings such as Gp p&, G++&,
G~*~~&, GE+*~~~~, etc. , we assume that
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TABLE II. Dominant graphs for Zb. We list what we expect to be the dominant graphs for
Of and for Zb in the triple -Regge region. Pole graphs are labeled by e

&
e &e 3, cut graphs by

cv f A 2Q 3Q 4 . M refers to any of the co, f, p, A2 Regge poles . The behavior given is that of the
invariant cross section cr& or Zbo& assuming that eJ =1, e&= 2, n&g=

4
and ignoring log-

arithms.

Reaction Graph Behavior Comments

7 P-~'x ppP

ppPp

(1-x) (s)

(1-x)'(s)-«2

(1 x)-i /2 (~)-1/2

Zb =o, dominates o.
&

~0

Zb&0; ppp vertex
needed

A2A2P

A2A2PP

A2A2pP

(1-x)'(s)'

(1 -x)'(s) -«~

(1 —x) &/ (g)

Zb =0; dominates cr&

~0

Zb &0; A2A2p vertex
needed

pp ~px,
2'P-~'X,
K'P-K'X

PPP

PPPp,PPPA2

MMPp, MMPA 2

PppP, PA 2A 2P

fppP

(1-x) ~(s)0

(1 -x)'(~)'

(1-x) '(s) ~/2

(1-x) (s) ~/

(1 x) -1(~)-i/2

(1-x) ' '(~) ' '

Zb=0; dominates g&

for x~0.9

Zb=0; dominates 0&

for x~ 0.9

Zb &0

Z& &0; nondiagonal
triple-Regge vertex

Zb ~0; nondiagonal
triple-Regge vertex

PP- (W, Z')X K*K*P+**K**P
K2((K+pp Kg 2)(:K2i(:++p

K*K*PA,+**K**PA,

K*K*pP,K**K**pP,

K+K+A 2P,K++K+ +A 2P

(1 —x) (s)

(1-x)' '(s) ' '

(1-x) (s)

Zb=0; dominates o.
&

Zb &0

Zb&0; K*K*p, etc. ,
vertices needed

sorption-model prescription, Eq. (3.23), together
with the standard assumption that the Pomeron
conserves s-channel helicity. For the unpolar-
ized cross section we take just the pole graphs.

Then, adding the cut graphs with positive- and
negative-signature meson trajectories and using
Eqs. (4.1) and (4.2), we find that

0

327'
dt' [( ( ))„(,)( ( ')] [( ( )( (t, )( ( ')])

R [5*+(t,)h. (t)j ft [h*(t.)$ (t)j

x G»~(t, t» t') p, z(t, )
[p"„(t)p",(t,) cosy" + p",+(t,)p",(t)j pa, (,)G„„(t,t, o) " [p"„(t,)p"„(t)+p', (t,)p', (t)j

n (t2) -a(t )+ np(t ') -j.
X((~2)2 (2p (~ ] 2

M (4.4)
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TABLE III. Reggeon-particle couplings for specific
reactions. The Pomeron residues are obtained from
the total cross sections with positive beams.

miliar GRBP(t, t, 0) to nonzero momentum transfer
in the third Reggeon leg. If we parametrize

Reaction RBP(» ) 0 (4.5)

~'p-Ax
~ 'p-z'x
z 'p-A'x
K p~zox
pp -A'x
pp -z'x
r, p -A'x
z p -z'x

10.14
10.14
10.14
10.14
10.14
10.14
8.62
8.62

5.88
5.88
4.41
4.41

10.14
10.14
10.14
10.14

2.11
1.96

-2.11
1.96

—2.11
1.96

12.31
—0.82

where we have assumed exchange degeneracy.
Note that in this expression for P, , GRBp(t, t„f ')
is a triple-Regge coupling which is not directly
amenable to experimental determination. How-
ever, for t, - t and t'-0, GRBP(t, t„ f')-GBBP(t, t, 0), which is the triple-Regge coupling
which appears in the expression for the triple-
Regge pole graph. It is clear that we must make
some assumption about the extension of the fa-

a reasonable guess for GRBP(t, f„t') is

G (f f f )) —G e (at t+2)/2+bRt
BRP y 2~ 0 (4.6)

In our calculation, we use this parametrization
and take a from the triple-Regge analysis. While
we do not know b„, we assume that it is com-
parable to the slope of a typical Pomeron residue.
Furthermore, note that 60 cancels out in one ex-
pression for P, . Now if we parameterize the
Regge residues as

paP (f s
)

P e bat
'

pbP (f s) ~Pebbt'

pB (f ) yR eB++t

pR (f) g f +8 eB (-t

(4. 'I)

and assume that 8, =A = b„, the finaj. expression
for P, is

0 2r
P P

] df t d~ e(b +bb+abR+a/a)t ( a)ttaas(a '
c 32+2 pR tl b

0

((- ( )s' sosrp" s (- s)' '] (
)X S2 apt '

[ l+ (f f,)'/2pB'] 1 —x

„(Re[5".(~)(.(f, )$ (f')], Re[5*-(~)( (~,)5 (f')]
Re[(*,(t, )$, (t)] Re[)*(t,)$ (t)]

(4.8)

where

8 j R
pg —1 -+/' Y++y

and y" is given by E(l. (3.22).

C. Polarized-beam asymmetry Z~

For natural-parity Regge poles and for the cut
graphs we have considered in the calculation of
Pc

Z, —=Pc. (4.9)

D. Polarized-target asymmetry Zb

As pointed out earlier, the polarized-target
asymmetry vanishes identically for triple-Regge
pole graphs in a factorizable Regge-pole model, '
Ther efor e, a nonz er o polariz ed-target asymmetry
can only arise from Regge-cut graphs such as
we have considered before in connection with P,
and Z, . From Eq. (S.I.6) we note that the cut
graphs contributing to 5, must have helicity flip

at the b- b' vertex. Hence the dominant graphs
contributing to Z, must have at least one of a3
or a4 trajectories from p,A„K*,K**, etc. which
have dominant fl.ip coupling. " This empirical
fact restrict somewhat the number of graphs one
has to consider to estimate the size of Z, for a
given process. A general. discussion of polarized-
target asymmetries from various processes is
given in Table II. Experimentally, nothing is
known about the size of Z, for any processes from
Table II except for m'P- ~'X. These measure-
ments' show fairly large target asymmetry for
x ~ 0.75. However, this region cor responds to
M' c 4 (GeV)', so nonscaling terms and)/or reso-
nance contributions are likely to be the main con-
tributor to the asymmetry. We can hardly hope
that our triple-Regge-region formalism will make
any sense down to M' values as low as 4 (GeV)'
except, perhaps, in some average sense. The
leading cut graphs for Zb()t'p- tt'&) are expected
to be (P, P, P, p ) and (p, po, P, p). Note that there
is no (p', p', p', P) graph by isospin. Graphs such
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as (po, P, po, P) with nondiagonal triple-Regge
vertices, and, at low energies, graphs such as
(P, P,f, po) might also be important. Note that
all these graphs, except the nondiagonal. one,
have an odd number of p' connected to the pions.
Since C po= —1, these graPhs will give mirror
symmetry between m' and m on a polarized nu-
c leon target.

Since the polarized-target asymmetries may
provide us with a useful tool for teaching us some-

thing about the size and importance of Regge-cut
corrections in inclusive reactions, we should
look for a process which can be measured experi-
mentally and to which relatively few cut graphs
contribute so that it can be calculated theoretically
with fewer assumptions. m P- w X is one such
process. Important cut graphs are (p t), P, t) )
and (p p, po, P), and their contributions to the
polarized-target asymmetry, called Z' and Z",
respectively are

, Re[5~(t)h (pt. )h (pt')] ppo (t )
Gpp)( t. t') pp'(t )

np(t2)+ np(t')-np(t)
(M2) np (t')+ n~(t ')-j.

M

n 1 "dt'dq' Re[&*p(t)hp(t, )(p(t')] p ~ Gppp(t t. t')
s . 32@ Re[) "p(t)$ p(t, )]

" ' G ppp(t, t, 0)

' p''t np (t2)+ n~ (t ') - np (t )
I + -( )

p
bP (ti) (Af )n2(tp') a+pit')-x

p,",(t ')

(4.10)

(4.11)

where

Gpp (t, t, t') =
16 Re[&*p(t)(p(t )]P,".(t)P," --(t, )gpp (t, t„t')P'+(t'), (4.12)

where

Gppp(t t2 t') = Re[(*p(t)hp(t. )]P'.o. (t)P'o.--(t.)gppp(t, t„ t')P+P+(t') (4.13)

In arriving at these expressions, we have used
the absorption-model prescription given in Eqs.
(3.21) and (3.23) and the definition of Z„given
in Eq. (3.16). We have also divided the expression
on both sides of Eg. (3.16) by

S 'np(
(r=—v„„, = —

Gpp (t, t, o)(, (I')""

(4.14)

The rationale for doing this was explained earlier.
Since the triple-Regge couplings which appear
in the expression for Z& and Z'„' are not known

very well, we will not attempt to give any numeri-
cal estimate of the polarized-target asymmetry.
The reader may wish to make such an estimate
for himself.

E. Numerical results

We estimate P, (s, x, t) using Eq. (4.8) and eval-
uating the integral numerically. For the exchange-
degenerate meson trajectory me take

n, (t ) = n (t ) = n (t ) = 0.5 + 0.Qt,

and for the Pomeron trajectory, '

n), (t ) = 1.0+ 0.28t. (4.16)

The parameter a is obtained by taking the log-
arithmic derivative of the MMI' coupling" in
PP-PX. The parameters b, , b, , and b~ always
appear in the combination b, +b„+b„, and for this
we take

0
„dtP. (s, x, t )c,(s, x, t)

f dto, (s, x, t) (4.17)

are compared with the experimental data in Figs.
7 and 8 for Pm'-AX at 18.5 GeV/c, "P)T -AX
at 18.5 GeV/c, "and PÃ -AX at 14.3 GeV/c. "
These data are generally in agreement with our
predictions of small polarizations, although at

b, +b~+b~ =6 GeV

A slight variation of the number on the right-hand
side changes the result by an insignificant amount.

The values of p~ for vector trajectories are
obtained from the known values for the pe& cou-
plings, ",and the same values are assumed for the
tensor trajectories. These and other parameters
are listed in Table III.

Our predictions based on the cut graphs for
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FIG. 7. F'& for Pr~ AX. Data are frown Ref. 26. FIG. 8. P& for PE~ AX. Data. are from Ref. 27.

such low energies the neglect of nonscaling graphs
is questionable. We al.so give predictions for
P(s, x) for PK'-AX at 50 GeV/c, PP-AX at 50
GeV/c, and Z P- A'X at 23 GeV/c in Figs. 8 and
9. (The last of these will be measured in an on-
going hyperon-beam experiment at BNL.") A
measurement of I'z(s, x) in PP-AX at 205 GeV
has a.iso been published. '9 The statistics are
very poor, but the data are consistent with zero,
and our calculation also gives negligible polar-
ization.

V. CONCLUSION

We have calculated what we believe to be the
most important Regge-cut contributions to the
polarization parameters P, , Z, , and Z, for large
x and high energy. We find that while these graphs
do give contributions which scale within loga-

rithms, the magnitudes of the polarizations are
quite small, in general less than 5%. Thus, even
if the contributions of other graphs a,re included,
it seems unlikely that there could be any sub-
stantial polarization at high energy. In contrast
to two-body reactions, the smal. lness of the polar-
ization is not simply a consequence of hei. icity
conservation for the Pomeron. Rather, it arises
from the intrinsic smallness of Pomeron cuts
and from the fact that absorption changes the
phase of a Regge pole only slightl. y.

At l.ower energies a variety of triple-Regge
pole graphs can contribute to P, and Z, . With
the possible exception of the K~K**Pgraph, all.
should give polarizations which behave like (s) "~'

at fixed x. While we have not cal.cul.ated the cut
graphs which behave like (s) '~2„we do not expect
that they are very important. Thus, it is ap-
propriate to analyze polarization data at moderate
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energies in terms of just the pole graphs. Such
data and analysis would be interesting because
it would provide information about nondiagonal
triple-Regge vertices and further test the whole
tripl. e-negge framework.

Note added in Proof. The polarization in PP-AX
at P„b= S00 GeV/c has been measured recently. "
The polarization for x= O. V, the largest available
value, is found to increase with I t I; it is about 7/p

at t= —0.5 GeV'. This is larger than the contri-

bution from the cut graphs which we have con-
sidered. However, other graphs, particularly the
K*K~*I' pole graph, might also be present; see
Table I.

ACKNGWI. EDGMENT

We wish to thank Dr. T. L. Trueman and Dr.
G. C. Fax for useful. discussions and encourage-
ment throughout the course of this work.

APPENDIX A: SPIN STRUCTURE OF INCLUSIVE REACTIONS

Consider the one-particle inclusive reaction

a+6-@+X, (Al)

where X stands for everything in the final state besides the observed particle c. Let a, b, and c have
spins s, , s„,s, and helicities ~„~b, and ~, in the s-channel center-of-mass frame. Let ~x denote the
helicity of the multiparticle state X. Gur normalization convention is such that the spin-averaged invariant
cross section is given by

where

O'

(2 l)(2 i) ~ ~ ~If' xx, z x~( i s ~x) )I (A2)

f ~,~x,~,),(&, t Mx, ')

is the amplitude" for the process shown in Eq. (Al) and the integration is over the phase space of the
multiparticle state (X,.j. As shown by Mueller, ' the right-hand side of the above equation can be related
to the discontinutiy in the missing mass Mx' of the forward 3-3 scattering ampl. itude using a generalized
optical theorem as follows:

—.Disc„2E~ q q. ~ q q (s, t,Mx') = dc', fx x x z (s, t, Mx )f),'z x g (s~t~ M)+Xabcabc'&&'cX&ab''cx&
Xg

=A xi);xi x x z (s, t, Mx ).
b c' a b c

In terms of this absorptive part A. q q. q. q q q, the spin-averaged invariant distribution is given byc' a b c'

(AS)

do' 1
8

dt dMx' (2s, + l)(2st, + 1) q, q, q
(A4)

Next we turn to the definition of spin observables for an inclusive reaction in terms of the Mueller am-
plitudes A ~ ziz. q z z . Let us assume that both the beam (a) and the target (b) particles are polarized
so that their initial state is described by the initial-state density matrix

pz ~~ ~ ~'(A, B)=p z x p ~ z~ ~

A B
a a' b b a a b

where for spin &

p = —,'(1+v P).

The density matrix of the outgoing particle (c) is then

(A5)

(A6)

P), ~s(AyB)=Q Q Q d4([fy y y ~ P~ ~t ~ ~i(A)B)f~il~ ~ ~ ]
k X X, 'X, ' X.

cX ~
' a b a a' b b c Xg' a ba' b' a b X~

', Xb
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(iii) unpolarized beam and target

1 1
a"a b'a ' ' ' (2s +1) a"~ (2s&+1) s a'

(A11)

With these facts in mind, it is straightforward
to define any spin observable by taking the ap-
propriate trace of p~ with the relevant Pauli ma-
trix. As is well. known from two-body physics,
parity conservation in the production process im-
poses relations among various helicity amplitudes
and, therefore, leads to vanishing of certain com-
ponents of polarization vectors. Parity trans-
formation properties of the Mueller amplitudes
immediately follow from Eq. (AS) and the trans-
formation law of the exclusive helicity amplitudes.
A consequence of the parity invariance is the
vanishing of all but the components normal to the
scattering plane of the single polarization vectors
P, , Z„and Zb, which are the polarization of
the outgoing particle c, polarized-beam asym-
metry and polarized-target asymmetry, respec-
tively. These observables are defined, in terms
of the Mueller amplitudes, as follows:

—0.2—
—0,4—

&c~=( ~~) Q (&x x+ x ) --&x x - x x+)
k b ' a b a b ' a b

b

-0.6—
-0.8

—IO
0.5

I

0.6
I

0.7
I

0.8
I

09 I.o

1=g ~ ImAg), +), ),
X. X, a b

a b

~,&=(~4&) Z (&+~ x -~ ~ -&-z g +) ~ )
b c

(A12)

FIG. 9. PA for pp AXand for Z p AX.
=2 ~ Im+-x x. ,+~ )

b c
(A1S)

Z, o =(4z) Q (Ax +), x g -Az z x, g )
c

The relation between the density matrix p~ and the
invariant cross section is

1 ~ ImA), ),a c' a
a c

(A14)

(A8)

Let us consider several special cases of our
general def initions:

(i) unpolarized beam

1

(2s, +1) o ~ (2s~+1)

x (1 yo ~ Ps)~q~i (Ae)

In these equations, the second relation is a con-
sequence of parity invariance. Furthermore,
in the definition of P, , Z, , and Zb, we always
use the "particle-one" convention of Jacob and
Wick for that particle whose spin dependence is
being considered. Definition of double- and triple-
correlation parameters for inclusive reactions
is straightforward, although some care must be
exercised for particles having a "particle-two"
convention.

(ii) unpolarized target

1
p&, i', ~ ~'(»0)=

( )
(1+& P )~,~'

2Sa+ 1

1
X

(2s, +1) (A10)

APPENDIX 8: REGGE CUTS IN THE

TRIPLE-REGGE REGION

The purpose of this appendix is to derive an
expression for the Regge-cut graph used in this
paper for the calculation of various polarization;
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asymmetries. This is one of the many graphs
studied extensively by Abarbanel, Bartels, Bron-
zan, and Sidhu" in their derivation of the Reg-
geon calculus rule in the triple-Regge region.
Throughout this appendix, we mill try to follow
the relevant section of this reference closely and
later on give changes necessary for the labeling
of external particle momenta to conform to the
notation used in this paper.

Consider the six-point function, T„which is
an amplitude for the scattering of spinless par-
ticles

Pl ~2 P3 Pl P2 P3 ' (B1)

In particular, we are onl. y interested in the triple-
Regge limit of T, which will be defined shortly.
Complications arising from the spins of the ex-
ternal particles are discussed in the main text
of this paper. We use the following (overcom-
plete) set of variables for T;.

rn'
P2 P2 ~1&

S12
(B6)

V=Ap, +Bp + V

with

(B7)

where P,. 2 =P,"= m', which are the mass-shell.
conditions of the external partiel. es. It is clear
from the above definitions that p, lies mostly along

P„ the beam direction, and that P, lies mostly
along P, . These redefined momentum vectors,
P„have the property that to order (1/s»), P; ' = 0,
so that in the evaluation of our hybrid Feynman
graphs to order 1/s we may systematically drop
p, '. We shal. l see that introducing the Sudakov
variables allows one to carry out the integrations
over the projection of l.oop momenta on the P, ,
leaving one with only the two-dimensiona. l integrals
over transverse dimensions. Decompose al. l vec-
tors in terms of Sudakov variables as

» ( pl +p2)

s» ——(p,'+p,')'

s, =(p, —Q, )',

s„=(p, —p,')',
s, =(p, +Q, )',

s, =(ps —Q&),

t, =e, '=(p, - p', )', i=1 2 3.

(B2)

V~'P, = V~'P2 =0,

V,'&0.
(B8)

(B9)

2m
Pl Pl + P2y

S12
(B10)

2
~W SZ ™
P2+

S12

m2 —s» —ng2g+ s, —t,
P3 Pl P2 P3

12

(B11)

The decomposition of the external vectors is then

Since T, can depend on only eight independent
variables, one of these must be eliminated through
some constraint. Later on, we will indicate how

this six-point function is related to the invariant
cross section. The triple-Regge limit of interest
is defined as

s -t, —rn2 - t
Q, = ~ ' p, +~p, +q, ,

12 12

12 12

(B12)

(B13)

(B14)
S S1312 QQ

129 139 ly Sl Sl

while

S13" =—8, s„s„s23, and the t,
S]2

(B2) s2-m'+ t2 —t, -

s, —nz' + t, —t, -
(B15)

m 2

P-P
~ P

$2
(B5)

are all held fixed.
After defining these variables, we express all

of the momentum vectors associated with lines
inside the hybrid Feynman graph in terms of
Sudakov variables, i.e., their components along
vector p, and P2 which carry the "large" com-
ponents of momenta and along the remaining space-
like two-dimensional vectors perpendicular to
P, . The "large" vectors P, are defined as

The most important assumption of the Reggeon
calculus is that the 2 2 subamplitudes inside
the hybrid Feynman graph have Regge behavior
in their subenergies for fixed momentum transfer
and finite off-shell masses, and that they decrease
rapidly for large momentum transfers or masses.
These assumptions translate into stringent re-
strictions on the passible ranges of Sudakov pa-
rameters.

First consider the hybrid Feynman graph shown
in Fig. 10(a) where the blobs are the 2-2 sub-
amplitudes which are assumed to have the Regge
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FIG. 10. Triple-Hegge pole graph for Appendix B.

behavior as described above. This leads to the
graph shown in Fig. 10(b) after this assumption
is invoked. Parameterizing the internal momenta
l] as

l; =A, p,. +B&p2+l;

and using

(B16)

d'E, = " dA dB, d'I,
2

(817)

allows one to carry out al.l but the integrals over
the transverse plane. This graph leads to the
conventional triple-Regge pole graph in the triple-
Regge limit and corresponds to the expression

where the P's are the particle-particle-Reggeon
couplings, x~, ~ + is the triple-Regge coupling,
and $ „is the signature factor, defined as

(r+e "")
—s ln1TQ

(819)

Next we turn to the analysis of the hybrid Feyn-
man graph shown in Fig. 11(a). It is sufficient
to identify various pieces in this graph which one
already encounters in the analysis of hybrid
graphs for the 2-2 elastic amplitudes and the
triple-Regge pole graph discussed above. The
objects of interest are the two-Reggeon two-
particle function Ã and the triple-Reggeon coupling
r, ~ ~ from the analysis of the 2-2 amplitudes
and the triple-Regge pole graph. After replacing
al. l the 2-2 subamplitudes by their power be-
havior, i.e., Regge poles, this graph leads to
the graph shown in Fig. 11(b) and corresponds
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to the expression
~ d4k d~k P' dak P2

T = —i 2

(2v)~ (2w)~ D, '''D4 (2w) D, ' ' 'D,

xg2
J

' . ' (~[(p, -k, —f,)']"'&~[(p.+f, -k.)']+

x g +[(p, + &, —P,)'] g ~[(k, + k,)'] (820)

where

n, =n((Q, + k)'),

n, = n ((Q, + k)'),

n. = n(Q.'),

n, = n(k')

(821)

(822)

(824)

n, : (p, +L, - l, ) 2= (A. , -A.,)s„,
n, : (k, +k, )'=a,b, s».

(835)

(83')
These equations have incorporated in them the
result following from the demand that the particle
propagators D, ' 'D, ~ in the center be &m . The
Reggeon energies are large only if

and

k=a p, +bp2+k,

k&=a, p, +b, p2+k~, i=1, 2

(825)

(825)

are the Regge trajectories, and the D, are the
denominators from the various particle propaga-
tors. Decompose k, k, , and /,. in terms of the
Sudakov parameters as

m2
~~

I a, l, I b. l, I b, l, i&, l, and I&, -&,I. (83&)
S12

Next one uses these results about the sizes of
the parameters a and b in examining the various
pieces of the graph shown in Fig. 11(b).

First look at the lower cross: Its denominators
are

l f +i P1+BiP2+ ~is~ (827) D, =k', -m +i&

Next examine each particle propagator D,- and
require that it remain finite, i.e.,

= s12a1b1 + k1 —m + s E (839)

D)&m for all i. (828) D, = (p, —k, )' —m'+i&

k,' =a,b,s„+k, ' ~ m',

(P, —k, )' = (1 —a, )b,s»+ k, '~ m2, etc.

from which we learn that

(829)

(830)

For the lower vertex of Fig. 8(b) this means that m2
=(1—a, } —k)s„+k„'—m'+(a, (B40}

12

D, = (k, + k)' —m '+ ie

=a, (b, + b)s„+(k, + k~)'- m'+ie, (841)

S12 S12 (831) D, = (p, —k, —k —Q,)' —m'+ ie

laical, k, '~m'.

A similar analysis on the upper left vertex gives

m2=(l-a, ) —b, —b —~ s»
S12 S12

m' m2
I a.l

12 12 (832)
+(k, +k+Q, )~' —m'+i~. (842)

lbl~1, k„'~m',
and together these require that

I al & m'/s„, Ibl & m'/s„. (833)

n, : (p, —k, —l, )2= (1 —a,)(-E,)s„,
n~: (p, +i2 —k )'~A2, (l-b, )s»,

(834)

(835)

As a next step in the analysis, we require that
each Reggeon carry energy» m', which means
that

Note that the parameter a does not appear here
since it is much smaller [O(m'/s»)] than a, .
Hence the lower vertex has no dependence on a.
The same type of analysis shows that the D; in
(D, ' D,) have no dependence on b Further. -
more, the central. triple-Regge vertex depends
on neither a nor b and has precisely the form of

~ ~ which appear in the triple-Regge pole
graph.

Collecting together the integration of the central
vertex gives
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2 s 2 3

~~ ~ „,s„si,s, y„~ „~ „~.

(843)

We move the b integration down to the lower vertex and note that

'

db d db d'
2(2v)' . J ' ' '& D' D, "& "4 [s„[' (844)

where the N„, ~ is the same two-Reggeon-two-particle function which appears in the analysis of the
elastic amplitude. Similarly, moving the a integration to the upper left vertex gives us N~ ~. Collecting
the various pieces together we find that the final expression which corresponds to the Feynman amplitude
for Fig. 11(b) is

A2 z.
02+ W" j fx3 f)(x W 36-~

( )2 n a4 ~aj'u N2 os i2 ]s i 5~5»8&~(&a, -n. -n, ). (845)

The invariant cross section is given by

dg 1
2 =cr = —.Disc~ - 2Te(s6~ =2s+te, s~3

——s —xE, s~ =M, t~ = Oi t~ = ts =i).
2$

(846)

Taking the Mueller discontinuity of Eq. (845)
eliminates the $„~ ~ and replaces the $+ with

g~~ but does not change any of the vertices. Thus
if we make the replacements

( e, y, z„x,) s) e', y', ~,', z,'&

-De~«(V, e, —V)) *
4m

S~2 Sq S~3~ S~ S~ ~M

1 3P 2 2s 3
~ ™j.t 4 &t

(84V)

Dex'(ft(p i e i
—0' ))

x( g„x,(
s'~ z,', g&,

(C2)

then upon taking the discontinuity we obtain Eq.
(3 1).

APPENDIX C: ABSORPTION MODEL FOR N

where as usual

ft(a, P, y)=e '""e ""e
D„„(B(u,J3, y)) =e ' d„,(P)e ™y. (C3)

In this appendix we derive Eq. (3.21), the ab-
sorption model for the Reggeon-particle vertex
N~~ .„~,. By definition this is given by a product
of Regge residues for the two Reggeons, so we
must study the y' dependence of a product of two
S-matrix elements:

Using the "particle-one" convention for ~, , A, ,
and ~', we then find that

&
e', 9', ~'( s( o, o, ~.&

D ~.~ (f~(q', e', —v'))*~ 2J+1

x(x') s'( g, &,

g & e, o, ~, ( s( e, q , ~
&

x( e', y', ~'( s( o, o, z, &.

( e, o, ~,I s[ e', q ', ~'&

(ft(» e»

(C4)

Recall from Jacob and Wick ' that x(z, (
s'~ g &,
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By explicit calculation this gives

cos6" = cos 0 cos 0'+ sin6 sin0' cosy', (C6a)

sin —,
'

8 sin2 8' siny'
cos-,'8cos-,'8'+sin —,'Gain —,'8' cosy' '

(c6b)

where

ft(y", 8" —0")=8 '(0, 8, 0)R(y', 8', —y'). (C5)

where

f,(8)=Z —,d; (8)&~l 'I~&. (CS)

We now apply these results to the Reggeon-par-
ticle vertex. Since Eg. (C6a) is the usual formula
for the scattering angle at the second vertex, the
Beggeon ~, is guaranteed to have the correct
momentum transfer t". For large s and small.
t, t', and t" we have sin26=0, sin&6'= 0, so
from Eg. (C6b) and (C6c)

cos26sin&6' siny'
—sln2 0 cos 2 6 + cos 2 6 sing 6 cosy

(C6c)

)II yll tan
cos 2 6 sin2 6' siny'

—sin&6cos26'+cos26sin28' cos(p'

(C9)
From Eq. (C3) and Eg. (C4),

&8', y', ~'Isl0 0, ~&=e ' '
~ 'f~ ~ (8'),

(C ta)

( 8, 0, z, I sl 8', y', ~'& =e-'""""""

Then from Eq. (C7) and the definition of the Reg-
geon-particl. e vertex we obtain

( 1)x -x.'e -i(x -x')y"
P

+2
(tiI )X, ; fXj X. C

x(-1)" ' f ~,~ (8"),

(CVb)

xe —( () ' -x z ) rP
'
P

+],
X'X

which is the desired result.

(C10)
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