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We develop an effective-potential formalism for studying dynamical symmetry breaking. The potential that we
calculate is single-valued and bounded from below. Our formalism incorporates a stability criterion for
deciding whether the broken-symmetry solution to the theory is the physical one. In lowest-order calculations
in gauge theories we find that the asymmetric theory will be stable if and only if a composite Goldstone boson
can be bound. Our conclusion is that in the weak-coupling approximation there is no dynamical spontaneous
breakdown in gauge theories. We then use the renormalization group to argue that if spontaneous breakdown
occurs at all, it must also occur for arbitrarily weak coupling. The renormalization group also provides us
with evidence that dynamical symmetry breakdown does not occur in infrared-stable theories.

I. INTRODUCTION

The term, dynamical symmetry breaking (DSB)
refers to the occurrence of the Goldstone phenom-
enon in a field theory whose Lagrangian contains
no elementary scalar fields. Goldstone’s theorem
requires that massless bosons accompany any
spontaneous symmetry breakdown''?; in theories
where DSB occurs these bosons must be bound
states.

There are two principal advantages to DSB as
compared to spontaneous symmetry breaking with
elementary scalars. Firstly, a theory with DSB
has fewer parameters and would enable us to cal-
culate, for example, the mass of the Wboson (of
weak interactions) rather than fixing it in terms of
unmeasured parameters in the scalar-boson part
of the Lagrangian. Secondly, the question of
whether a given symmetry is broken or not is a
dynamical one. In theories with Higgs scalars we
can break any symmetry by manipulating the Higgs
Lagrangian.

The possibility of realistic calculations of the
W-boson mass seems quite remote at this time,
but the question of which symmetries suffer DSB
is sufficiently qualitative that we may hope to an-
swer it. In this paper we set up a formalism for
attacking this problem.

There is a simple intuitive necessary condition
for the occurrence of DSB in a given channel: The
forces in that channel must be sufficiently attrac-
tive to bind a zero-mass Goldstone boson. Thus,
most discussions of DSB have followed the seminal
work of Nambu and Jona-Lasinio, and used the
Bethe-Salpeter equation to try to establish the
existence of such a bound state. The existence
of a solution of the Bethe-Salpeter equation is
equivalent to the existence of symmetry-breaking
solutions to the Schwinger-Dyson (SD) equations of
the theory.? However, this method apparently

gives no way for determining which of the sym-
metric or nonsymmetric solutions to the SD equa-

tions is the correct one. What we need is an analog
_of the stability criterion obtained from the effec-

tive potential for elementary scalar fields. We
develop such a stability criterion, and find sur-
prisingly enough that (at least in our approxima-
tion), the existence of attractive forces is also a
sufficient condition for the occurrence of DSB.

Effective potentials for local composite opera-
tors have been used in the literature®'* to study
dynamical symmetry breaking. These potentials
were multiple-valued functions which were un-
bounded from below on some sheets. They also
suffer from ultraviolet problems which in some
cases destroy the interpretation of the potential as
an energy density® (see Sec. I).

A potential for nonlocal operators was intro-
duced by Cornwall, Jackiw, and Tomboulis.® This
no longer has ultraviolet problems but it still can-
not be interpreted as an energy density. In fact,
in free-field theory this potential is not bounded
from below. The problem is that this is a potential
for operators which are nonlocal in #me in the
Heisenberg picture. As a result the corresponding
Schrddinger picture operator is explicitly time-
dependent. If we add this operator to the Hamil-
tonian according to the prescription (H—~H +J¢)
then for nonzero J the system does not have any
stationary states. Thus the argument that V is the
expectation value of the Hamiltonian in a state for
which (¢) = ¢ cannot be carried through. To solve
this problem we define an effective potential for
operators which have only spatial point separation.
We show that this potential is single valued and
bounded from below (see Appendix). We then cal-
culate it to order « in a non-Abelian gauge theory
and show that for reasonable values of « (i.e., @
small enough so that we can believe the perturba-
tive approximation to the potential) the potential
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has positive curvature at the origin. Thus in this
approximation we find no evidence for dynamical
symmetry breakdown.

The plan of the rest of this paper is as follows:
In Sec. II we briefly discuss effective potentials
for local composite operators and their ultraviolet
problems. We also introduce potentials for var-
ious types of nonlocal composite operators and
discuss the relations between them. In Sec. V
we discuss the effective potential for operators
with spacelike point separation to order @ in a
general gauge theory. The actual calculation
of the potential is carried out in the Appendix.
Our results show that the lowest-order potential
does not manifest spontaneous symmetry breaking
for small coupling. We also show that the curva-
ture of the potential is related to the attractive or
repulsive nature of the forces in the Goldstone-
boson channel.

II. THE MOST EFFECTIVE POTENTIAL

The standard tool for investigating spontaneous
symmetry breakdown is the effective-potential
formalism.” Spontaneous symmetry breakdown
occurs when the ground state is not invariant under
a unitary transformation U which commutes with
the Hamiltonian. One can then find a nonsinglet
operator ¢ ([U, ¢] #0) with a nonzero expectation
value in the ground state. To investigate this pos-
sibility we add a term J¢ to the Hamiltonian and
compute the amplitude for the J=0 vacuum to be
unchanged by this perturbation. The function W(J)
is defined as —¢ times the logarithm of this am-
plitude. It is easy to verify that W’(0) is the ex-
pectation value of ¢ in the J=0 vacuum, so spon-
taneous symmetry breaking occurs if and only if
W’(0) #0.

If the Hamiltonian is written as H, +gH, where
H, has a nondegenerate ground state, then to all
orders in perturbation theory in g we will find
W’(0)=0. This does not mean that W’(0) =0 but
only that the nonsymmetric ground states (if any)
do not have a perturbation expansion. It does mean
that if spontaneous symmetry breaking occurs the
derivative of Wis not a single-values function at
J=0. One way of investigating this question is to
introduce the Legendre transform of W:

(@) =W(J)-Jo , (1)
where J is determined as a function of ¢ by in-
verting the equation

W(J)=9. (2)
Multiple values of W(0) will show up as stationary
points of T.

When ¢ is an elementary scalar field it is rela-
tively easy to compute I'" in perturbation theory,

for it can be shown’ to be the sum of all zero-mo-
mentum one-particle irreducible (1PI) ¢ Green’s
functions. In the theories that we are interested
in the symmetry-breaking operator ¢ is a com-~
posite like 3 or A,A* and no such simple com-
putational method exists (at least for local oper-
ators).

There are essentially two procedures that have
been used to get around this difficulty. The first,
introduced in Ref. 3, is to introduce auxiliary
scalar fields into the theory by adding terms to the
Lagrangian like

(¢ =99)* .
Such a term merely equates ¢ to ¥y and does not
change the ¢ equations of motion. The effective
potential for ¢ can be computed using 1PI diagrams
and is related to the potential for Py in a definite
way. The relation is transcendental but one can
show that simple questions about V(Py) (like the
existence of nonzero minima) can be answered
by examining V(). ~

The method of Ref. 3 is convenient in field the-
ories with local quartic couplings, but it becomes
very clumsy when applied to gauge theories.® For
this reason, we introduced in a previous paper*
an alternative method for computing the effective
potential for composite operators. The idea is
very simple: Given a function W(J) which has a
perturbation expansion

W(T)=Wo(J) +aW(J)+a’W,(J), (3)

we can easily compute the effective potential (equal
to minus the Legendre transform) of W as a power
series in o

V(@) =d(@) @ = Wo(Jo(@)) = aW,(J(¢))
- W) =3 WS WL, (@
where J(¢) is the solution of
Wi ldo(@)=¢ .

This formula is universal. It can be used for com-
posite or elementary, local or nonlocal fields. It
can also be used for effective potentials for sev-
eral fields if we replace ordinary by partial deriv-
atives and sum over indices.

An important feature of Eq. (4).is that of all or-
ders in @, V(¢) is expressed as a function of J,,.
The functions W;(J) are easily computed (for small
i) by diagrammatic or functional integral methods,
so it is easy to find V as a function of J,. But

oV _ 0V 54, o (3, -
3p  8J, Bp B, \3J) ’ (o2
aZV_. 82v<%>2 vV aZJ

8¢ 8J2 \og ) TBd, 347 (50)
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FIG. 1. Divergent contributions to the function W(J)
for the operator 39 in free Dirac field theory.

Since in particular

aV, 9V, ad
—_0- 0 "0 = =
5850 o (Vo= V@=0), (®)

we see that 8J,/9¢ never vanishes except at ¢ =0
(because the only stationary points of the potential
for a free-field theory are at ¢ =0). Furthermore,
since there is no symmetry breaking in free-field
theory we have J(0) =0,° so we can investigate
symmetry breaking by looking for stationary points
of Vas a function of J,, without worrying about the
(sometimes complicated) relation between J, and
@. Equation (5b) tells us that the curvature of V

at the stationary point can also be easily expressed
(as a function of J;) in terms of the W;.

For local operators the results of this method
are of course equivalent to those of the aux-
iliary-field technique. Unfortunately, these re-
sults are invalidated by ultraviolet divergences.
The introduction of composite operators into a field
theory introduces divergences above and beyond
those that are dealt with in the ordinary renormal-
ization program. If we are dealing with an opera-
tor of canonical dimension less than 4 and looking
only at matrix elements of T products of this oper-
ator and the fundamental fields in the theory, then
all of the new divergences can be absorbed into a
wave-function renormalization of the composite
operator. However, when we look at vacuum ma-
trix elements of T products of the operator with no
fundamental fields, new divergences arise. In fact,
these new divergences arise even in free-field
theory. For example, the graphs of Fig. 1 con-
tribute divergences to the two- and four-point vac-
uum matrix elements of the operator ¥y in a free
Dirac theory. Since they contribute only to vacuum
matrix elements, these divergences may be elim-
inated by c-number counterterms. Moreover, one
can easily argue* that to all orders in perturbation
theory, these counterterms are local polynomials

(of degree 2 sd <4) in the source J. Thus they can
contribute neither to scattering amplitudes (be-~
cause of their locality) nor to W*(0).

However, in any finite order of perturbation the~
ory, these new counterterms do contribute to the
structure of the approximate effective potential.
Thus the effective potential will appear to depend
on a new arbitrary parameter, the finite piece of
the vacuum counterterm. By a suitable choice of
this parameter we can make minima of V appear
or disappear at will. On the other hand, as we
have mentioned above, the stationary points of the
exact V must be independent of this parameter.

This is bad enough, for it makes nonsense of any
perturbative calculation of V, but the vacuum
counterterms cause an even more serious problem
with the effective potential. The argument® that
the effective potential is an energy density depends
crucially on the fact that we add a term to the Ham-
iltonian which is linear in the source J. The vac-
uum counterterms, by forcing us to add higher-
order terms in J to the Hamiltonian, destroy the
possibility of interpreting V as an energy density
and thus rob us of our stability criterion.'®

It seems to us that all of these ultraviolet prob-
lems must be irrelevant to the physics of spon-
taneous symmetry breakdown, which is really a
low-energy, infrared phenomenon. The simplest
way to avoid these problems is to separate the
points in the composite operator, that is, to study
nonlocal operators. These are perfectly good
signals for spontaneous symmetry breaking: If a
nonsinglet nonlocal operator has an expectation
value then the vacuum cannot be invariant under
the symmetry.

Now that we have decided to investigate nonlocal
operators, we are faced with an embarrassment
of riches. Even if we do not consider boson opera-
tors, we can study the vacuum expectation value
of any operator of the form

or= [a4 1) pix+e), )

where, for each €, f(€) is a matrix in spin and
internal-symmetry space.

If we were solving the theory exactly, the exact
choice of symmetry-breaking operator would not
be very important, but obviously the accuracy of
a perturbative approximation to V(¢,) may depend
crucially on the choice of the function f. How then,
do we decide on the best choice for ¢,?

A possible strategy to follow would be to com-
pute a multivariable effective potential for all the
@5, which is to say a potential for the fermion
propagator. This is the approach of Cornwall,
Jackiw, and Tomboulis.® They show that the ef-
fective potential for the propagator G is given by
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FIG. 2. The lowest-order graph for the effective po-
tentials for fermion-antifermion operators in gauge
theories. The Feynman rules for this graph depend on
the operator being studied.

V(0)=~i [ gk tlins(p)6(p) -5 (p)G(p) +1]

+V,(G), (8)

where V,(G) is the sum of all two-particle irre-
ducible vacuum graphs with internal fermion lines
equal to G. [This result, by the way, is easily
seen using our perturbative formula for the Le-
gendre transform Eq. (4).] If we include only the
graph of Fig. 2 in V,, then the stationarity con-
dition 6V/6G =0 is equivalent to the Schwinger-
Dyson equation for the electron propagator in an
approximation in which the vector-meson propa-
gator and the vertex function are given by their
lowest-order values..

There are several serious problems with the
use of the full potential V(G). Recall that our
principal reason for desiring an effective-poten-
tial formalism for DSB is that it gives us a stabil-
ity criterion for deciding which solution of the
equations of the theory is the correct one. The
basis for this criterion is the argument® that v
is an energy density. This argument does not go
through for the operator y(x)y(y) because it is non-
local in time in the Heisenberg picture and thus ex-
plicitly time-dependent in the Schrodinger picture.
Thus V(G) is not an energy density, and there is
no reason for the sign of its curvature at station-
ary points to have any physical meaning. In fact,
one can easily check in free-field theory that
V(G) is not even bounded from below.

If we want to keep the interpretation of V as an
energy density, then we must restrict our atten-
tion in Eq. (7) to functions f(e) which have support
only for spacelike €. It will also be convenient to
restrict the matrix form of f so that the only possi-
ble symmetric value for the vacuum expectation
value of ¢, is zero. For example to study chiral
symmetry breaking in QED we would take f to be
proportional to the unit Dirac matrix.

Our proposal then is to study the multivariable
effective potential for all operators ¢, satisfying
the above restrictions. We will see in Sec. III
that the task of finding the stationary points of

this potential is even more difficult than the cor-
responding problem for V(G). However, since
the only symmetric stationary point is the one at
the origin, we can learn a lot about spontaneous
symmetry breaking just by studying the curvature
of this new potential near the origin. (Remember
that for f’s with spacelike support, the potential
is an energy density.)

To conclude this section we will discuss the
gauge transformation properties of our formal-
ism. Clearly the nonlocal operators that we are
interested in are not gauge-invariant. There are
two reasons to worry about this. The first is a
question of accuracy: In which gauge will our
perturbative calculations be most accurate? The
second is more serious. In any covariant gauge,
gauge theories are formulated in Hilbert spaces
with non-positive -definite metric, and non-gauge-
invariant operators can create negative-metric
states from the vacuum. Thus, if we work with a
non-gauge-invariant operator, we have no guaran-
tee that its effective potential will really satisfy
the positivity requirements that are needed for
the stability criterion.

The solution is simple: Work only with gauge-
invariant operators. But gauge-invariant nonlocal
operators are generally complicated nonpolynomi-
al functions of the fields. Consider, however, the
operator

i(x){exp [z‘efd‘*zAu(z)J“(z)]}zp(x+e) (9)

in an Abelian gauge theory. J, is a c-number cur-
rent. This operator is invariant under gauge trans-
formations with gauge functions that vanish at in=
finity as long as

8,JH(y) =8*(x —y) = 8*(x =y —€). (10)

In particular, we can pick a purely longitudinal
current

Jy=9,x - (11)

If we now choose to work in the Landau gauge
where 8, A¥ =0 is an operator statement, we find
that the gauge-invariant operator (9) is simply
equal to

P(x) P(x +€) .

Thus, in the Landau gauge the non-gauge-invariant
operators we are interested in coincide with gauge-
invariant operators, and their effective potentials
should behave perfectly properly.'!

We have not been able to generalize the above
argument to non-Abelian gauge theories, but we
believe that a generalization exists. The analog-
ous gauge, where gauge-non-invariant operators
will be equal to gauge-invariant ones, will cer-
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tainly coincide with the Landau gauge in lowest
order in perturbation theory because the non-Abe-
lian part of a gauge transformation is of higher
order in the coupling constant. Thus, for the
present paper, where we will compute the effec-
tive potential only to lowest order, it will be per-
missible to work in the Landau gauge even in non-
Abelian theories.

III. CALCULATION OF THE EFFECTIVE POTENTIAL
IN GAUGE THEORIES

In Sec. III we decided that the best strategy for

studying DSB was to construct the effective po-
tential for operators of the form

fdaei(i)sz(iJr DJIE@)=0,,

where M is some symmetry-breaking matrix. To

J
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do this we must first construct the functions W,
and W, and then use formula (4). As explained in
Sec. III we work in the Landau gauge.

W, is given by the expression

{j d‘x:' Wo(J)= % Indet{ ig6(x = x')~ MJ (x — x")],

. (12)
W) = zl j é—ﬂi;‘ltrln[ﬂ—McT(P)]

4
=2 J(—dz—%‘,trln(1+ >

In writing (12) we have introduced the notation
J(x)=8(x,)J(X) and dropped an infinite term in-
dependent of J. J is the 4-dimensional Fourier
transform of J, and the trace in the last line is
over the internal-symmetry space.

W, is given by the diagram in Fig. 2. Its ex-
plicit value is

M2

pz

T d*pdq 1 1 (p-a)(p -4a), ]
Wiz 3@ap f (b-qF+ic " WP MT (p)+ic V= MT @)+ ie [ (b-qF Bw
_ 28 [ d%dYyq [ . (p-q) —quZ] 1 1
T@rREJ (p-qP { 3pra+2 (p-9qr s F+MET(q) "¢ b7+ MET (D)
- - M M
+3J(p)J (q) trT, FTIETED) Tq T METH(p) } s (13)

where the last integral is Euclidean and the trace
runs over internal-symmetry space. Notice that
we have not assumed that [7,, M]=0 so that we can
study the case of spontaneous breakdown of the
gauge symmetry itself. Qur approximation for
the vector propagator is not a very good one when
the Higgs phenomenon takes place. However, it
is reasonable to assume that one can make a better
approximation by simply adding a mass term to
the denominator of the propagator. We will see
shortly that such a term will have little effect on
our conclusions.

At this point we could remember that J (p) is
independent of p,, do the energy integrations, and
obtain the effective potential for ¢,. This program
is carried out in the Appendix. The resulting ef-
fective potential is single-valued and bounded from
below. However, it is quite complicated, and the
equation for its stationary points is a nonlinear in-
tegral equation which appears to be harder to
solve than the Schwinger-Dyson equations.

Acting on the time-honored principle that dis-
cretion is the better part of valor, we have de-
cided to restrict ourselves to an investigation of
the effective potential near the point ¢,=0. This
may, of course, be a dangerous procedure, for

r

Coleman® has argued that spontaneous symmetry
breaking can occur even if the curvature of the
effective potential near the origin remains posi-
tive. All that is necessary is that there exist
another minimum with an effective potential value
lower than V(¢,=0)=0. On the other hand, in all
extant models of spontaneous symmetry break-
down, the origin does become unstable. We feel
that it is worth the risk to assume that this also
happens in our model.

The effective potential V(¢,) near the origin is
computed, in the Appendix. Instead of examining
it directly, however, we want to present a method
for determining its curvature which we feel has a
better chance of being useful in higher-order cal-
culations. The form of the potential near the ori-
gin is

[a*atap(® k.5, 0@
If we had looked at operators that were nonlocal
in time, the corresponding potential would look
like

fd4pd4qgo(P)K4(p,q)<p(q),
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where K, and K, are related by'?

Ko= 21 BlIAl fapydq el
m 2l
We now make the observation that a sufficient con-
dition for K, to be positive definite is simply that
K, be positive definite. Thus, near the origin it is
reasonable to look at the curvature of the effective
potential for operators that are nonlocal in time.
Of course, if K, has a negative eigenvalue, we can-
not be sure that K, also has one. Nonetheless, we
feel that the relative simplicity of K, makes it a
useful first test for DSB.
We begin our study of K, by noticing that since
it is Euclidean invariant we can examine its posi-
tivity separately in subspaces of functions with
definite O(4) transformation properties. First we
look at invariant functions J(p?). For such func-
tions one can easily show that the first term in
W, vanishes identically.'® It is then easy to com-
pute K, using Eqs. (12), (13), and (4). The result
is

K o4 3e? 1
4(P,9)=p G(P—Q)-WBW, (14)
where

o T MM

tra?

We are therefore interested in eigenvalues of this
integral operator,

2 362 zp(q) 4, _
o) -8 [ 2 cat ). as)

By Fourier transforming we obtain a differential
equation in position space,

- ye) - 32 H . (16)
Writing p(x) =7"2¢(x), we get
o+ (3-32F) Lowmrow.  am

Clearly, the behavior of the eigenvalues of this
equation depends crucially on the magnitude and
sign of B. If B<O0, then for any value of e the “po-
tential” in Eq. (17) is repulsive and we can have no
negative eigenvalues. Even if B is positive we can
only have negative eigenvalues if €% is greater than
272/|B|. Notice that in this case the spectrum will
be unbounded from below since we can get from
any negative to any other by scaling 7.

For arbitrary values of e the operator (14) has
zero eigenvalues corresponding to the two possible
power-law solutions of a scale-invariant equation.

If we now look at functions x(p) with higher val-
ues of the O(4) angular momentum we will find that

they also have non-negative eigenvalues as long as
€®>2m%/|B|. This is because of the repulsive angu-
lar momentum barrier for higher partial waves.

We see that for e2<2r2/|B| the kernel X, (and
thus, a fortiori, the kernel K,) has only non-nega-
tive eigenvalues. Values of e larger than this are
clearly outside the range of validity of our approxi-
mation. We can therefore conclude that, in this
order, the origin remains a stable minimum of the
effective potential and no spontaneous symmetry
breaking takes place.

We can also argue qualitatively that the addition
of a mass to the vector propagator will not sub-
stantially alter our conclusions. In fact we can
guess that the major effect of such a mass would
be to change the 1/#2 “potential” into something
that falls off faster at large », thus reducing the
possibility of negative eigenvalues. (Of course,
the mass term also makes the potential nonlocal,
so our argument is not rigorous.)

Although we have not found spontaneous symme-
try breaking for reasonable values of the coupling
constant, there is one important fact to be learned
from the preceding equations. If the constant Bin
(14) is positive, then K, is unstable for sufficiently
large e, while if B is negative it is stable for all
values of e. To put it another way, if B>0, then
even for small e we have a terndency to break the
symmetry.

The constant B is, however, exactly the internal-
symmetry factor which multiplies the kernel of the
Bethe-Salpeter equation (in the ladder approxima-
tion) for the My channel. The reader may verify
for himself (e.g., by examining QED with one pos-
itively charged and one negatively charged fermion)
that B<0 corresponds to repulsion. So we see that
the tendency toward instability of the effective po-
tential can be completely correlated with the ten-
dency for binding a Goldstone boson. The curva-
ture of the potential at the symmetric point be-
comes negative at exactly the value of e which
binds the Goldstone particle.

Unfortunately, the criterion of attraction does
not help us to understand why (for example) singlet
chirality should break down, leaving SU, (valence)
preserved in a gauge theory of strong interactions.
The forces in all color-singlet channels are known
to be attractive.’ One can even find non-color-
singlet channels with attractive forces, for exam-
ple, by combining two quarks in the 3 representa-
tion into a 3.° -

1t is clear then that to get even a qualitative un-
derstanding of when and how dynamical symmetry
breaking occurs in gauge theories, we must go be-
yond weak-coupling approximations to the effective
potential. Nonetheless, we feel that the machinery
developed in this paper may be useful even in a
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nonperturbative context. We have reduced the prob-
lem of DSB to that of determining whether a cer-
tain kernel is positive definite. This property of

K, can certainly be tested by more sophisticated meth-
ods thanactually computingall of its eigenvalues. It
may not even be necessary to compute K, itself
(e.g., if we can find an approximate integral equa-
tion for K, the positively of the kernel might be
determinable just from the structure of the equa-
tion).

At present we are not in possession of any such
magical nonperturbative methods. We can, how-
ever, use the renormalization-group equations to
shed a little more light on the properties of K.
Since K, is one of the coefficients in the effective
potential of a multiplicatively renormalizable oper-
ator, it satisfies a simple renormalization-group
equation

-|Elo(B) =23 f d3q K,(\5,2d,8)e(Aq)

“xem[-2 [ my(g(t))dt] [ 45,3,

If the theory is infrared-stable (asymptotically
free), then we can make g as small as we wish by
taking A~ 0 (A~ ). Since exp[- 2f“‘" y(t)dt] is
positive, we see that in both ty'pesoof theory K,
will have negative eigenvalues for arbitrarily
small g if it ever has negative eigenvalues at all.
In an infrared-stable theory, the value of the ei-
genvalue goes to — © as g gets small, while in the
asymptotically free case it goes to zero. The lat-
ter behavior is clearly preferable, and this result
reinforces previous conclusions'® abqut dynamical
symmetry breaking in massless infrared-stable
theories.

The fact that the renormalization-group equa-
tions predict DSB for arbitrarily small coupling
does not contradict the explicit results we have ob-
tained previously. In an asymptotically free theory
it simply means that no matter how small we make
the coupling constant, the effective coupling in the
infrared region is large and our weak-coupling
approximation invalid. In an infrared-stable theory
it probably means that DSB does not occur for any
value of the coupling.

IV. CONCLUSION

We have accomplished two tasks in this paper.
The first was to demonstrate that DSB in gauge
theories is a subject of great potential interest as
well as extraordinary difficulty, and that it could
not be attacked by weak-coupling methods. The

9 3
(um R —2y)K3—0, (18)
where y is twice the anomalous dimension of the

fermion field in the Landau gauge.
The solution of (18) of course satisfies

Inx
K,(\p,\q,8) =1 exp [— 2 f v(t)dt]Ks(p, ¢,2(m)),

(19)
dg/dt=p(%), &(0)=g.

Now let us suppose that for some value of the
coupling g, K,; has a negative eigenvalue:

~1Elo(®)= [ a% K5, 8.800(D). (20)

Then,

(In))) 9 (AF). (21)

second task was to build a formalism that could be
used to extract the qualitative aspects of DSB from
a theory with the least possible difficulty. We hope
that we have been sufficiently convincing about the
first point and sufficiently modest about the second.
The composite-operator effective potential
that we have developed is the first to share all of
the nice properties of the effective potential for
elementary scalar fields. It is single-valued and
bounded from below and can be interpreted as an
energy density. These properties enabled us to
study dynamical symmetry breaking by simply
determining the curvature of the potential near the
origin. We were then able to show that DSB did
not occur in the lowest-order approximation to the
potential.

We are convinced that further progress in this
subject will come about only through the intro-
duction of a new nonperturbative approximation
scheme (perhaps the 1/N expansion or the strong-
coupling methods of lattice gauge theories), and
that in the context of such a scheme, the questions
that we have asked will have simple answers. The
physics involved here is too fundamental to be as
complicated as it looks to us now.
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APPENDIX

In this appendix we want to construct the effec-
tive potential for spacelike composite operators of
the form

f PR PE+ I E)

in massless QED. The extension to other gauge
theories is immediate.

We can compute the relevant W functions by sim-
ply doing the p, integrations in the 4-dimensional
W’s of Egs. (15) and (16). For the free-field contri-
bution we get

wgJ @) = f :dpowo( J®)

= (—2.2;)_5 deP[JZ(B) +‘I’)z] 1/2’ (A1)
8w, - 2J(p)
ﬁ)‘ ‘¢(p)-(2")s[J2(‘§)+'ﬁz] 7z (a2)

Note that, for real J, ¢ is bounded:

?®) < - (A3)

-t

The inverse relation to (A2) is

= _ |ple®)
M Ve ) (a4)

So we can construct the effective potential

Voo B = [ 40 G E) W, (I B)

=fd31>I§l { [:(;T)e -¢2(f>)]1/2-(—2%)3} .

(A5)

We have added a constant to U, to enforce the con-
dition U,(0) =0. For any ¢ (p) satisfying the bound
(A3) and vanishing sufficiently fastas |p |-, U (¢)is
a finite positive number. Therefore, for values of
the vacuum expectation value ¢ which can be at-
tained by applying a real external source to the
system, U(¢) is bounded from below.

The only minimum of U, is ¢ =0 [as we already
see from (A2)], so there is no spontaneous break- -
down of chirality in free-field theory.

The next-order correction is obtained by doing
the p, integration in (16). We obtain

2D+ qw, w, + PP, +¢°w, 2+ (D Q) - PPG°

2 3 J(PM@) +p q+w,w
W (J =_e_ fds 3 {_ 1) pWe
) 2(2m)° pq 2 ww, [p-q[(w, +w,+[p-q[)

(2= |p-aP+ (@ 9?-P?q
+ 3 3 ———r +
we[p-qPlw?~(w, - [p-q[F]

Wy wel [P =% = (w, +w,)?]2

2(w, "J p :?1 [)? [ﬁ"‘(w.-Jé; 61) -2w,p+ql
w|p = aflw,? - (w, - |p-q|F]?

(A6)

r

Using Eqs. (A4), (A5), (A6), and (4) one can
write the effective potential to O(a) as a function
of ¢(p).
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