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Phase transition in an O(N) gauge model in two dimensions*
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We study the phase transition properties of the nonlinear O(N) cr model in two dimensions when O(N) gauge
interactions are included. With nonzero gauge coupling, this theory exhibits a first-order phase transition in

the large-N limit. The broken-symmetry phase is stabilized by the Higgs mechanism and Goldstone bosons do not
appear.

Recent].y„Bardeen and Pearson have proposed
a transverse-lattice formulation of quantum chro-
modynamics. ' In this theory, color confinement is
obtained when the vacuum is invariant under the
transverse gauge symmetry. A quark-gluon phase,
where color is not confined, can result if this sym-
metry is spontaneously broken. In this paper we
will study some aspects of the mechanisms which
are responsible for generating such a phase trans-
sition.

The independent gauge degrees of freedom or the
transverse-lattice theory are associated with links
on the transverse lattice. The longitudinal dynam-
ics of a single transverse link consists of a non-
linear SU(3) xSU(3) o model with SU(3) x SU(3) gauge
interactions. For a single transverse link the lon-
gitudinal dynamics is two-dimensional. As the
transverse gauge symmetry is a local symmetry
on the lattice, the phase-transition properties of
a single transverse link are relevant to the phase-
transition properties of the full gauge theory.

We shall study a somewhat simpler though an-
alogous version of the single-link problem. The
model consists of a two-dimensional nonlinear
O(N) o model with O(N) gauge interactions. This
theory has the advantage that the model may be
systematically studied in the large-N limit. The
nonlinear cr model in 2 and 2+& dimensions has re-
cently been extensively studied by Brezin and Zinn-
Justin' and by Bardeen, Lee, and Shrock. ' In this
theory, spontaneous symmetry breaking can occur
in 2+a dimensions but only the symmetric phase
can exist in 2 dimensions. The basic result of our
paper is that the broken-symmetry phase can be
stabilized when gauge interactions are introduced.
The existence of nontrivial phase-transition prop-
erties in two dimensions makes this theory inter-
esting in its own right.

The nonlinear O(N) o model with gauge interac-
tions is described by the Lagrangian

~ =-.'(f~„y)'--,'(G„„,)', (I)

where P is an N-component scalar field with the
constraint P'= f,'. The gauge fields may be written
as an antisymmetric tensor (A,.&, i,j =I, . . . , N).
The covariant derivative is defined by

(D„4)( = s„4;+g&„~;4'g

and the Yang-Mills field strength is given by

G„„,= B„A„,. —BQ„;,+gA„;Q„„+gA„,Q„,~.

In two dimensions this theory is renorma]. izable
with respect to the dimensionless coupling constant
I/f, ', and super-renormalizable with respect to the
gauge coupling constant g'.

This theory may be studied directly using the
methods discussed in Ref. 4. Since the nonlinear
theory is renormalizable, we must be careful to
preserve the symmetry structure of the theory in
our calculation. Dimensional regularization is not
particularly convenient in this case as we would
confront the necessity of including contributions
from the transverse gauge fields. Instead, we
choose to regularize the theory by considering the
linear 0 model in precisely two dimensions. The
nonlinear theory is recovered as a limit of the lin-
ear theory. '

The linearized theory is described by the Lagran-
gian

~ =-.'(I~g)'--.'~.(f.'- y')'- —,'(G„,„)', (4)

where the constraint P =f,' has been relaxed. The
nonlinear model is obtained by taking the limit Ap

~ with f,' and g' fixed. Since the nonlinear theo-
ry is renormalizable, only a logarithmic depen-
dence on Xp can occur and is absorbed by the re-
normalization of f,'. In the large-N limit no such
logarithms appear and the limit may be taken with-
out the renormalization involving Xp.
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The theory is most easily studied in the light-
cone gauge, A „=0, A, =(1/W)(Aa+A, ). The gauge
fields A„, are dependent and may be eliminated in
favor of a "Coulomb" interaction. In this gauge,
the Lagrangian of Eq. (4) becomes

-" =-.'(8„4)' —-'~.(f.'- 4')'

4g-'(4(a 4g)( 8-') '(4;8 4g),

where

8 g
= (aa + 8 g)

1

. We wish to consider the possibility of spontan-
eous symmetry breaking of the O(N) symmetry
where the field, P, acquires a, nonzero vacuum ex-
pectation value. The direction of the symmetry
breaking may be rotated to any fixed axis. There
remains an O(N —1) symmetry. We rewrite the
field, P, as afield, o, which can have a vacuum
expectation value, and fields [w;, i = 1, . . . , (N 1)]-
which have zero vacuum expectation value. We may
probe the broken phase by adding a Lagrange mul-
tiplier, J, to force the o field to have a given ex-
pectation value, f. A spontaneously broken sym-
metry phase exists if fe 0 for J =0 and if this phase
has the lowest vacuum energy. The Lagrangian of
Eq. (5) may be rewritten as

2 = —,
' (ao)'+ —,

'
(8 rr)' ——,'A.,(f,' —o' —rr')' +J(o f)—

',g'(oa -)rr(- 8') '(oa rr, )

,'g'(rr, a—rr))( .8') '-(rr,.a rr,.).t

+g' g ((8,)(- 8 ') '( )&.
'C

+ O(l/N),
I'~ (P) =P +Rafa'-X.a(o'+ w$a

+g'((8 o)(-a ') '(oa )&,

+g

+ O(1/N).

The vacuum expectation value of the o-field equa-
tion of motion may be used to determine the value
of the Lagrange multiplier, J', such that (o), =f.
We obtain the expression

0 =J +X,f,'(rr&, —X,(o(o'+ rr')&,

+g' Q((a rr,.)(-a ') '(&,.8 o)&,.

The various vacuum expectation values in Eqs.
(7), (8), and (9) may be evaluated in leading order
N by using the full propagators for the 0 and z
fields. We obtain the following results:

(9)

The large-N limit of this theory is obtained by
letting N-~ while holding XaN, g'N, f,'/N, and
f'/N fixed. In this limit, a Hartree calculation of
the o and g propagators becomes exact, with the
z mass being determined self-consistently.

The propagators may be computed using the La-
grangian of Eq. (6):

I" '(P) =P2+ rafa' -Xa(3o'+ rr )a

(a) (o&.=f,

(b) (v,&, =0,
2

(c) (o &a =(o)'+,
,

d'k(k' m') '
=f '+-(4rr) ' ln

27r '.'

mQ

2

(d) (rr ), =(N 1),
~

d'k(k' m—,') '—=(N 1)(4rr) 'ln—

(e) ((8 o)( 8') '(oa—)), = —(o&'—,dk(k'- ') '(k +P )'(k -P ) '
27r'.

2 2 y g 2 2 y 2k 3P
(2 )

dk(k —ma )
(2 )2 dk(k ™a)

(k P )2 (10)

=-f —(4rr) ln, +—,
ma

A'
(f)g((a rr, )(-a ') '(rr, a )), = —(N 1)—2, dk(k-'-m„') '(k +P )'(k -P ) '=(N 1)(4rr) 'ln, +-

rr r
A'

(g) (o'), =f '+ Sf(4rr) ' ln
m Q

A'
(h) ( '),o=rrf(N-1)(4rr)-'ln

(i) Q ((8 rr, )(—8 ') '(rr;8 o)&a=f —(N-1)(4rr) 'ln, +
A (N 1)—

7r
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FIG. I. Diagrams summed in Hartree calculation: (a) tadpole, (b) cactus, and (c) rainbow.

The divergent self-energy integrals have been corn-
puted using a Wick rotation and a cutoff, A'.

Using the results of Eq. (10), we may compute
all the large-N contributions to Eqs. (7), (8), and
(9). The propagators are given by

r. (I ') =Z' -m. ',

f ' =m „'(g',
A—(A. o(g )m = —Xofo +RON(4v) 'ln

m. '

+g'N(4v) 'ln A gN
m. '

(14)

r„'(P')=I'-m, ',
where

A
m, =-A,f, 3+3.,f . +X,N(4n) 'ln

mr'

+g N(4v) 'ln

A
m~ =-Xofo'+Aof '+RON(4w. ) 'ln

mr'

+g'f'+g'N(4v) 'ln
mg' r

The Lagrange multiplier is determined by the equa-
tion

A2J =-Xofo f+Xof +f+N(4v) 'ln
m. '

A'
+fg'N(4v) 'ln

mr' r

exp —i dxV = exp i ', dxg

where gistheLagrangian of Eq. (6). Instead of

computing V directly, we shall evaluate 8&V using
the result of Eq. (10). This ensures a. systematic
treatment of all divergences. We obtain

—a, V= -Z+(s,g(o -f), = -Z. (16)

This expression may be integrated by considering
a similar derivative of the mass equation for m, ',
Eq. (11). We obta, in

[1+(A, ,+g')N(4v) '(m „') ']8&m „'= 2f(X, +g').

Now we wish to compute the dependence of the
vacuum energy density, V, on the order parameter,
f. The vacuum energy may be computed from

=f(m, '-g'f '). (12) (17)

The Hartree calculation sums consistently, in
leading order N, all tadpole graphs [Fig. 1(a)], all
cactus graphs [Fig. 1(b)], and all rainbow graphs
[Fig. 1(c)]. All other graphs are nonleading in the
large-N limit.

The m mass, m„', must be determined self-con-
sistently from Eq. (11) and Eq. (12). In the case
J= 0, there are two possible solutions correspond-
ing to the symmetric phase, f= 0, and a spontan-
eously broken phase, ft 0. In the symmetric phase
we have f=0,

When Eqs. (16), (12), and (17) are combined, the
derivative of the vacuum energy becomes

B~V=J=f(m~ —g f )

=-,'[m„'(X, +g') '+N(4v) ']s~m, '- g'f'.

(18)

Equation (18) may be directly integrated to yield
the vacuum energy:

V=-,'m, '(X, +g') '+ —,'N(4v) 'm, ' ——,'gf'+ V„
A'

m„= —Af+A, N(4v) 'ln.
mm'

A N+g'N(4v) 'ln
m. '

In the broken-symmetry phase we have

(13)

(19)

where Vo can depend on A. o, g', and f,' but not on f.
By using our results of Eq. (11), Eq. (12), and

Eq. (19) we may study the phase properties of the
linear O(N) gauge theory in two dimensions. We
summarize the results in Eq. (20):
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A'
m = —X,f,'+3k.,f'+X,N(47t) 'ln

mr'

A gN
+g N(47t) 'ln

m.

theory may be obtained by taking the nonlinear lim-
it of Eq. (21) and Eq. (22). The symmetric phase
is determined by

=0,

A
m, = X,f,—'+X,f'+A, N(4z. ) 'ln

mr'

+g'f'+g'N(4w) 'ln A g N

m. '
(20)

A
fo =N(4z) 'ln

2= 2m Q m

V =-,'N(4w)-'m, '.

(23)

J =f(m, ' gf ),-'
V= —'m 4(A. +g ) '+ —'N(4n') 'm ' —,'g'f . —

'The two distinct phases occur when J =0. The sym-
metric phase is determined by

=0

A'
m„= —Xofo +RON(4m) 'ln

m. '

This phase is characterized by a full restoration
of the O(N) symmetry. As discussed in Ref. 4, the
o. particle forms as a bound state of the nonlinear
degrees of freedom. Since the full O(N) Coulomb
interaction is still operative, only O(N)-singlet
bound states of o and 7r exist in the physical spec-
trum. ' The broken-symmetry phase is determined
by

2
2=m~

+g N(4w) ln
m, '

2= 2m Q m Q 7

(21)
2 A2

f,'=,' +N(4w) 'ln mr" (24)

V=~, '(A. ,+g') '+-', N(4z) 'm, '.
The broken phase is determined by

f =m~

A—(Xo/g )m~' = —Xofo +A, ON(4v) 'ln
mr'

A
+g'N(4n) 'ln

m. '

m, ' =m, '+ (K, g')f'—
= 2(X,/g')m, ',

V=~, '(X, +g') '+ ,'N(4m) 'm—„'—~,'/g'.

Since we are using the linear O(N) model to reg-
ularize the nonlinear O(N) model, we will not dis-
cuss the linear theory but proceed to a discussion
of the nonlinear theory. We note that all express-
sions we have have used are unrenormalized. The
only divergent renormalization necessary in the
large-N limit is a logarithmic divergence in f, .

The nonlinear O(N) gauge theory is obtained by
taking the limit A. ,-~ with all other parameters
held fixed. One might worry that such a limit
might reorder the large-N expansion. However,
we have noted that in two dimensions the nonlinear
theory is renormalizable with only logarithmic di-
vergences. Hence, the large-N limit cannot be
modified by powers of N and no reordering can
occur.

The phase-transition properties of the nonlinear

4
V=-', N(4~)-'m„'--,' + .

In this phase the o is not formed as a bound state.
Only the O(N- 1) Coulomb interactions are opera-
tive with the remaining Coulomb interactions being
screened. The physical states are O(N- 1)-singlet
bound states of z. The broken-symmetry phase
avoids Coleman's theorem' as the Higgs mechan-
ism does not permit the existence of Goldstone
bo sons.

We must now discuss the stability of the two
phases to see the range of couplings where ea,ch
phase can exist and the character of the phase
transition. We introduce a renormalized coupling
constant, h, through the relation

=f '- N(4~)-'in

where M' is a normalization scale, and we define
the fine-structure constant, o. =g'N/4m. Equations
(23) and (34) become the following.

(a) symmetric Phase

1 M—=ln- —, or m '=M'e ' ",
(25)

V=-,'N(4~)-'m „'.
(b) broken symmetry phase-

1 m„' M2
+ln

p
2 0

V=-,'N(4v)-'(m, ' ——,'m, '/o. ).
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FIG. 2. x masses in symmetric phase (I) and broken-
symmetry phases (0, II/ as a function of mass in sym-
metric phase for (a) n =1, (b) ~ =2, and (c) ~ =~.

The symmetric phase can exist for all values of
the coupling constants. The broken- symmetry
phase can exist only if the coupling constant, h, is
sufficiently small. Since the o-model coupling con-
stant is directly related to the mass in the sym-
metric phase, we consider the phase properties
of the theory expressed in terms of this mass. We
denote the w masses in the symmetric and broken
phases by m, ' and m~', respectively. As mentioned
above we use m, ' to parametrize theory in both
phases. In Fig. 2 we plot the m masses in each
phase for different values of the fine-structure con-
stant. In Fig. 3 we plot the vacuum energy for a
fixed value of the fine-structure constant. In Fig.
4, w'e plot the phase-transition line in coupling-
constant space.

By examining Fig. 2, we see that only the sym-
metric phase (I) can exist for m, &n/8 For m, '.
& n/e, the broken-symmetry phase can also exist
with two possible branches (II, III). As we de-
crease the gauge coupling constant (a-b- c), the
region where the broken phase can exist is re-
stricted to smaller values of m, ' or, equivalently,
smaller values of the coupling constant h. When
the gauge coupling constant vanishes (n =0), only
the symmetric phase can exist, in agreement with
the discussions of Ref. 3 and Ref. 4.

Although two broken-symmetry phases can exist

FIG. 3. Vacuum energy as a function of mass in sym-
metric phase for symmetric phase Q and broken-
symmetry phases (II, III).

for m, '& n/e -=0.368m, the phase transition does
not occur until m, 's 0.321m, as seen in Fig. 3. For
small m, ' (s 0.321m), the stable phase is the larger-

~mass broken-symmetry phase (III). The vac-
uum energy is, of course, continuous through the
phase transition. However, both m ' and j' are
discontinuous, which indicates that it is a first-or-
der phase transition. In Fig. 4 we plot the phase-
transition line in coupling-constant space where
region A, is the symmetric phase and region B is
the broken-symmetry phase.

FIG. 4. Phase diagram in terms of coupling constants
for symmetric phase (A) and broken-symmetry phase (8).
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In this paper we have studied the phase-transition
properties of a nonlinear O(N) o model with gauge
interactions. When studied in the large-N limit the
theory exhibits a first-order phase transition. The
symmetric phase is characterized by the generation
of a bound-state o particle degenerate with the m'' s
and by all physical states being O(N) singlet bound
states of cr and z' s. The broken-symmetry phase
is characterized by a residual O(N —1) symmetry.
The v bound states are not formed and all physical
states are O(N -1) singlet bound states. The Higgs
mechanism avoids the necessity of Goldstone bo-
sons and stabilizes the broken-symmetry phase in
two dimensions.

These results indicate that the longitudinal dy-

namics of the gluon fields in the transverse-lattice
theory of Bardeen and Pearson' is rich enough to
support a phase transition in the quark-gluon theo-
ry, as would be expected in 4+& dimensions or if

the number of quarks were to be sufficiently large
as to destabilize confinement phase. The phase-
transition properties of the full gauge theory are of
course much more complex than the simple model
studied in this paper. We do think that the results
of this paper shed some light on the mechanisms
which operate in a gauge theory.

Note added. After this paper was completed, we
received a report by J. S. Kang [Phys. Rev. D
14, 1587 (1976)], who studies the linear 0(N) gauge
model. His calculations include the leading-N con-
tribution from the meson self-interaction but are
to first order in the gauge coupling. Our results
represent the full leading-N calculation of the prop-
erties of the linear and nonlinear O(N) gauge theo-
ries in two dimensions.

W. A. B. would like to thank R. Shrock, R. Pear-
son, and B. W. Lee for useful discussions.
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