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Variational approach to bound states in scalar-gluon field theory
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Two variational approaches are employed to attack the bound-state problem of a charged scalar field
interacting with an Abelian gauge field. The resulting variational equations allow for a qualitative discussion
of all possible physical situations. Boundary conditions play a crucial role in their interpretation. A specially
developed perturbation scheme yields hydrogenlike spectra. "Self-trapping" solutions and configurations with
complete screening of the long-range force are discussed and are shown not to be obtainable by perturbation
for small coupling. Metastable states appear for strong coupling.

I. INTRODUCTION

The problem of finding bound states in a quantum
field theory is an old and still unsolved one. The
related perspective of identifying particles as
bound states with permanently bound constituents
or as spatially bounded configurations of an under-
lying field theory has amplified the problem in its
range and urgency.

In particular, pinciarelli' and Bardeen et al.'
have set up field-theoretical models which display
quarks strongly bound in a scalar-gluon field. The
problem of low-lying bounded configurations is
treated as a variation problem in which the trial
states are coherent with respect to the gluon field
and few-particle states with respect to the con-
stituent field. The essential binding mechanism
in these papers is the trapping in a kink produced
by a nonvanishing vacuum expectation. value of the
gluon field.

As a simple and at the same time physically in-
teresting system we consider charged scalar fields
coupled to neutral massless gauge gluons in. four
space-time dimensions without' spontaneous sym-
metry breaking. We have chosen this theory since
for small coupling it is evidently identical with
scalar electrodynamics for which our intuition is
best supported by experimental and theoretical
knowledge. Contrary to the kink mechanism,
bound states are here produced by the matter field
acting as a source of the gluon field.

Two conceptually very different variational ap-
proaches are proposed. Firstly, we use the energy
component of the gauge-invariant energy-momen-
tum tensor of scalar -g1uon dynamics and minimize
within a set of trial states similar to the ones of
Ref. 2. In a second approach, we take the energy
functional of a generalized Hartree-Fock Anna«
which consists of the energy of an effective gluon
field and the energy of a scalar field in the latter.
The effective gluon field is to reflect the inter-
action of a matter quantum with the rest of the
system; unlike in conventional Hartree-Fock theo-

ry, it is not a known functional of the matter field,
but is varied independently.

The resulting differential equations for the func-
tions characterizing the trial states for either ap-
proach differ from one another a,nd from the clas-
sical Euler-I agrange equations of gluon dynamics
by essential signs with interesting physical con-
sequences.

The aim of our considerations is to give a clas-
sification and interpretation of the various bounded
solutions predicted by the variational equations and
to compare our findings with intuitive physical
expectations. The bounded solutions of our varia-
tional eqUations are fully characterized only after
specifying boundary conditions for the gluon trial
function. Different boundary conditions result in
completely different physical situations described
by the solutions. For instance, it is possible to
prescribe either the strength of an effective point
charge at the origin or the total charge of the sys-
tem. Both turn out to be related by a sum rule.
It is amusing to note that in our generalized Har-
tree-Fock A,nsatz this sum rule, just as in asymp-
totically free theories, acts in such a way that the
effective coupling increases with the distance, al-
though, of course, for general configurations the
underlying quantum field theory is not asymp-
totically free.

Furthermore, we establish the existence of solu-
tions with no effective point charge at the origin,
which correspond to "self-trapping" (i.e. , binding
without any driving term), and the possibility of
solutions with a completely screened long-range
fol ce.

A special perturbation theory is constructed in
the sequel. The essential input there is the identi-
fication of the total energy of the system with the
levels of an associated eigenvalue problem. Rela-
tivistic hydrogenlike spectra, are found and next-to-
leading-order corrections are calculated. Self-
trapping solutions are shown not to be attainable
by perturbing around small coupling constants.

For strong coupling we are able to discuss the
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qualitative features of the system. Interesting
configurations arise: simultaneous self-trapping
and long-range screening, radial charge-density
oscillations and metastable states.

Although it is not at all clear whether the various
bounded states found in the described variational
scheme survive in the full quantum-field theory,
the approach seems interesting enough to be pur-
sued further.

In detail we proceed as follows. In Sec. II we
give a short description of our variational pro-
cedure. The solutions of the variational equations
under the possible boundary conditions are dis-
cussed in general in Sec. IIIA, the perturbation
theory is outlined in Sec. IIIB, and Sec. IIIC deals
with strong coupling. Our main results are col-
lected in Sec. IV.

U = Jt d'x TM, (2.4)

naively normal ordered, with respect to coherent
trial states

(c, se)=c exc(efs'xaese)lc). (2.5)

The creation operator Co~ is defined by the expan-
sion of the matter-field operator

g(x) = Q [q „(x)C„+q„(x)B„"] (2.8)

in terms of Klein-Gordon eigenfunctions for the
motion in the self-consistent external field to be
determined; for the photons, Gupta-Bleuler quan-
tization is adopted.

We find, with cp=—y„

II. VARIATIONAL EQUATIONS

F~p —8~A p BpA~ J9~ =8 28Ap

we get the canonical energy-momentum tensor

T „-F~ F~„+4'„F F~, -Ep~8 A„

+-'[D„4(s.k)*+ (D„4)*s.4
-g„.(ID,q'I'- m'l41')],

(2.1)

(2.2)

which is, as is well known, neither gauge invariant
nor positive definite.

Using the equations of motion, we recast 1"„„
into

T„„=Fq'F„+,' g„„F"F„—+s '(F,
q

A „)
+ 2[Dis g(D sip)*+ (D~ ()*Dc$

—g„.(ID,II'- m'I q'I')], (2.3)

which is gauge invariant up to a locally conserved
divergence.

To approach the problem of finding the ground
state in the quantum field theory defined by (2.1),
we follow closely the polaron analogy outlined in
great detail in Ref. 2. Essentially, this method
consists in minimizing the total energy

As a relatively simple and at the same time
physically relevant system, we choose scalar elec-
trodynamics in four dimensions or better, since
we do not confine ourselves to small coupling,
scalar-gluon dynamics, i.e., a complex scalar
field g, gauge invariantly coupled to the (massless)
gluon field A„. Because of the gauge degree of
freedom, some care has to be taken in the deriva-
tion of variational equations from varying an energy
functional.

From the Lagrangian

d'x E +8 + jg + %+le cp

+m'I q I'+ e'I q I'q, ']. (2.7)

d'x
I q I

' =
1

2(d

Varying under the latter constraint, we find

sq„=e'Iq I'y„(s&y„=o),
(v + i ey)2(p = (x+ eayc2)q),

(2.8)

(2.9a)

(2.Sb)

where the mass and the frequency ~ have been ab-
sorbed in the Lagrange parameter ~ which takes
account of the constraint (2.8).

It is important to note a sign difference when

Eqs. (2.S) are compared with the Euler-Lagrange
equations corresponding to (2.1),

P (2.10a)

p7 + &epclass)2(class [m2 e2(/Bass)2]/class

(2.1Ob)

which we wrote for the sake of comparison for
time-independent classical fields. A similar sign
difference, the importance of which will be dis-
cussed in the sequel, has also been noted by Vin-
ciarelli' in a somewhat different context.

Still another variational model is conceivable.
We imagine a matter quantum to move in a Cou-
lomb-type gluon field, which is supposed to simu-
late the effects of the interaction with the rest of
the system. Thus, we take as the total energy to

The trial function y by definition corresponds to a
stationary state. Hence, with (d as the frequency,
we get

I q I' = ~'I q (X)l',

and the normalization condition is
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be minimized the sum of the gluon-field energy and
the canonical energy of the matter fieM in the
former (i.e., the energy component of the canonical
energy-momentum tensor for a scalar field in a
Coulomb-type external gluon field). This can be
considered as a generalized Hartree-Pock sensate, .
One particle moves in the field generated by the
rest of the system. In ordinary Hartree-Fock
theory this field is a known functional of the par-
ticle fields; in view of the fact that in our case
the gluon field is quantized and that there is no
sharp number of matter quanta, we propose to vary
the effective gluon field as mell. The energy func-
tional to be varied is now

d~x V + V@2+m y2

(2.11)

P(x) and y(x) are gluon- and matter-field trial
functions. We now get

cally different physical situations. In the follow-
ing we shall emphasize two circumstances: In one
solution the long-range component of the gluon
field is completely shielded;4 the other one, ra-
ther, corresponds to a particle which is bound in a
Coulomb potential modified at small distances.

That these two situations will occur can be anti-
cipated from our equations. If there exist solu-
tions with a normalizable matter field at all, then
Eqs. (2.9a), (2.10a), and (2.12a) imply that the
gluon field Q fulfills Laplace's equation 6 Q =0 at
large distances.

For the sake of simplicity we choose rotationally
invariant configurations (other assumptions lead,
in general, to infinitely many coupled ordinary
differential equations). Furthermore, for Eqs.
(2.9b) and (2.10b}we take the trivial solutions
g=—0 and A" =0.

Hence, Eqs. (2.12) assume the form

(3.la)

b, y =(A. —e2$ )q&,

(2.12a)

(2.12b) u,"+ ', —~ u, =O, (3.1b)
which correspond to Eqs. (2.9) if a solution with
&f& =0 is chosen, up to another significant sign dif-
ference. Again these equations differ from the
Euler-Lagrange equations (2.10).

As we shall see in the next section, these sign
differences lead to different solutions which simu-
late even qualitatively different physical proper-
ties, and the following question arises: Which of
the A.ns'htze is the appropriate one to describe
properties of the physical system given by the
Lagrangian (2.1)?

In this paper me shall arrive at only a partial
answer to this question. We shall show that to
lowest order in e' all three equations give the
same answer. For strong coupling me merely
establish the important physical properties pre-
dicted by these three 4ns'atone in the hope that at
least some features mill be shared by the fully
quantized theory.

III. DISCUSSION AND INTERPRETATION

A. General discussion

To arrive at a physical interpretation of Eqs.
(2.9), (2.10), and (2.12), we still have to specify
boundary conditions. Since the trial states (2.5}
are normalizable, Eq. (2.8}follows as one boundary
condition. For the gluon fields Q(x) (to avoid un-
necessary and awkward semantics, the classical
fields, trial functions, and Hartree-Pock-type
fieMs introduced in the previous section are all
referred to as "fields" ) boundary conditions have
to be imposed. Different assumptions lead to radi-

where we set v, =erg(r} and u, =rq(r} Simila. rly,
Eqs. (2.9) and (2.10) give

(3.2a)

(3.2b)

u
v~ - e 2 vs=0~

83+ 2
—~ u3=0~ (3.3b}

vt v j uf (3.5)

which inserted into the (b} equations result in very
complicated nonlinear "eigenvalue" problems

u,"+(r 'v, 'fu„r] —A.}u, =0,

etc.

(3.8)

respectively. The equations determining the
"potentials" v,. and the "SchrMinger" equations
for the matter fields shall be referred to as (a)
and (b) equations for greater convenience. Nor-
mal izability means

(3.4)

and u,. (r) not too singular at the origin.
A possible strategy for solving these sets of

equations is to specify boundary conditions for the
v,. and to solve the (a} equations to get functionals
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Nonetheless, it is possible to discuss the physi-
cally important behavior at the origin and at in-
finity under quite general conditions.

At r =~, we see from (3.4) and the (a) equations
that v,. has to be asymptotically linear

(3.12)

v& „E&+Ze. (3.V)
and the total energy is

The quantity Zc( (c(=em/4n') obviously determines
the total charge with which the matter field inter-
acts; E is related to the exponential falloff of the
fields u„as is evident from the (b) equations and
is thus connected to the total energy, as we will
discuss in some detail below.

The discussion of the behavior of u, and v; at
the origin can be established in the standard man-
ner. With the Ansi tee

U =U, E,Za

=EV,Zo. (3.13)

where the last equations result because of dimen-
sional reasons.

A further reduction of the number of param-
eters can be achieved only if additional physical
input is added. To exemplify this, we write the
(a) equations as integral equations

v -r", u-r" for r 0,

we get from our equations

p, &0~v=0 or v=1,

v, (r) =Er+Zc,
pF

+4 no ~l ds (r - s)s 'u, '(s) v, (s) (3.14)

v =-,'+[-,' —v,.'(0)]'' (i =1,3),0~ ~

~

~

~2]I

~
~
~II

~
2tI

2 ~~2

~

I ~ t t

V=2 k[d+vm (0)]

(3.8)

U= —e2 d~xy2 2-ZE

where p. &0 is inconsistent. Further information
is obtained from the requirement that the total
energy

v, (r) =Er+Zc(

+4@()(~f ds (s —r)s 'u, '(s) v,-(s); (3.15)

the upper (lower) signs apply for i =1 (i =2, 3).
The inhomogeneous term in (3.15) exhibits the

behavior for large &; the behavior at the origin is
then

= 2 w o'v Q ~ 'U
g

f —Z E(
0

(3.9)
v, (0) =Zn =Zc(+4wn ds s 'u, '(s)v, (s) (3.16)

0

dru, '(r) =J 1
8 g(d

(3.10)

However, from the (a) equations we see that only

(3.11)

serves as a parameter. Hence, the spectrum is
given as functions

expressed in terms of solutions of the (a) and (b)
equations [the boundary term due to the asymptotic
behavior (3.V} is included], be finite. This ex-
.cludes some of the cases listed in (3.8).

We now turn to the discussion of the important
question of which data are to be specified to fix
the energy of the ground state we are looking for.
As external parameters e' and ~ appear in our
equations, the coupled eigenvalue and boundary
value problem requires, of course, three boundary
values. Two of them, Zn and E, are introduced
via the asymptotics of v, (r); the norm of y figures
as the third parameter. The norm (2.8) tells us

v((0)=E=Es4sv J dss 'v, '(s)v, (s).
0

(3.1V)

Equation (3.14), on the contrary, prescribes the
behavior at the origin and allows one to compute
the behavior at infinity.

Equations (3.16) are of special interest. They
are sum rules which relate the apparent charge Z
experienced at infinity and the strength of a point
charge Z at the origin. Either Z or Z enters as a
free parameter; the other one is given by the sum
rule. Physically speaking, setting Z =0, we have
a complete screening of the long-range force, a
necessary condition for confinement; Z =0 gives
a self-trapping without a pointlike driving singu-
larity.

In view of this, the sign differences in the (a}
equations are of particular importance. Let us
start with Eqs. (3.2a) and (3.3a). Since the curva-
ture of v, has in this case always the same sign as
v, itself, the qualitative shape is as depicted in

Fig. 1. For a better visualization we also plot the
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Z&0, l +0
vt

j

2=0

la
Za ~

la
Zar Za

Vl

asmal( Z&0 Z=0 Z&Q

FIG. 1. Behavior of v; [Eqs. (3.1a), (3.2a), (3.3a)]
and V; [Eq. (3.18)] for Z & 0, Z ~ O,where e is arbi-
trary for i =2, 3 and assumed to be smal. l for i = 1.

self-consistent Schrddinger potentials V, appearing
in the (b) equations;

V P

V, =+ ', —E', + for i =2 and —for i =1, 3;

FIG. 3. Behavior of v
& [Eq. (3.1a)] and V

& I.Eq. (3.18)]
for Z=0 and Z unrestricted and o. not smaI. I..

oscillations before it tends to a straight line. For
small n/2&@ [the coupling strength in (3.1a)], how-

ever, no oscillations are present and we will have
the qualitative behavior as in Fig. l. In particular,
we notice that in this case

(3.18) Z &Z for Z «0. (3.19)

2&0, 2~0
2I[ '3

&I

negative potentials then mean attraction. We have

Z&Z for Z~O,

and v, (i =2, 3) has at most one zero; g &0 means
repulsion in Eqs. (3.2) and attraction in Eqs. (3.3).
Hence, in Eq. (3.3b) the potential will be increas-
ingly attractive as we go to smaller distances.
Self-trapping, i.e., Z =0„ thus never occurs.
For Z &0, i.e., asymptotic attraction for Eq.
(3.2b), the magnitude of Z is solely determined by
the detailed dynamics (see Fig. 2). For Eq. (3.1a),
the situation is more complicated since v, (r) will,
in general, show an arbitrary but finite number of

Here, we have the tendency that the attracting ef-
fective charge increases as we move away from
the origin, a situation reminiscent of what is called
"infrared slavery" in asymptotically free theories.
Moreover, self-trapping Z =0 is possible; that
means there are attraction and bounded solutions
without any driving point charge at the origin. For
larger o./2+, oscillations of v, (r) are expected and
the interesting case Z =0, Z = 0; that is, self-
trapping and simultaneously complete screening
of the long-range force is possible. This situation
is shown in Fig. 3. It is very suggestive to inter-
pret these oscillations as alternating shells of
charge density generated in the strong spherically
symmetric electric field. Furthermore, in Fig. 3
we display the cases Z = 0, Z + 0, and Z & 0 for
large coupling n/2v in Eq. (3.1a).

Za

Vf

2a P'
Zap

Vsj[

a small

FIG. 2. Behavior of v; tEqs. (3.1a), (3.2a), (3.3a)]
and V; lEq- (3.18)] for Z&0, Z&0, where e is arbitrary
for i = 2, 3 and assumed to be smaI. l for i = 1.

B. Perturbation theory

Next, we are going to develop a systematic per-
turbation theory for small. n. At the same time an
identificatio~ of the parameters e, ~, E appearing
in our equations is achieved. A central point in the
procedure is a postulated relation of the total ener-
gy U to the ground-state level [obtained from the
(b) equations] of the motion in the self-consistent
field [obtained from the (a) equations].

The perturbation theory is centered around an
iteration of the (a) equations written as integral
equations (3.15). Each iteration step gives from
the (b) equations a spectrum E'(&) and normalizable
eigenfunctions u"'(r), which then, in turn, allow
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for a computation of U from Eq. (3.9). The latter
results as a function of E"', &u, and o. |see Eq.
(3.13)]. Iterative identification of U with the
ground-state level (up to an irrelevant additive
term) determines &d and, hence, gives an a pos-
teriori justification of the iteration of the integral
equation (3.15) which, in turn, contains ~ via the
normalization of the u, (r).

Consider Eq. (3.1a) and Eq. (3.15); as the first
step we take

v,«'(2) =E2 +Zc&, (3.20)

Za~2 -1/a
E = + Wx (1 + n'

with
22& 1 ~ (& Z2~2)1/2

(3.21}

in the ground state. From (3.9) and (3.10) we
compute U to lowest order in n,

which corresponds to a Coulomb potential of
strength Zn. Inserting into (3.1b) obviously yields
the stationary, S-wave Klein-Gordon equation in
an external field, the spectrum of which is well
known

and the total energy to next significant order is

g2 g2
U(E) = ZE +-+ Z'o. 2;

4v (3.27)

N is an irrelevant numerical factor. Now, U(E)
has to be taken at E"' and related to the new
ground-state level E"' by

U(E, ) =-(Z —1)E"& —E"&. (3.26)

As in (3.23) the observed mass M is given by the
energy level of the former iteration step

M =E&'& =~X. (3.29)

This equality is to be understood as an expansion of
our parameter ~ in terms of n and only formally
means a mass renormalization. The frequency is
then determined from (3.26),

In the next iteration we determine the perturbed
spectrum from v,"',

E"' =VX (I —,'Z—'n' 2Z-'n'+ ' &TZ2o&4+ )128

(s.26)

U =-ZW~+ 4' ' (3.22) cd = (1 —&dZ cP), (3.30)

Following our prescription, we now equate

U =-(z —1}W~-E&'&, (3.23)

where E"' is the ground-state level (3.21) to lowest
significant order in n. Thus,

and we find

M M=E&" =a~.
2Z2 ~2 (3.24)

~"' =E2 +Zn - 'Z'o&'e ""(1+«)-
where e ' is the Bohr radius,

(3.26)

Physically speaking, the energy U represents the
total energy of a particle of mass M bound in field
of Z holes, which explains the Z behavior and the
sign of the first term in (3.24). The second term
then, of course, has the correct sign for a binding

energy. Actually, -ZM is an irrelevant shift of
the origin of the energy scale and could be trivially
omitted. Notice that the frequency cu has a singular
n ' behavior which is not unfamiliar in the theory
of extended solutions of classical field theories. '

The identification (3.24) allows for a consistent
perturbation theory and justifies our first iteration
step. Indeed, if we compute the next order of v,
with the normalization (3.10) and &d given by (3.24)
by iterating Eq. (3.15) we get

where co is a known number, and we could go on to
the next iteration.

Equations (3.2} and (3.3) can be treated in the
same way. The last term in Eq. (3.26), which is
a correction of the usual relativistic effects and
comes from the first iteration of the self-consis-
tent potential, acquires a different sign. Further-
more, Eq. (3.2b) generates in the first-iteration
step the spectrum first discussed by Bergmann. '
Taking

v(» =M~-Z~2

we find

&K=M(1 —™
)

g& ~ + (4 +Z2~2}1/2

(3.31)

(3.32)

for the ground state.
We have thus established the existence of per-

turbative solutions' with normalizable u; for small
enough a. For an intuitive summary of our de-
tailed findings we again refer to the "Schrodinger"
potentials shown in Figs. 1 and 2.

C. Strong coupling

Finally, we should like to discuss the cases Z =0
and Z =0. Let us first consider Z =0, which was
referred to as self-trapping. The qualitative be-
havior of the potentials as found from the (a) equa-
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v, (,

Z=0 term; Z is given again by the sum rule (3.16}, this
time with Z =0. As long as

Z o.'&g,
ZQ

VI
I

ct small

Zu/
r

ZG/

there will be no collapse. For Eqs. (3.1) this
condition can be fulfilled, in general, also for
large n, since oscillations of v, are to be expected
(c.f. Fig. 3). This is not the case of (3.3).

The interesting possibility of metastable states
is revealed in the plot of V, in Pig. 5 or Fig. 3.

To conclude this discussion we should like to
remark again that Z =Z =0, if possible at all,
requires strong coupling (see Fig. 3).

FIG. 4. Behavior of v; [Kqs. (3.1a), (3.2a), (3.3a)l and

V~ [Eq. (3.18)] forZ =0 (seK-trapping), where e is ar-
bitrary for i = 2, 3 and assumed to be small. for i = 1.

tions is displayed in Fig. 4. At first sight we see
that binding is possible in (3.1) and (3.2) but not
for the classical field equations. A moment' s
thought will suffice to convince oneself that range
and depth of the binding potential will increase with
increasing Zn. For smaB Zn, binding will not
occur because of insufficient attraction. Hence,
we cannot expect to find bound solutions by per-
turbing in Zn. Indeed, if we try to satisfy the sum
rule (3.16}with Z =0 in a perturbative way, we
find by inserting the lowest order for v, and u;,

IZ I
n'(1 +Z'n') =16,

which is inconsistent with Zn«1.
The "screening" case Z =0 is even more com-

plicated. The qualitative behavior is depicted in
Fig. 5. There is no binding for Eqs. (3.2}. The
potentials V, and V, have an attractive Z'n'/&'

Z=O

Z+
/

/'
/

V,
j

u small

FIG. 5. Behavior of .v; [Eqs. (3.1a), (3.2a), (3.3a)]
and V; [Eq. (3.18)j and Z = 0 (screening), where 0. is ar-
bitrary for i =2, 3 and assumed to be small for i = 1.

IV. CONCLUSIONS

To look for bound configurations in a scalar quan-
tum field theory with gluons, we derived variation-
al equations by varying expectation values of the
component T,o of the gauge-invariant energy-mo-
mentum tensor and of a bona fide effective Hamil-
tonian for a system with a matter field and a self-
consistent Hartree-Fock-type gluon field. The
resulting equations for the trial functions both
differ by signs from the classical Euler-Lagrange
equations.

The possibility of bound solutions has been dis-
cussed using only general properties of the equa-
tions. In particular, we find self-trapping, i.e.,
solutions without a driving point charge at the
origin of the system, and solutions with complete
asymptotic screening of the charge. Further-
more, the possibility of metastable states and
charge-density oscillations arises.

We then developed a perturbation procedure for
the computation of bound states. Relativistic hy-
drogenlike spectra of the total energy (including
the gluon field) are thus found in a field-theoreti-
cal framework. Corrections to the Klein-Gordon
spectrum to order n(Zn)' are computed, which
might indicate the limitations of the variational
Ans ate,

"Self-trapping" and "screening" solutions, which
do not exist for the Euler-Lagrange equations,
turn out not to be obtainable by perturbing for
small o., a situation which is in agreement with
experiences with confinement theory and solitons.
In spite of this fact, the general properties of our
equations give insight into the conditions under
which self-trapping and screening occur, and al-
low one to establish the shape of these solutions.

It is interesting to note that in Eqs. (3.1} (the
ones which obtain from our bona fide Hamiltonian)
the effective charge behaves as in asymptotically
free theories.
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