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Hurley's Seld equation for arbitrary syin
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A complete set of covariant transforming matrices operating in the spinor space of Hurley's field equation for
arbitrary spin are constructed. Similarly, matrices for transitions between spin 1/2 and 3/2 are also
constructed.

I. INTRODUCTION

II. COMPLETE SET OF MATRICES
FOR ARBITRARY SPIN

The number and types of such matrices are given
by"" the direct product

[(s,O)(s -e e)l@[(s,0){s -e, e)]
as as-X/a

(l, O) 8 2 Q (j,e) 8 (l, 0) 8 (l, 1)
t =h'a

(2)

(l is integer and j half-integer). Let M„„=-M„
be the six generators of the homogeneous Lorentz
group in the (s, 0) 6(s ——,', —,') representation. For
all spins s ~ 1 we define

-1
8s(s+ 1)

M (3)

Recently Hurley""' has presented a relativistic
field equation which transforms according to the
(s, 0)$(s —e, e) [or (O, s)$(e, s ——,)] representation
of SL(2, C) as a generalization of the Dirac etlua-
tion, viz. ,

(y,.p„-im) P(x) = 0, (1)

where the field g(x} has 6s+ 1 components and the
generalized y„matrices transform covariantly, as
for the Dirac case.' The equation needs no sub-
sidiary conditions, and the field has 2s —1 depen-
dent components which vanish in the rest frame
in momentum space. If parity symmetry is to be
included in the usual way, the representation must
(except for s = e) be doubled to yield the direct sum
of (s, 0)$(s ——,', e) and (O, s}$(—,', s ——,'). This, how-
ever, leads to difficulties in the field-theoretic
treatment of the fieM satisfying (1}.""' Hurley
shows' that covariance of the equation can be real-
ized in the (6s+ 1)-dimensional space by replacing
the effect of the parity matrix g by a differential
operator which reverses the three-momenta of the
components of P(x); i.e. , the parity transformation
is nonlocal (in contrast with the Dirac and Joos-
Weinberg cases""').

1y„,=.[y-„-,y.]..~'„. ,
2

y~.e= &M ~v&a+ ~~.a

M~~].~e=4[Mp~~M~e]++ &[Ms~ Msel + ~e, e ~

(6)

M,„ is the dual of M„„, i.e., Mse„=;se„—~—e.y,
is. of course not a pseudoscalar matrix for s & 1
because we have no parity transformation in the
spinor space. For s ~ a we define

j. f'

yyuyp =e [ypue&ypL+ peep

= 'liS&2& g5j &voyly 1'"'P,vsegfy+ P, veto ~ (8)

M„„~e p=—(M„„Moe, + ' ')+ „„~e . ( )

S',„=-e [(5 —2s)+ (1 —2s)y,]6„„,
L'„„,= --,'[(2s' —2s —1)+s(2s -1)y,]

x'(b„,y„—b„,y „),
4„„~e= e s(s+ 1)'Yes pvee

(10)

+ z s[-3+ (2s —1)y,](5„5„e—6„eb„) .

In Table I the linearly independent matrices for
s = e are given. [For s = 1, only the representa-
tions up to (2, 0) are present, and (2, 0) occurs
only once for s = 1 just as (3,0) occurs only once
for s = —,.] For a given representation (a, b) the
number of corresponding matrices, which are
linearly independent of the total set, is n= (2a
+ 1)(2b+ 1).

The generators M„v are given by"'

Mai = &a)~~~ ~&4= -M,a= -zN

The 4I &'s in (4)-(9) are chosen in such a way that
the matrices defined become traceless, i.e. , y„„
=0, y„=0, M„",„=0, and so on. Moreover, the
6'&„&'s involve combinations (symmetrized in the
right way) of Kronecker 6's, y„and some of the
matrices defined in an equation before the actual
one." For example,
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TABLE I. Linearly independent matrieee far s=).

Representation

(0, 0)6 (0, 0)

[(1,0)e(0, 1)je (1,0)

(2, 2)(S& 2)

Matrices

1» 'Y5

M]lv, y5Mpv

Ypt Y$ Yp

Number of matrices, n

(2, a)(r, 2)

(2, 0)e (2, 0)

(2 1)

(2, a) (2, r')

(3, 0)

Ypvae Y5~pva

M p v, age 'Y5M pv, ay
(2) (8)

Ypvneae Y5 Ypvnsa

(3)Mpv, ag, ap

10

Pe=100=(ex )+1)2

%$~
S 0 0 S00

0 „0

J= 0 -i¹0
8 T (12)

The operator T in (13) can be spbt into two parts:

SO 1 -57
T=H+Q a=- Q-=-

0Z ' tZ
80

R=
0Z

(s -1)S t~

S (s+ 1)Z
(13)

Hy means of the algebra in (15) one can show that

[R„,q„] =o, q„'=1

where 8 and Z are the spin matrices for spins s
and s —1, respectively, and F are (2s+ 1)x (2s —1)-
dimensional vector matrices (which are propor-
tional to the matrices rr ' '" discussed in a pre-

1vious paper' ). For s = 2, 8 = -T = &o' and M„„and
y,M„„contain only six linearly independent ma-
trices J and y,J=zN. But when s~ 1, 8 and Tare
linearly independent, which means that M,„and
y,l„„contain nine linearly independent matrices,
which can be taken to be J, y,J, and -iN, say.

In the Kramer-Acyl representation the y„ma-
trices are given by"

where R„=-8 n Q„=-Q n ~n~= 1. From (17) we
deduce that

e5.7 e5.$e5.R

= (coshA+Q ~ A sinhA)e '",
which is a useful relation to study the transforma-
tion properties of the wave function [A-=~ A ~, A
-=(1/A)5]. A helicity spinor can then be written:

u(pe}= e "re '""h N(oo)

0

0

,. -S, - (-1)
0)'

X.'"(P)
efyu

[ oosho- (o/s)sinho]hi". (p~), (ih)

s(nho)f{s, o)h,""(P) j
The matrices S, Z, t satisfy the algebra' &'

ter —~ rta = i&rtrntn y

tks r ~ktr ~~ ~Or ntn

t)Si -tiSa= (&+1}ie)~.t.
Z~t, —Z, te = i(l —e)eq, ))t

8 Sr+ t))ti =i)sear+~+ s 0»

tqt, +Z~Zg--aeah, p„+e 0», ,

thtt, —t~~t~ ~ (2s —1)ieh,p„,
tht t, —tgt)t, = —(2s+ 1)ia~g„Z„.

where

(„)o
«(oo) =

I
h!"

~"
1

'&o

is the rest spinor. Xihi(p) =e ~
X& and X&h-h&(p)

-=e' ~X,"""are helicity spinors which satisfy
S,pXIs)(p) oXIhi(p) snd Z, pXih-xI oXIe.xi(p) re
spectively, and f(s, (r) is given by
(lfe)t X' =f(e &)X [f(s,a) 0 for e=as]

Using the algebra in (12) we find
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0

y, = 0

0
t. -s

1s

(20)

re v

y„y„=(5 —2s)+ (1-2s)y, ,

M„PI„„=2s[3+ (1-2s)y, ] .
The matrices corxesponding to the representation
(1,1) defined in (4) are given by

000

HI. MATRICES FOR TRANSITIONS BETWEEN

SPIN q AND SPIN 2

In the description of interactions where higher-
spin particles are involved, vertices with transi-
tions between different (integer or half-integer)
spin values are used, for example Ny& and Nm~

vertices. '""" The types of matrices which can
opex'ate between a spin-& spinor transforming as
(-', , 0) 8 (1,~) and a spin--," spinor transforming as
(-,', 0)8 (0,—,') are given by the direct product

[(l,o) 8(l, l)][(l, o) 8(o, l)]
0

1 (2s -1)
44

0
= (2, 0)8 (1,O) 8 (1,O) 8 (1,1)

8 (-', -') 8(-', -') 8 (-', -') . (24)
0 —(2s+ 1)

0 —tk~

k4 4k pt„0
E~, -tss(2s -1)5a,rk1 2S st(2)

k1

(21)

—Stk1
(2)l'

+ ~s(2s+ 1)5qg

Because of I.orentz invariance the nonquadratic
generalization Z~„'v"'/23 of M „must satisfy

~t.3/23gt3/2 1/23 +23/2 1/23~t. l /23
Op yv gV OP

ta'2~' =-
2 (taS, + t,Sa) .2s

X,'f' and E„~» are the quadrupole matrices for spin
s and spin (s —1), respectively, i.e. ,

&of' =-2 (SA+SA)'" —3s(s+ 1)5gg ~

The matrices M~„'„' ~ in (6) are given by

Kt can be shown that Z 3/2. 1/23 can be given by

gE3/2, 1/23 ~ +f3/2 1/23
k1 k1m)

gl S/2, 1/23 ~ ~(3/2, 1/23 ~~3/2, 1/23 .
k4 4k .

(25)

E' 0k1

M~,', = L„,= 0 -[(s -1)/s]Kqf

(2)
ill ~ ttl4 eN*nm
(2)

Mkg ~ tnn ~k1r~mnt~t't

, 0

t(2)
k1

[(s+ 1)/s]Z"-»

(22)

Zrg vg

and the matrices defined in (5) corresponding to
the representatien (—,„&) are given by

0 - (it „„,)'
yP VQ

0

~&3/2, 1/23

ct ~/~, x /2)

0

0

PE 3/2s1/23

(1/~3)P x /ml

P CR tM

0 0

where"" o~' "' "=(1/V3)(+t' ")~ and a ~' "are thek

Pauli matrices. Equation (25) is also satisfied by
~~3/2. 1/23 ~1/» r~&3/21/23 and Pt:3/2 1/23yt:1/23 coxxegv y5 L pv '

pv 5

spond to (1,0)8 (0, 1)]. The matrices corresponding
to (2,—,') are

1 (2s - 1)Sq
rk44

3s (s+ 1)t,

i -S )Sq+ ss(s+ 1)5~~

S tSk

t l, /3
~ 2~& /. /3

(1/~3)Pa/23 P

0 0

y[s/2, x/23 ~3 P P

(|1/23 0

(27)

I e~(„y~4 —3(8+ 1)[(1—2s) —2sy~]y4e~~„

—3[(2s' - Ss —1)+ 2s(s - 2)y, ](5, y, - 5, y, ) .
(23)

We observe that y~ 2'1 2 y ~' "~y '/"' " The ma-
trices corresponding to (a~, &)8 (I,&) are y" "' "
and yt 3/2s1/23yf1/23

QVO 5
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yE 3/2s 1 /2) Zpf 3/2t 1 /2)22/(1 /2) p y(3/2t 1 /2)
QVO fkV r a Voyit,

~E 3/2R 1 /2)
ggyv

yE3/2e 1/R)
2 (1/~3) E3/2e 1/21

k44 k

4+1/2)
k

E 3 /2e 1 /2] — off f 3 /2e 1 /2 )ffE 1 /2)
yk4l k

(f) &El /2)& El /2))
N k j

ref 3 /2e 1/2)

~3oE3/2. 1/2)c El/2)

E3/2t 1/2& = i i i 3/2R 1/2) El /2)+ t.3/2y 1/23 Pl/2)i
V V

0

f. 3/2s 1 /23 0r44

0

0 ~3 1E1/2]

0

The matrices corresponding to (1, 1) are

which can be identified with the Harita-Schwinger
spinor" u„(po) in momentum space." [We have
Zf1/~ 3/2) (ZE3/2. 1/2))t ] To achieve this, the rep-
resentation must be doubled.

1V. SOME REMARKS ON INTERACTIONS

If the Feynman rules in momentum space for
s =2 (i.e. , the Dirac case) are generalized directly
to arbitrary spin (i.e. , the Hurley case), the
double representation containing both (s, 0)
E9 (s —2, 2) and (O, s) 8 (R, s —2) has to be used. For
example, the current in momentum sPace defined
as j„(p'ff',po) =iu(p'o')ty„u(po) [where u(pEf)
= u(Pa); P = (-p, iP, )]contains both vector and pseudo-
vector parts. This can be seenby transforming
j„(p'll'; pff) to the Breitframe, where we easily observe
that j„contains an electric dipole moment. [The cur-
rent in configuration space j„(x)= ftt(x) y„P(x) is of
course a pure four-vector because of the Fourier
coefficients, which are not present in j„(p Ef';pEf).]
If the representation is doubled, the matrices
y»y»M». . . are replaced by'

(3 2 1/2] prk4
gC3/P» 1/23

0 (2/Ve3 )&Elh)

(29) y„o
Fp 0

p

y5 0
0 -y,

(32)
0

t.3/2s 1/2i 0 ~f 3/22 1 /23
ykl kl

0 (1&3)5„1

, Mp„p
~pvz

where a tilde indicates space inversion on each
four-vector index. The matrix f] =('„') is now a
parity operator in spinor space:

Where KE3/2e1/2) -1 /f)E3/2e1/2)f]E1/2) + Eff3/2elh)f)E1/2)i.
kl 2i k l 1 k

KIRf "' ' =0. The matrices corresponding to (2.0)
are

~ E3/Re 1/2) —L/g f 3/Re 1/Rlgf1h) +

gE3/Re]�

/Z]nfl�/2))

~ /LVt OtB 2 i gV 0EB + eB gV

gI'pg =J'p, qF5g =-I'5, qHpvg =Hp„. . . .
The matrix

«1
73=3

( 1) eR„„RH~ ff

(33)

—3 (&,a&~ —&.n&2)f+ E).RF ~a

)E3/2el/21
gg Va (30)

is now pseudoscalar.
The covariant propagator for (1) in momentum

space is

where

nfl/2) [yf1
/2) yE1/2)]1

gV 2' g 0 V

~53/2s1/2) = gf 3/2s1/2)g t.l/23 + g E3/2s1 /2)gt. l /23
PV QO Vf)t VO gQ

We obtain
' ~f3/2s1 /2) pkl

~ t:3/2R 1/23
~k4s j4 0 (31)

In contrast with the Joos-Weinberg"' case, it is
not possible to obtain an expression like

(f)+ Qyfl/2))+El/2e3/2)p E3/2)(pff)
5 PV

( )
-1 y p(y p+im)
im P +m (34)

which shows that (1) does not have the drawback
of the Joos-Weinberg equation. " The Joos-Wein-
berg equation has false mass solutions, which re-
sults in unphysical poles in the propagator. "" It
is also clear that the propagator (34) does not have
the drawback of the (generalized) Rarita-Schwing-
er" "propagator, which is not a, pure spin object.
Moreover, Hurley' has shown that (1) has causal
propagation. This was also demonstrated by Nag-
pal, '0 who used the techniques of Velo and Zwanzi-
ger." An a,ttempt to give a consistent use of the
Hurley formalism in interactions should therefore
be worth further study.
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