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Quantum Poincare covariance of the two-dimensional string
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We show that the free massive quantum string in two space-time dimensions is Poincare covariant. This is

true for both lightlike and timelike gauge choices. When the massless limit is taken, the massless string is also

seen to be Poincare covariant. The set of classical string variables which is chosen to define the quantum

theory drastically affects the proof of Poincare covariance and also the mass spectrum. We therefore suggest

that other dynamical systems may exhibit similar phenomena.

The quantum Poincard covariance of the two-
space-time-dimensional string systems treated
in Refs. 1 and 2 was discussed only very briefly.
Here we present an extended footnote giving the
detailed arguments for such systems without
string-string interactions.

I jghtlike gauge. We choose the metric

=g = —1 g =g

and the gauge

1x' (&, o) = —x (v, o) = (x'+ x') = r .
2

(2)

The N masses at the end points and folds joined by
the string are then described by the variables
p„',x„(n= 1, . . . , N), which obey the commutation
relations

[p„',x„-]=f6„„.
Note that p„'=m„[—(&x„/&v)'] ' ' is classically
positive-definite. Here we treat the quantum-
mechanical operator P„'as a Hermitian operator
acting on a space of states with only positive eigen-
values of p„'. Following the usual arguments, "
we find the Poincard-group generators

N ~ 2 N 1
a-=P-=g ", +yg ~x-„„-x„-~,

p„=(x„—x„„)P',n=1, . . . , N-1

—+ tc„—v„1=p„'/P', n = 2, . . . , N —1
11, , 1—+ K| ~p~/P i

——K~ ~ =p~/P

(6)

so the invariant mass squared is
2 N-1 2

M2= 2P+P- =
1/N+ a, „1/N+z„-v„

2 N-1
+ /' " +2yg ip„i .

M ' with the individual variables x„,p„' follow
from Eq. (2) and are complicated because, for
arbitrary 7, M ' generates a gauge transforma-
tion on the variables in addition to a naive boost.
However, the gauge-invariant variables M ',P'
have the following simple commutation rules:

[P",P"] =O,

[M'-, P'] =+iP' .

The quantum Poincard algebra is therefore satis-
fied; all ordering ambiguities are resolved by the
choice made in Eq. (4).

We find it useful to make the canonical trans-
formation

P'=g p„,
NI' =7'P ——,

' (x„p'„+p'„x„),
n=

where the operators are ordered in M'
The commutation rules of the boost operator

(4b)

(4c)

Note that P' commutes with x„—x„,„sono
ordering problem occurs. The new variables
obey the commutation rules [e„,p„]=i6„„.

We deduce from Eq. (7) that if we use the light-
like-gauge variables of Eq. (6) we cannot take the
massless limit until the spectrum is calculated.
As shown in the semiclassical and quantum treat-
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g 00 ] gll y F01 F10 O (8)

x'(~, (r) = v .
Let us first examine the classical theory. The

N masses at end points and folds joined by the
string are described by the canonical variables
p„,'x„(n=1,. . . , N) obeying the Poisson brackets

(p„,x„]=-6 (10)

The classical Poincard-group generators in the
timelike gauge (9) are"

H= p (p„m+„')'' /y+~x„—x„„~,(11a)
n= 1 n=

Pn (11b)

M =TP —8, (11c)

ments of Refs. 1-4, the theory possesses a non-
trivial spectrum in the zero-mass limit. We may
use the treatment of 't Hooft' to argue that the
solutions of the integral equation defined by Eq.
(7) are regular in the massless limit, where all
the (renormalized) masses m„-0. In this limit,
Etl. (5) continues to hold and the theory remains
Poincarb-covariant.

Tirnelike gauge. The timelike-gauge case turns
out to be somewhat more complicated. We choose
the metric

where

(Q, H) =P/H

and P/H is the velocity of the center of mass.
Since

(14)

(15)

Q is canonically conjugate to the translation gen-
erator P.

The well-known example of two free particles
illustrates the utility of this transformation. We
have classically

(p 2+ ~ 2)1/2+ (p 2+ ~ 2)1/2

P =Pl +P2,
Q= a/H

= [x (p '+ m ')' '+ x (p '+ m ')' ']/H .

(16)

The canonical transformation from (x,p,x,p, ) to
the new variables (QPhr) is generated by

P(d, —kR' P(d2+ kWExx Ph =x ' +x1 2s 1 ~ +~ 2
1 2 1 2

where e„'=k'+m„2,and

W2 = P2+ (1d, + &O2)2 .

(17)

(18)

As usual, we have p, = BE/Sx„p2=SE/Sx„Q= BE/
BP, 2 = BE/Sh These v.ariables were chosen so
that p, and p, are obtained by boosting the variable
k to a new Lorentz frame,

where

N

a= g x„(p„'+m„2)'/2
n=1

1
+-,'~ (x„+x„.,) ~x„-x„„~.

n=
(12)

p, =(-h P,)/(1-P')'",
P.= (h+ P~,)/(I P')'"-,

where P=P/W is the velocity of the centerof mass.
Substituting p, and p, into the form of H given in
Eq. (16) shows that in terms of the new variables

One can verify that the classical Poincard algebra
is satisfied. However, the ordering of the terms
in B is ambiguous if we try to quantize the x„,p„
variables. In particular, the quantum Poincard
algebra is not satisfied if one simply replaces

(p 2+ 211 2)1 /2 by
1
f x (p 2+ 121 2)1 /2+ (p 2+ 121 2)1 /2g]

There may, of course, exist some ordering pre-
scription which works, but its physical interpreta-
tion would not be as straightforward as the method
we shall present now.

It is well known that the success of canonical
quantization may depend crucially upon the par-
ticular choice of classical canonical variables
used to describe the system. ' Therefore we
search for variables which separate the dynamics
of the system in a convenient way. The best choice
for the overall center-of-mass coordinate is clear-
ly the two-dimensional Newton-Wigner coordinate'

H(P, h, Q, 2') = W, (19)

with W defined by Eq. (18). The invariant mass is
therefore given by

M(h, 2)=(H' —P )'/'=to, +&d, . (20)

i[P, Q]=I, i[n, r]=1, (21)

and expressing the Poincard-group generators as

H=[P'+ ((O + (o )2]'/' (22a)

All dependence of the invariant mass on the center-
of-mass coordinates (P, Q) has disappeared. Eor
othe2choices of 'canonical variables this might not
have been true.

The quantum Lorentz inva, riance of two free pa, r-
ticles is now proven by canonically quantizing the
negro variables (P, Q, h, r),

P=P, (22b)
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M"=7P ,'-(q-H+Hq) . (22c)

One easily finds that the quantum Poincard -group
algebra holds with no ordering problems:

tative features of Eq. (20) are preserved if we
choose the right canonical variables. '

We now canonically quantize the new variables

i[P,H]=0,
i[M",P]=H,
i[Moi H] P

(23)

i[P, q] =1, i[k„,r„]=5

and rewrite the boost generator Eq. (11c) as

M" = ~P ——,'(qH+Hq),

(28)

(29)

8A ea eA Sa
Ore ~An ~An &rn

(24)

Then Eq. (14) becomes a differential equation for
H(pqk»r„),

&H I
[qp H) (25)

along with

For particles interacting via the string, it is
much harder to find the analog of the canonical
transformation (1V), and we shall not carry out
an explicit analysis here. We can, however, give
a convincing general argument that the crucial
features of the timelike free-particle case continue
to be valid. We begin by using Eqs. (12)-(14) to
define the properties of the classical interacting
center-of-mass coordinate q = B/H conjugate to P.
For some set of variables k„,r„,n=l, . . . , N-1,
there must exist a canonical transformation from
the variables

(P„,x„), n=1, . . . , N

to the new variables

(p, q),
(k„,r„).

In principle, the variables k„,r„canbe related to
the p„,x„variables by a boost, just as we found in
the case of two free particles. However, the form
of the finite boost generated by Eqs. (11) and (12)
is more complex because of the gauge transforma-
tion accompanying the naive Lorentz transforma-
tion. Without demonstrating the explicit trans-
formation, we may replace the original Poisson
brackets (10) by the canonically transformed
brackets

8A eB eA ea
(A Hj= —————=

eq ep ap sq

where H is given by Eq. (2V). The quantum
Poincard algebra Eq. (23) continues to hold and
the timelike system is Poincard-covariant. Taking
the massless limit presents no further problems,
so the massless D= 2 string treated in Ref. 1 also
possesses a Poincard-covariant quantum me-
chanics.

The spectrum. Although we have been able to
argue that both the timelike and lightlike gauges
give Poincard-covariant quantum systems, the
determination of the mass spectrum presents a
puzzling problem. We showed in Refs. 1 and 2
that the invariant masses of the no-fold string in
the lightlike and timelike gauges, '

M =, ' +, ' +2yIpI (lightlike),

M = (k'+ ~,')'~'+ (k'+ m, ')'~'+ y I
~

I (timeline),

gave the same semiclassical mass spectra. This
means that for large quantum numbers the two
systems are identical to order I. The quantum
spectra of these systems, however, are defined
by Schrodinger-like integral equations'~; it is by
no means obvious that the quantum spectra. of these
two equations are identical. Yet if they are not
identical, what physical criterion exists for
choosing between them'P We have seen that quan-
tum Poincard covariance does not single out any
particular set of relative variables such as (k„,r„),
(~„,p„),etc. , to be used in defining the quantum
theory.

In particular one could transform to classical
action-angle variables, ""(Z„,8„),and make a
further canonical transformation to harmonic-
oscillator variables,

a = [g ]' ~'e '8»

at [g ]1i2ek8»

One could then quantize the system by taking a„
and a~ to be operators with

{HPj= =0.

The solution of Eqs. (25) and (26) is simply

(25)

and making the replacement

H2(P, q; k„,r„)=P'+M'(k„r„), (2'f)

where M'(k„r„)has no P, q dependence. ' We con-
clude that even in the interacting case the quali-

J„=2(a„a„+a„a„)
in the Hamiltonian. The spectrum of the system
relative to the vacuum defined by the a„,a~ would
then be exactly known. The quantum spectrum
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determined by Eq. (7), for example, would be com-
pletely different, but apparently equally legitimate.

For the massless D=2 string described in Sec.
V of Ref. 1, this procedure gives the mass oper-
ator

I'/y = g nat a„+n, ,
a=1

where an infinite vacuum mass has been absorbed
in the definition of no. This spectrum resembles
that expected from a dual model, but, as we have
noted, is not unique and is not dictated by Poincard
covariance. We further note that the vacuum de-
fined relative to one set of canonically quantized
variables may be quite different from that defined
relative to another set. This may have implica-
tions for the energy of the ground state.

Comments. Our demonstration that the free N-
fold D = 2 string can be formulated so that its quan-
tum mechanics is Poincard-covariant is to be
compared with the Goddard-Goldstone-Rebbi-
Thorn result" for the free D= 26 string. How-

ever, we have not dealt with interacting D = 2
strings, and thus have shed no light on the D = 2
analog of Mandelstam's treatment" of interacting-
string Poincard covariance in D= 26. It may be
necessary to include arbitrary numbers of folds
simultaneously in order to demonstrate interacting
Poincard covariance for the general D=2 string. "

We conclude that a careful choice of canonical
variables is necessary t'o demonstrate that the
string systems described in Refs. 1 and 2 possess
a Poincard-covariant quantum mechanics. The
quantum spectrum, however, may not be unique;
the classical variables which one chooses to quan-
tize canonically determine the spectral properties
of the quantum system. Our observations suggest
that similar phenomena may occur in the Hamil-
tonian formulation of any dynamical theory in any
dimension.

One of us (I.B.) thanks the theory group at UC-
Berkeley, where this work was completed, for its
hospitality.

*Research supported in part by the Energy Research
and Development Administration.

~Research supported in part by the Energy Research
and Development Administration under Contract No.
E(11-1)3075.

~Research supported in part by the National Science
Foundation under Grant No. PHY 75-18444.

~W. A. Bardeen, I. Bars, A. J. Hanson, and R. D. Peccei,
Phys. Rev. D 13, 2364 (1976).

2I. Bars and A. J. Hanson, Phys. Bev. D 13, 1744 (1976).
36. 't Hooft, Nucl. Phys. B75, 461 {1975).
I. Bars, Phys. Bev. Lett. 36, 1521 (1976).

5For example, expressing the simple harmonic oscillator
in polar coordinates gives a different quantum system
from that found using rectangular coordinates. In some
constrained systems, one may even need to make a
noncanonical transformation of the original. coordinates
tsee, for example, E. Del Giudice, P. Di Vecchia, and
S. Fubini, Ann. Phys. (¹Y.) 70, 378 (1972), or A. J.
Hanson and T. Begge, ibid. 87, 498 (1974)].

6F. Bohrlich, Phys. Bev. Lett. 34, 842 (1975), has
advocated the use of Newton-Wigner coordinates for
the string. However, as argued in Bef. 1, Bohrlich's
simple spectrum does not necessarily follow.

For exampl. e, the choice I' =p&+p2 Q 2 (xf+x2),
& =2 (p2-p&), r =x&-x'& fails this requirement.

An example of the expected form for M(kr) in the two-
mass no-fold case is found by going to the P = 0 frame
and setting P2=+& =k, x2-x& =w. Then

H(P =0}=M = (@2+m ~}~~2 + (k2+ m 2}~~~+y(r[

Another example foll.ows from the canonical. transfor-
mation to the action-angle variables given in Ref. 1 for
vanishing masses:

a = y ~+qJ)'~~

It was expbcitly shown in Ref. 1 that the massless
string Hamiltonian can be expressed in this latter form
for any number of folds.

~Note that the canonical Schrodinger equation defined by
M (k„,~„)can still. be altered by making further canoni-
cal transformations among the 4 „andr„variabl.es. In
particular, there should exist a canonical transforma-
tion from the &„,~„variab1.es to the &„,p„variables of
Eq. (6). In Befs. 1 and 2, we showed that the canonical
transformations from timelike or 1+htlike canonica1
variables to action-angle variables gave the same
classical invariant mass. (In the zero-mass limit, we
found simply M2=yJ. ) Thus the action-angle variables
provide an intermediate step in the explicit construc-
tion of a canonical transformation from timel. ike-gauge
variables to lightl, ike-gauge variables.

'OP. Goddard, J. Goldstone, C. Bebbi, and C. Thorn,
Nucl. Phys. B56, 109 (1973).

~~S. Mandelstam, Nucl. Phys. B64, 205 (1973); B69, 77
(1974).

2The interacting no-fold string is apparently Poincare-
covariant by itself, since it was shown in Bef. 4 to be
equivalent to 't Hooft's model of Ref. 3.


