Hurley's field equation for arbitrary spin

J. O. Eeg

Institute of Physics, University of Oslo, Oslo, Norway (Received 29 March 1976)

A complete set of covariant transforming matrices operating in the spinor space of Hurley's field equation for arbitrary spin are constructed. Similarly, matrices for transitions between spin 1/2 and 3/2 are also constructed.

I. INTRODUCTION

Recently Hurley^{1,2,3} has presented a relativistic field equation which transforms according to the $(s,0)\oplus(s-\frac{1}{2},\frac{1}{2})$ [or $(0,s)\oplus(\frac{1}{2},s-\frac{1}{2})$] representation of SL(2, C) as a generalization of the Dirac equation, viz.,

$$(\gamma_{\mu}p_{\mu}-im)\psi(x)=0 , \qquad (1)$$

where the field $\psi(x)$ has 6s + 1 components and the generalized γ_{μ} matrices transform covariantly, as for the Dirac case.⁴ The equation needs no subsidiary conditions, and the field has 2s - 1 dependent components which vanish in the rest frame in momentum space. If parity symmetry is to be included in the usual way, the representation must (except for $s = \frac{1}{2}$) be doubled to yield the direct sum of $(s, 0) \oplus (s - \frac{1}{2}, \frac{1}{2})$ and $(0, s) \oplus (\frac{1}{2}, s - \frac{1}{2})$. This, however, leads to difficulties in the field-theoretic treatment of the field satisfying (1).2,3,5 Hurley shows³ that covariance of the equation can be realized in the (6s+1)-dimensional space by replacing the effect of the parity matrix η by a differential operator which reverses the three-momenta of the components of $\psi(x)$; i.e., the parity transformation is nonlocal (in contrast with the Dirac and Joos-Weinberg cases^{6,7,8}).

II. COMPLETE SET OF MATRICES FOR ARBITRARY SPIN

The number and types of such matrices are given by^{9,10} the direct product

$$[(s,0) \oplus (s-\frac{1}{2},\frac{1}{2})] \oplus [(s,0) \oplus (s-\frac{1}{2},\frac{1}{2})]$$

$$= \left[\sum_{l=0}^{2s} (l,0)\right] \oplus \left[2\sum_{j=1/2}^{2s-1/2} (j,\frac{1}{2})\right] \oplus \left[\sum_{l=0}^{2s-1} (l,0)\right] \oplus \left[\sum_{l=0}^{2s-1} (l,1)\right]$$

$$(2)$$

(*l* is integer and *j* half-integer). Let $M_{\mu\nu} = -M_{\nu\mu}$ be the six generators of the homogeneous Lorentz group in the $(s, 0) \oplus (s - \frac{1}{2}, \frac{1}{2})$ representation. For all spins $s \ge 1$ we define

$$\gamma_5 \equiv \frac{-1}{8s(s+1)} \epsilon_{\mu\nu\alpha\beta} M_{\mu\nu} M_{\alpha\beta} , \qquad (3)$$

$$\gamma_{\mu\nu} \equiv \frac{1}{2} [\gamma_{\mu}, \gamma_{\nu}]_{+} + \Delta^{1}_{\mu\nu} , \qquad (4)$$

$$\begin{split} \gamma_{\mu\nu\sigma} &\equiv iM_{\mu\nu}\gamma_{\sigma} + \Delta^2_{\mu\nu\sigma} , \qquad (5) \\ M^{(2)}_{\mu\nu,\alpha\beta} &\equiv \frac{1}{4} [M_{\mu\nu}, M_{\alpha\beta}]_{*} + \frac{1}{4} [M^D_{\mu\nu}, M^D_{\alpha\beta}]_{*} + \Delta^3_{\mu\nu,\alpha\beta} . \end{split}$$

 $M^{D}_{\mu\nu}$ is the dual of $M_{\mu\nu}$, i.e., $M^{D}_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} M_{\alpha\beta}$. γ_5 is of course not a pseudoscalar matrix for $s \ge 1$ because we have no parity transformation in the spinor space. For $s \ge \frac{3}{2}$ we define

$$\gamma_{\mu\nu\sigma\rho} \equiv \frac{1}{2} [\gamma_{\mu\nu\sigma}, \gamma_{\rho}]_{\star} + \Delta^{4}_{\mu\nu\sigma\rho} , \qquad (7)$$

$$\gamma_{\mu\nu\alpha\beta\sigma} \equiv i M^{(2)}_{\mu\nu,\alpha\beta} \gamma_{\sigma} + \Delta^{5}_{\mu\nu\alpha\beta\sigma} , \qquad (8)$$

$$M^{(3)}_{\mu\nu,\alpha\beta,\sigma\rho} \equiv \frac{1}{3!} \left(M_{\mu\nu} M_{\alpha\beta} M_{\sigma\rho} + \cdots \right) + \Delta^{6}_{\mu\nu,\alpha\beta,\sigma\rho} .$$
(9)

The $\Delta_{(\mu)}^{i}$'s in (4)-(9) are chosen in such a way that the matrices defined become traceless, i.e., $\gamma_{\mu\mu}$ = 0, $\gamma_{\mu\nu\nu}$ = 0, $M_{\mu\alpha,\nu\alpha}^{(2)}$ = 0, and so on. Moreover, the $\Delta_{(\mu)}^{i}$'s involve combinations (symmetrized in the right way) of Kronecker δ 's, γ_{5} , and some of the matrices defined in an equation before the actual one.¹¹ For example,

$$\Delta^{3}_{\mu\nu} = -\frac{1}{4} [(5-2s) + (1-2s)\gamma_{5}]\delta_{\mu\nu} ,$$

$$\Delta^{2}_{\mu\nu\sigma} = -\frac{1}{3} [(2s^{2}-2s-1) + s(2s-1)\gamma_{5}]$$

$$\times (\delta_{\mu\sigma}\gamma_{\nu} - \delta_{\nu\sigma}\gamma_{\mu}) , \qquad (10)$$

$$\Delta^{3}_{\mu\nu,\alpha\beta} = \frac{1}{3} s(s+1)\gamma_{5}\epsilon_{\mu\nu\alpha\beta}$$

$$+ \frac{1}{6} s[-3 + (2s-1)\gamma_{5}](\delta_{\mu\alpha}\delta_{\nu\beta} - \delta_{\mu\beta}\delta_{\nu\alpha}) .$$

In Table I the linearly independent matrices for $s = \frac{3}{2}$ are given. [For s = 1, only the representations up to (2,0) are present, and (2,0) occurs only once for s = 1 just as (3,0) occurs only once for $s = \frac{3}{2}$.] For a given representation (a, b) the number of corresponding matrices, which are linearly independent of the total set, is n = (2a + 1)(2b + 1).

The generators $M_{\mu\nu}$ are given by^{1,2}

$$M_{kl} = \epsilon_{klm} J_m, \quad M_{k4} = -M_{4k} = -iN_k \; ; \tag{11}$$

14

TABLE I. Linearly independent matrices for $s = \frac{3}{2}$.

Representation	Matrices	Number of matrices, n
(0, 0)⊕ (0, 0)	1, γ ₅	2
$[(1, 0) \oplus (0, 1)] \oplus (1, 0)$	$M_{\mu\nu}$, $\gamma_5 M_{\mu\nu}$	9
$(\frac{1}{2}, \frac{1}{2}) \oplus (\frac{1}{2}, \frac{1}{2})$	$\gamma_{\mu}, \gamma_5 \gamma_{\mu}$	8
(1, 1)	$\gamma_{\mu u}$	9
$(\frac{3}{2},\frac{1}{2})\oplus(\frac{3}{2},\frac{1}{2})$	$\gamma_{\mu\nu\sigma}, \gamma_5\gamma_{\mu\nu\sigma}$	16
(2,0)⊕(2,0)	$M^{(2)}_{\mu\nu,\alpha\beta}, \gamma_5 M^{(2)}_{\mu\nu,\alpha\beta}$	10
(2,1)	$\gamma_{\mu \nu \sigma \rho}$	15
$(\frac{5}{2},\frac{1}{2})\oplus(\frac{5}{2},\frac{1}{2})$	γμναβσ, γ5γμναβσ	24
(3, 0)	Μ ⁽³⁾ _{μν} , αβ, σρ	7
		$\sum n = 100 = (6 \times \frac{3}{2} + 1)^2$

$$\vec{J} = \begin{bmatrix} \vec{S} & 0 & 0 \\ 0 & \\ 0 & \vec{R} \end{bmatrix}, \quad -i\vec{N} = \begin{bmatrix} \vec{S} & 0 & 0 \\ 0 & \\ 0 & \vec{T} \end{bmatrix}, \quad (12)$$

$$\vec{R} = \begin{bmatrix} \vec{S} & 0 \\ 0 & \vec{\Sigma} \end{bmatrix}, \quad \vec{T} = \frac{1}{s} \begin{bmatrix} (s-1)\vec{S} & \vec{t}^{\dagger} \\ \vec{t} & (s+1)\vec{\Sigma} \end{bmatrix}, \quad (13)$$

where \vec{S} and $\vec{\Sigma}$ are the spin matrices for spins sand s = 1, respectively, and \overline{t} are $(2s+1) \times (2s-1)$ dimensional vector matrices (which are proportional to the matrices $\sigma^{[s-1,s]}$ discussed in a previous paper¹⁰). For $s = \frac{1}{2}$, $\vec{R} = -\vec{T} = \frac{1}{2}\vec{\sigma}$ and $M_{\mu\nu}$ and $\gamma_5 M_{\mu\nu}$ contain only six linearly independent matrices \vec{J} and $\gamma_5 \vec{J} = i \vec{N}$. But when $s \ge 1$, \vec{R} and \vec{T} are linearly independent, which means that $M_{\mu\nu}$ and $\gamma_5 M_{\mu\nu}$ contain nine linearly independent matrices, which can be taken to be $J, \gamma_5 J$, and -iN, say.

In the Kramer-Weyl representation the γ_{μ} matrices are given by^{1,2}

$$\gamma_{\mu} = \begin{bmatrix} 0 & -r_{\mu}^{\dagger} \\ -r_{\mu} & 0 \end{bmatrix}; \quad r_{k} = \frac{i}{s} \begin{bmatrix} S_{k} \\ -t_{k} \end{bmatrix}, \quad r_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$$
(14)

The matrices \vec{S} , $\vec{\Sigma}$, \vec{t} satisfy the algebra^{1,2}

$$t_{k}S_{I} - \Sigma_{I}t_{k} = i\epsilon_{kIn}t_{n} ,$$

$$t_{k}S_{I} - \Sigma_{k}t_{I} = is\epsilon_{kIn}t_{n} ,$$

$$t_{k}S_{I} - t_{I}S_{k} = (s+1)i\epsilon_{kIn}t_{n} ,$$

$$\Sigma_{k}t_{I} - \Sigma_{I}t_{k} = i(1-s)\epsilon_{kIn}t_{n} ,$$

$$S_{k}S_{I} + t_{k}^{\dagger}t_{I} = is\epsilon_{kIn}S_{n} + s^{2}\delta_{kI} ,$$

$$t_{k}t_{I}^{\dagger} + \Sigma_{k}\Sigma_{I} = -is\epsilon_{kIn}\Sigma_{n} + s^{2}\delta_{kI} ,$$

$$t_{k}t_{I}^{\dagger} - t_{I}t_{k}^{\dagger} = (2s-1)i\epsilon_{kIn}S_{n} ,$$

$$t_{k}t_{I}^{\dagger} - t_{I}t_{k}^{\dagger} = -(2s+1)i\epsilon_{kIn}\Sigma_{n} .$$
(15)

The operator \overline{T} in (13) can be split into two parts:

$$\bar{\mathbf{T}} = \bar{\mathbf{R}} + \bar{\mathbf{Q}}; \quad \bar{\mathbf{R}} = \begin{bmatrix} \bar{\mathbf{S}} & \mathbf{0} \\ \mathbf{0} & \bar{\mathbf{\Sigma}} \end{bmatrix}, \quad \bar{\mathbf{Q}} = \frac{1}{s} \begin{bmatrix} -\bar{\mathbf{S}} & \bar{\mathbf{t}} \\ \bar{\mathbf{t}} & \bar{\mathbf{\Sigma}} \end{bmatrix}. \tag{16}$$

By means of the algebra in (15) one can show that

$$[R_n, Q_n] = 0, \quad Q_n^2 = 1 \tag{17}$$

where $R_n \equiv \mathbf{\bar{R}} \cdot \mathbf{\bar{n}}, Q_n \equiv \mathbf{\bar{Q}} \cdot \mathbf{\bar{n}}; |\mathbf{\bar{n}}| = 1$. From (17) we deduce that

$$e^{\vec{n}\cdot\vec{T}} = e^{\vec{n}\cdot\vec{Q}}e^{\vec{n}\cdot\vec{R}}$$
$$= (\cosh\Omega + \vec{Q}\cdot\vec{\Omega}\sinh\Omega)e^{\vec{n}\cdot\vec{R}} , \qquad (18)$$

which is a useful relation to study the transformation properties of the wave function $\left[\Omega = \left| \hat{\Omega} \right|, \hat{\Omega} \right]$ $=(1/\Omega)\overline{\Omega}]$. A helicity spinor can then be written:

$$u(p\sigma) = e^{-i\vec{\theta}\cdot\vec{j}}e^{-i\omega N_3}u(0\sigma)$$
$$= \frac{e^{\sigma\omega}}{\sqrt{2}} \begin{pmatrix} \chi_{\sigma}^{[s]}(\hat{p}) \\ [\cosh\omega - (\sigma/s)\sinh\omega]\chi_{\sigma}^{[s]}(\hat{p}) \\ \sinh\omega f(s,\sigma)\chi_{\sigma}^{[s-1]}(\hat{p}) \end{pmatrix}, \quad (19)$$

where

$$u(0\sigma) = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi_{\sigma}^{[s]} \\ \chi_{\sigma}^{[s]} \\ 0 \end{pmatrix}$$

is the rest spinor. $\chi_{\sigma}^{[s]}(\hat{p}) \equiv e^{i\hat{\theta}\cdot\hat{S}}\chi_{\sigma}^{[s]}$ and $\chi_{\sigma}^{[s-1]}(\hat{p}) \equiv e^{i\hat{\theta}\cdot\hat{S}}\chi_{\sigma}^{[s-1]}$ are helicity spinors which satisfy
$$\begin{split} &\tilde{s} \cdot \hat{p} \chi_{\sigma}^{[s]}(\hat{p}) = \sigma \chi_{\sigma}^{[s]}(\hat{p}) \text{ and } \bar{\Sigma} \cdot \hat{p} \chi_{\sigma}^{[s-1]} = \sigma \chi_{\sigma}^{[s-1]}(\hat{p}), \text{ respectively, and } f(s,\sigma) \text{ is given by} \\ &(1/s) t_{s} \chi_{\sigma}^{[s]} = f(s,\sigma) \chi_{\sigma}^{[s-1]} [f(s,\sigma) = 0 \text{ for } \sigma = \pm s]. \end{split}$$

Using the algebra in (12) we find

$$\gamma_{5} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & \\ 0 & \frac{1-s}{s} & 1 \end{bmatrix}, \qquad (20)$$
$$\gamma_{\mu}\gamma_{\mu} = (5-2s) + (1-2s)\gamma_{5} ,$$
$$M_{\mu\nu}M_{\mu\nu} = 2s[3+(1-2s)\gamma_{5}] .$$

The matrices corresponding to the representation (1,1) defined in (4) are given by

$$\begin{split} \gamma_{\mu\nu} &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \\ 0 & \\ 0 & \\ 0 & \\ \end{bmatrix}; \\ \gamma_{44} &= \frac{1}{4s} \begin{bmatrix} (2s-1) & 0 \\ 0 & -(2s+1) \end{bmatrix} \\ \gamma_{k4} &= \gamma_{4k} &= \frac{i}{2s} \begin{bmatrix} 0 & -t_k^{\dagger} \\ t_k & 0 \end{bmatrix}, \end{split}$$
(21)
$$\gamma_{kI} &= \frac{1}{s^2} \begin{bmatrix} K_{kI}^{[5]} - \frac{1}{12}s(2s-1)\delta_{kI} & -st_{kI}^{(2)} \\ &-st_{kI}^{(2)} & -K_{kI}^{[5-1]} + \frac{1}{12}s(2s+1)\delta_{kI} \end{bmatrix}; \\ t_{kI}^{(2)} &= \frac{1}{2s} (t_k S_I + t_I S_k) . \end{split}$$

 $K_{kl}^{[s]}$ and $K_{kl}^{[s-1]}$ are the quadrupole matrices for spin s and spin (s-1), respectively, i.e.,

$$K_{kl}^{[s]} \equiv \frac{1}{2} (S_k S_l + S_l S_k)^{[s]} - \frac{1}{3} s(s+1) \delta_{kl} .$$

The matrices $M^{(2)}_{\mu\nu,\alpha\beta}$ in (6) are given by

$$M_{k4,14}^{(2)} \equiv L_{kI} = \begin{bmatrix} K_{kI}^{[s]} & 0 & 0 \\ 0 & [(s-1)/s]K_{kI}^{[s]} & t_{kI}^{(2)} \\ 0 & t_{kI}^{(2)} & [(s+1)/s]K_{kI}^{[s-1]} \end{bmatrix}$$
$$M_{k1,m4}^{(2)} = \epsilon_{kIn}L_{nm} , \qquad (22)$$
$$M_{kI,mn}^{(2)} = \epsilon_{kIr}\epsilon_{mnt}L_{rt}$$

and the matrices defined in (5) corresponding to the representation $(\frac{3}{2}, \frac{1}{2})$ are given by

$$\begin{split} \gamma_{\mu\nu\sigma} &= \begin{bmatrix} 0 & -(ir_{\mu\nu\sigma})^{\dagger} \\ ir_{\mu\nu\sigma} & 0 \end{bmatrix}; \\ r_{k44} &= \frac{1}{3s} \begin{bmatrix} (2s-1)S_k \\ (s+1)t_k \end{bmatrix}, \\ r_{k41} &= \frac{i}{s} \begin{bmatrix} -S_1S_k + \frac{1}{3}s(s+1)\delta_{kI} \\ t_1S_k \end{bmatrix}, \end{split}$$

 $\gamma_{klm} = \epsilon_{kln} \gamma_{mm4} - \frac{1}{3}(s+1) [(1-2s) - 2s\gamma_5] \gamma_4 \epsilon_{kln}$

$$-\frac{1}{3}\left[\left(2s^2-5s-1\right)+2s(s-2)\gamma_5\right]\left(\delta_{km}\gamma_1-\delta_{lm}\gamma_k\right).$$

III. MATRICES FOR TRANSITIONS BETWEEN SPIN $\frac{1}{2}$ AND SPIN $\frac{3}{2}$

In the description of interactions where higherspin particles are involved, vertices with transitions between different (integer or half-integer) spin values are used, for example $N\gamma\Delta$ and $N\pi\Delta$ vertices.^{10,12-16} The types of matrices which can operate between a spin- $\frac{3}{2}$ spinor transforming as $(\frac{3}{2}, 0) \oplus (1, \frac{1}{2})$ and a spin- $\frac{1}{2}$ spinor transforming as $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ are given by the direct product

$$[(\frac{3}{2},0)\oplus(1,\frac{1}{2})]\otimes[(\frac{1}{2},0)\oplus(0,\frac{1}{2})]$$

$$= (2,0) \oplus (1,0) \oplus (1,0) \oplus (1,1)$$

 $\oplus (\frac{3}{2}, \frac{1}{2}) \oplus (\frac{3}{2}, \frac{1}{2}) \oplus (\frac{1}{2}, \frac{1}{2})$. (24)

Because of Lorentz invariance the nonquadratic generalization $\Sigma^{[3/2,1/2]}_{\mu\nu}$ of $M_{\mu\nu}$ must satisfy

$$M_{\sigma\rho}^{[3/2]} \Sigma_{\mu\nu}^{[3/2,1/2]} - \Sigma_{\mu\nu}^{[3/2,1/2]} M_{\sigma\rho}^{[1/2]} = i (\delta_{\nu\sigma} \Sigma_{\mu\rho} - \delta_{\nu\rho} \Sigma_{\mu\sigma} + \delta_{\mu\sigma} \Sigma_{\rho\nu} - \delta_{\mu\rho} \Sigma_{\sigma\nu})^{[3/2,1/2]} .$$
(25)

It can be shown that $\sum_{\mu\nu}^{[3/2,1/2]}$ can be given by

$$\Sigma_{ki}^{[3/2,1/2]} = \epsilon_{kim} \Sigma_{m}^{[3/2,1/2]},$$

$$\Sigma_{k4}^{[3/2,1/2]} = -\Sigma_{4k}^{[3/2,1/2]} = \Sigma_{k}^{[3/2,1/2]};$$

$$\Xi^{[3/2,1/2]} = \begin{bmatrix} \overline{\sigma}^{[3/2,1/2]} & 0 \\ 0 & \overline{\sigma}^{[3/2,1/2]} \\ 0 & -(1/\sqrt{3})\overline{\sigma}^{[1/2]} \end{bmatrix},$$
(26)

where^{1,10} $\vec{\sigma}^{[3/2,1/2]} = (1/\sqrt{3})(\vec{t}^{[3/2]})^{\dagger}$ and $\sigma_k^{[1/2]}$ are the Pauli matrices. Equation (25) is also satisfied by $\sum_{\mu\nu}^{[3/2,1/2]} \gamma_5^{[1/2]} [\sum_{\mu\nu}^{[3/2,1/2]} \text{ and } \sum_{\mu\nu}^{[3/2,1/2]} \gamma_5^{[1/2]} \text{ corresponding}$ spond to $(1,0) \oplus (0,1)$]. The matrices corresponding to $(\frac{1}{2},\frac{1}{2})$ are

$$\gamma_{\mu}^{[3/2,1/2]} \equiv i \Sigma_{\mu\alpha}^{[3/2,1/2]} \gamma_{\alpha}^{[1/2]};$$

$$\dot{\gamma}^{[3/2,1/2]} = i \begin{bmatrix} 0 & 0 \\ 2\sigma^{[3/2,1/2]} & 0 \\ (1/\sqrt{3})\sigma^{[1/2]} & 0 \end{bmatrix},$$
(27)
$$\gamma_{4}^{[3/2,1/2]} = \sqrt{3} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1^{[1/2]} & 0 \end{bmatrix}.$$

We observe that $\gamma_{\mu}^{[3/2,1/2]}\gamma_{5}^{[1/2]} = \gamma_{\mu}^{[3/2,1/2]}$. The matrices corresponding to $(\frac{3}{2}, \frac{1}{2}) \oplus (\frac{3}{2}, \frac{1}{2})$ are $\gamma_{\mu\nu\sigma}^{[3/2,1/2]}$ and $\gamma_{\mu\nu\sigma}^{[3/2,1/2]}\gamma_{5}^{[1/2]}$, where

$$\begin{split} \gamma_{\mu\nu\sigma}^{[3/2,1/2]} &\equiv i \Sigma_{\mu\nu}^{[3/2,1/2]} \gamma_{\sigma}^{[1/2]} - \delta_{\nu\sigma} \gamma_{\mu}^{[3/2,1/2]} \\ &+ \delta_{\mu\sigma} \gamma_{\nu}^{[3/2,1/2]} ; \\ \gamma_{k44}^{[3/2,1/2]} &= i \begin{bmatrix} 0 & \sqrt{3} \sigma_{k}^{[3/2,1/2]} \\ (1/\sqrt{3}) \sigma_{k}^{[3/2,1/2]} & 0 \\ - 4 \sigma_{k}^{[1/2]} & 0 \end{bmatrix}, \quad (28) \\ \gamma_{k4i}^{[3/2,1/2]} &= \begin{bmatrix} 0 & -\sqrt{3} \sigma_{k}^{[3/2,1/2]} \sigma_{i}^{[1/2]} \\ \sqrt{3} \sigma_{k}^{[3/2,1/2]} \sigma_{i}^{[1/2]} & 0 \\ (\delta_{ki} - \sigma_{k}^{[1/2]} \sigma_{i}^{[1/2]}) & 0 \end{bmatrix}. \end{split}$$

The matrices corresponding to (1, 1) are

$$\begin{split} \gamma_{\mu\nu}^{[3/2,1/2]} &\equiv \frac{1}{2} \left(\gamma_{\mu}^{[3/2,1/2]} \gamma_{\nu}^{[1/2]} + \gamma_{\nu}^{[3/2,1/2]} \gamma_{\mu}^{[1/2]} \right) ; \\ \gamma_{44}^{[3/2,1/2]} &= \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{3} & 1^{[1/2]} \end{bmatrix} , \\ \gamma_{k4}^{[3/2,1/2]} &= i \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{k}^{[3/2,1/2]} \\ 0 & (2/\sqrt{3}) \sigma_{k}^{[1/2]} \end{bmatrix} , \\ \gamma_{k1}^{[3/2,1/2]} &= - \begin{bmatrix} 0 & 0 \\ 0 & 2K_{kl}^{[3/2,1/2]} \\ 0 & (1\sqrt{3}) \delta_{kl} & 1^{[1/2]} \end{bmatrix} , \end{split}$$
(29)

where $K_{kl}^{[3/2,1/2]} \equiv \frac{1}{2} (\sigma_k^{[3/2,1/2]} \sigma_l^{[1/2]} + \sigma_l^{[3/2,1/2]} \sigma_k^{[1/2]});$ $K_{ll}^{[3/2,1/2]} = 0$. The matrices corresponding to (2.0) are

$$Q_{\mu\nu,\alpha\beta}^{[3/2,1/2]} \equiv \frac{1}{2} \left(\sum_{\mu\nu}^{[3/2,1/2]} \sum_{\alpha\beta}^{[1/2]} + \sum_{\alpha\beta}^{[3/2,1/2]} \sum_{\mu\nu}^{[1/2]} \right) - \frac{1}{4} \left(\delta_{\mu\alpha} F_{\nu\beta} - \delta_{\nu\alpha} F_{\mu\beta} + \delta_{\nu\beta} F_{\mu\alpha} - \delta_{\mu\beta} F_{\nu\alpha} \right)^{[3/2,1/2]}, \qquad (30)$$

where

$$\begin{split} \Sigma_{\mu\nu}^{[1/2]} &\equiv \frac{1}{2i} \left[\gamma_{\mu}^{[1/2]}, \gamma_{\nu}^{[1/2]} \right]_{-} , \\ F_{\mu\nu}^{[3/2,1/2]} &\equiv \Sigma_{\mu\alpha}^{[3/2,1/2]} \Sigma_{\nu\alpha}^{[1/2]} + \Sigma_{\nu\alpha}^{[3/2,1/2]} \Sigma_{\mu\alpha}^{[1/2]} . \end{split}$$

We obtain

$$Q_{k_{4}, 14}^{[3/2, 1/2]} = \begin{bmatrix} K_{kl}^{[3/2, 1/2]} & 0\\ 0 & 0\\ 0 & 0 \end{bmatrix}.$$
 (31)

In contrast with the Joos-Weinberg^{6,7} case, it is *not* possible to obtain an expression like

$$(a + b\gamma_5^{[1/2]}) \Sigma_{\mu\nu}^{[1/2,3/2]} p_{\nu} u^{[3/2]}(p\sigma)$$

which can be identified with the Rarita-Schwinger spinor¹⁷ $u_{\mu}(p\sigma)$ in momentum space.¹⁶ [We have $\sum_{\mu\nu}^{[1/2r,3/2]} = (\sum_{\mu\nu}^{[3/2r,1/2]})^{\dagger}$.] To achieve this, the representation must be doubled.

IV. SOME REMARKS ON INTERACTIONS

If the Feynman rules in momentum space for $s = \frac{1}{2}$ (i.e., the Dirac case) are generalized directly to arbitrary spin (i.e., the Hurley case), the double representation containing both (s, 0) $\oplus (s - \frac{1}{2}, \frac{1}{2})$ and $(0, s) \oplus (\frac{1}{2}, s - \frac{1}{2})$ has to be used. For example, the current in momentum space defined as $j_{\mu}(p'\sigma';p\sigma) = i\tilde{u}(p'\sigma')^{\dagger}\gamma_{\mu}u(p\sigma)$ [where $\tilde{u}(p\sigma)$] = $u(\tilde{p}\sigma); \ \tilde{p} = (-\tilde{p}, ip_0)$] contains both vector and pseudovector parts. This can be seen by transforming $j_{\mu}(p'\sigma'; p\sigma)$ to the Breit frame, where we easily observe that j_{μ} contains an *electric* dipole moment. [The current in configuration space $j_{\mu}(x) = \tilde{\psi}(x)^{\dagger} \gamma_{\mu} \psi(x)$ is of course a pure four-vector because of the Fourier coefficients, which are not present in $j_{\mu}(p'\sigma';p\sigma)$.] If the representation is doubled, the matrices $\gamma_{\mu}, \gamma_{5}, M_{\mu\nu}, \ldots$ are replaced by¹

$$\Gamma_{\mu} = \begin{bmatrix} \gamma_{\mu} & 0 \\ 0 & \bar{\gamma}_{\mu} \end{bmatrix}, \quad \Gamma_{5} = \begin{bmatrix} \gamma_{5} & 0 \\ 0 & -\gamma_{5} \end{bmatrix},$$

$$H_{\mu\nu} = \begin{bmatrix} M_{\mu\nu} & 0 \\ 0 & \bar{M}_{\mu\nu} \end{bmatrix}, \quad \dots \qquad (32)$$

where a tilde indicates space inversion on each four-vector index. The matrix $\eta = \binom{01}{10}$ is now a parity operator in spinor space:

$$\eta \Gamma_{\mu} \eta = \tilde{\Gamma}_{\mu}, \ \eta \Gamma_{5} \eta = -\Gamma_{5}, \ \eta H_{\mu\nu} \eta = \tilde{H}_{\mu\nu}, \dots$$
 (33)

The matrix

$$\Gamma_5 = \frac{-1}{8s(s+1)} \epsilon_{\mu\nu\alpha\beta} H_{\mu\nu} H_{\alpha\beta}$$

is now pseudoscalar.

The covariant propagator for (1) in momentum space is

$$S(p) = \frac{-1}{im} \left[\frac{\gamma \cdot p(\gamma \cdot p + im)}{p^2 + m^2} - 1 \right], \qquad (34)$$

which shows that (1) does not have the drawback of the Joos-Weinberg equation.^{6,7} The Joos-Weinberg equation has false mass solutions, which results in unphysical poles in the propagator.^{16, 18} It is also clear that the propagator (34) does not have the drawback of the (generalized) Rarita-Schwinger^{16, 19} propagator, which is *not* a pure spin object. Moreover, Hurley¹ has shown that (1) has causal propagation. This was also demonstrated by Nagpal,²⁰ who used the techniques of Velo and Zwanziger.²¹ An attempt to give a consistent use of the Hurley formalism in interactions should therefore be worth further study.

- ¹W. J. Hurley, Phys. Rev. D <u>4</u>, 3605 (1971).
- ²W. J. Hurley, Phys. Rev. Lett. <u>29</u>, 1475 (1972).
- ³W. J. Hurley, Phys. Rev. D <u>10</u>, 1185 (1974).
- ⁴W. J. Hurley uses β_{μ} and ϕ instead of γ_{μ} and ψ . In this paper γ_{μ} is chosen to stress the fact that Hurley's equation is a higher-spin generalization of Dirac's equation. Moreover, the matrices constructed here have a certain connection with similar matrices to be used in the Joos-Weinberg formalism. See Refs. 9 and 10. Throughout the paper, the metric $a_{\mu}b_{\mu} = \vec{a} \cdot \vec{b} + a_{q}b_{q} = \vec{a} \cdot \vec{b} a_{q}b_{0}$ is used.
- ⁵K. Johnson and E. C. G. Sudarshan. Ann. Phys. (N.Y.) <u>13</u>, 126 (1961).
- ⁶H. Joos, Fortschr. Phys. <u>10</u>, 65 (1962).
- ⁷S. Weinberg, Phys. Rev. <u>133</u>, B1318 (1964).
- ⁸J. O. Eeg, Lett. Nuovo Cimento <u>4</u>, 223 (1972); Phys. Norv. 6, 153 (1972).
- ⁹A. Sankaranarayanan, Nuovo Cimento 56A, 459 (1968).
- ¹⁰J. O. Eeg, Lett. Nuovo Cimento <u>9</u>, 141 (1974); Phys. Norv. 7, 131 (1974).

- ¹¹The generalized γ matrices defined in (4), (5), (7), and (8) corresponding to representations (a, b) have the same four-vector index symmetry as the generalized Joos-Weinberg matrices $\gamma_{(\mu)}^{[a]} {}^{b]}$ defined in Ref. 10.
- ¹²S. D. Drell and J. D. Walecka, Ann. Phys. (N.Y.) <u>28</u>, 18 (1964).
- ¹³C. H. Albright and L. S. Liu, Phys. Rev. <u>140</u>, B748 (1965).
- ¹⁴P. Stichel and M. Scholz, Nuovo Cimento <u>34</u>, 1381 (1964).
- ¹⁵B. J. Read, Nucl. Phys. <u>B52</u>, 565 (1973).
- ¹⁶J. O. Eeg, Lett. Nuovo Cimento <u>13</u>, 14 (1975).
- ¹⁷W. Rarita and J. Schwinger, Phys. Rev. <u>60</u>, 61 (1941).
- ¹⁸J. O. Eeg, Lett. Nuovo Cimento <u>5</u>, 591 (1972); Phys.
- Norv. 7, 21 (1973).
- ¹⁹C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).
- ²⁰A. K. Nagpal, Nucl. Phys. <u>B72</u>, 359 (1974).
- ²¹G. Velo and D. Zwanziger, Phys. Rev. <u>186</u>, 1337 (1969).