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Description of unstable particles in quantum field theory*
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The consequences of a pole on the second sheet of the S matrix are investigated under the assumption that a
certain Green's function has the same pole. It is shown that corresponding to each such pole is an eigenstate

of the Hamiltonian with a complex energy. These eigenstates lie in a natural extension of the physical Hilbert

space. Because it is the vector space that is modified and not the Hamiltonian, unstable particle states

transform covariantly. They have complex energy and momentum but real integer or half-integer spin.

Scattering amplitudes involving unstable particles are expressed as residues of poles in a reduction formula of
the Lehmann-Symanzik-Zimmermann type. An example from potential theory is worked out in detail.

I. INTRODUCTION

Of the known elementary particles only five are
stable; all others eventually decay into combina-
tions of e, p, y, v„v& and their antiparticles. For
the stable particles field theory provides a beauti-
ful description based on three principles:

(a) Stable particles correspond to eigenstates of
energy-momentum in a linear vector space.

(b) They transform as irreducible representa-
tions of the Poincare group labeled by mass and

spin. '
(c) Scattering amplitudes are matrix elements of

Heisenberg operators taken between these states.

Unfortunately most real particles are not stable.
The purpose of this paper is to show that even for
unstable particles these same principles apply.
The essential difference is that stable particles
lie in a Hilbert space and unstable ones do not.

Conventional treatments of unstable particles are
all based on perturbation theory in that the un-

stable states are always eigenstates of an effective
Hamiltonian which is chosen to contain the essen-
tials of the spectrum. The difference between the
total Hamiltonian and the effective Hamiltonian is
a small perturbation that induces decays of the
eigenstates of the effective Hamiltonian. This ap-
yroach was the very basis of theoretical atomic
physics. There the effective Hamiltonian includes
the Coulomb field of the nucleus but neglects the
electron-photon interaction. ThLs perturbation re-
sults in the radiative decays summarized by the
Balmer formula. Dirac' showed how to calculate
the effect of such unstable states on the scattering
amplitude

T(E) =H, +H, H, + ~ ~ ~
1

0

when E is near an eigenvalue of Ho. Later, in

nuclear physics, the abundance of resonances re-

quired more sophistication. A number of ap-
proaches were developed based on the energy de-
pendence of the scattering wave function at large
distances. Kayur and Peierls' expanded the wave
function in terms of states with complex eigen-
values corresponding to resonance energies and
widths. Wigner and Eisenbud' expanded in differ-
ent states that led to the reactance matrix and the
many-level formula for overlapping resonances
(see Ref. 5 for complete reviews. ) Feshbach' and
also Fonda and Newton' generalized the earlier
approaches by abandoning coordinate space in
favor of an abstract Hamiltonian and projection
operators that distinguish open and closed chan. -
nels. The resonant part of the yerturbation series
(1.1) is expressed in terms of a general effective
Hamiltonian that is both energy dependent and
non-Hermitian. Feshbach showed that the Kapur-
Peierls and Wigner-Eisenbud solutions result
from different choices of projection operators.
Common to all these approaches is the identifica-
tion of an unstable state with a vector in the usual
Hilbert space of stable states that is an eigenstate
of a modified Hamiltonian.

The S-matrix theory of unstable particles natu-
rally makes no statement about Hamiltonians or
state vectors. It began with the suggestion by
Mtt11er' that an unstable particle corresponds to a
pole on the second Hiemann sheet of the analytical-
ly continued S matrix. This observation is based
onthe ideathat the scattering wave function outside
the range of the potential should have only outgoing
waves when the energy is exactly that of the un-
stable state. The presence of a pole on the second
sheet is then taken as a Lorentz-invariant charac-
terization of an unstable particle. Peierls' brought
this idea into field theory by suggesting that the pole
should occur in the one-particle propagator. Both
the relation of this pole to the experimentally mea-
sured mass and the dependence of the pole position
upon the choice of field type was questioned by
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Stapp, "who formulated a pure 8-matrix theory of
unstable particles.

This paper employs features of both approaches.
The most important step is to use the existence of
second-sheet poles to construct a state vector for
unstable particles. The construction is begun in
Sec. II. The off-mass-shell Green's functions are
assumed to possess the same second-sheet pole as
the corresponding scattering amplitude. It is
shown that whenever there are such poles, then
there is an eigenstate of the full, Hermitian Ham-
iltonian with a complex energy. The usual pro-
hibition against this happening is that

&EIE&E =«le lE&

=E *(ElE) (1 2)

forbids E being complex. However, Sec. III shows
that the unstable states lie not in the usual Hilbert
space but in a natural extension that corresponds
to the second sheet of the S matrix. In this larger
space unstable particles automatically have zero
norm and thus escape the prohibition (1.2). There-
fore, in contrast to all earlier approaches, it is
the vector space and not the Hamiltonian that is
modified. The unstable states so constructed are
eigenstates of (H, 6') but do not transform as ir-
reducible representations of the Poincare group.
Therefore, in Sec. IV the Casimir operator cor-
responding to spin is expressed in a convenient
manner that is used in Sec. V to construct unstable
particle states that do transform irreducibly under
real Lorentz transformations. The spin is auto-
matically Lorentz invariant and can take on only
real integral or half-integral values. The most
interesting irreducible representations are the
helicity states, which have the particularly simple
one-dimensional transformation law

(Lehmann- Symanz ik- gimme rmann) type.
To defray any mystery about extending the

Hilbert space to include zero-norm states, a sim-
ple nonrelativistic example is worked out in Sec.
VII. The Schrodinger wave functions are displayed
and used in calculations. This last section is es-
sentially self-contained and may profitably be read
immediately after Sec. II.

(k'), y(kl
1

(2 1)

has that same pole in k' on the second sheet. It is
essential for the later analytic continuations that
lQ(k)& itself does not depend on k'. Therefore the
similarity of (2.1) to the familiar expression

Tgg= f V+V 0 V
1

(2.2)

is of no use; lP& cannot be chosen to be Vli& be-
cause li& in (2.2) depends on O'. In other words,
(2.2) is an on-shell amplitude.

It is only at this point that field theory enters.
Its Green's functions are off-shell analogs of (2.2).
In particular, the S matrix of a field theory has a
pole whenever the Fourier transform of the cor-
responding time-ordered product of Heisenberg
fields also has the same pole. It follows that the
state

II. CONSTRUCTION OF AN INTERPOLATING STA'fE
VECTOR

Suppose that when the S matrix is analytically
continued in the total energy k~ in a clockwise di-
rection around a particular n-particle branch point
there is a pole in k'. The first step in constructing
a state vector for the corresponding unstable par-
ticle is to find an eigenstate of momentum lQ(k)&
such that the function

v(A)le i o& = IAu, f,o&e*'~ . (1.3)

Here, in contrast to the familiar massless case,
the helicity o may take on all integrally spaced
values from -j to +j. The practical reason for
considering irreducible representations is given
in Sec. VI. There it is shown that precisely these
representations produce poles in partial-wave
amplitudes. The Lorentz transformation law (1.3)
is, however, not observable because of the way in
which the complex energy-momentum must be con-
tinued to the real axis. The observed transforma-
tion law is shown to be just the same as for stable
particles. Next, wave functions are investigated.
Because unstable particles correspond to eigen-
states of energy-momentum, they possess genuine
Bethe-Salpeter wave functions. These are used to
calculate scattering amplitudes, which are ex-
pressed in a reduction formula of the LSZ

d'xe'~ "z [q, (x,) ~ ~ ~ y (x.Hip& (2 3)

with

is a suitable choice for
l p(k)&. Appendix A con-

tains a more complete argument. It is convenient
to sum the Lorentz indices in (2.3) to form eigen-
states of J' and J, (see also Appendix A) and to
integrate the relative coordinates against some
smearing function to achieve the normalization

(p(k')j', j',
l p(k)j, js) = 5'(k' —k)6~.)5),~, . (2 &)

It should be emphasized that the lQ& so constructed
is not an eigenstate of the Hamiltonian and does not
transform into anything simple under boosts. In
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fact, a boosted if& is not even an eigenstate of J'
and J3.

Given such a lQ&, define projection operators

d'k g le(k)j, j.&&~(k}j,j.l,

(From now on the spin indices j and j, will be sup-
pressed. They will be displayed again in Sec. V
and subsequently. ) Equation (2.9) suggests that
lf& interpolates between eigenstates of H. To
demonstrate this, use the definition of lg&:

B =—1-A,
with the multiplication properties

A'=A, B =B, AB =BA =0.

(2.5) (k' H )ly(k)& =[k H +H-]ly(k)&,

H"
l y(k)& = [H" +H"r(k')H"]

I y(k)&.

Subtract to get

Split the full Hamiltonian into diagonal and off-
diagonal parts with respect to lQ& by defining

H =H'+H",

where

(k'- H) ly(k)& = [k'- H' —H"r(k')H"]
I y(k)&.

The right-hand side of this is orthogonal to B and
is therefore just lp(k}& multiplied by a function of
k. This function is just D(k) because

a' =-Am +Baa
a" -=A.aa +Bm.

(2 6)

&p(k')
l

k'- H' —H"r(k')H"
l p(k)& =6'(k' —k)D(k)

(2.12)

Define the full resolvent by

R(k') -=„,1

and a reduced resolvent diagonal with respect to
lk& by

1r(k') -=ko

Let the matrix element (2.1}be expressed as

5'(k' —k) 6,', 5g. ;,
&y(k'}j',j'.lR(k') in(k}j,j.&

=-

(2.7)

where D(k) depends on both k' and k and vanishes
whenever the S matrix has a pole. [The j depen-
dence of D(k) is suppressed. ]

A state vector for the unstable particle corre-
sponding to the pole in (2.1) can now be built from
lQ&. The connection between the full resolvent and
the matrix element (2.1) is given by the identity

R(ko) Br(ko)B—
+[1+r(k )H"]AR(ko}A[H"r(k ) +1],

(2.8)

as proved in Appendix B. Hence

(k —H) l q(k)& =
l y(k}&D(k). (2.13)

This equation contains the principal result: If the
S matrix has a pole at some k, then there is an
eigenstate of the Hamiltonian with that energy. Th(
state vector lg& therefore interpolates between all
eigenstates of II with the same quantum numbers
as if&. When the pole of S is on the physical
Riemann sheet, lg& lies in the physical Hilbert
space. When the pole is reached by continuing in
k' to another sheet, the state lg(k)& must also be
"continued" and this is the topic of Sec. III.

Before proceeding, however, it is a useful com-
parison to recall the usual applications of the same
formulas. Equation (2.12) is essentially Dirac's
method' of summing (1.1) near an eigenvalue of Ho.
Without translation invariance there is no k de-
pendence. As the energy approaches the real axis
from above

lim D(ko) =k —Z@ —a(ko}+—y(ko),
2

k ~p 2

where the unperturbed energy, level shift, and
width are given by

which is proved in Appendix B. Rewrite this as

R(k') =Br(k')B
b, (ko}= y H", H"

where

„.k g l~(k}j,j.&&~(k)j,j.l

D(k)

lg(k)j, j ) =-[1+r(k')H"]i@(k)j,j &.

This may also be written as

14(k)j,j.) =, lg(k}j,j.&D(k)
1

(2 9)

(2.10)

(2.11)

y(k') =&ylH"2v5(ko- H')H"
l y&.

In the Dirac approach II' is chosen as the unper-
turbed Hamiltonian and

l Q& is required to be an
eigenstate of H'. Feshbach, ' on the other hand,
let the projection operator (i.e., l Q& determine H'

as done here in (2.6). His effective Hamiltonian
is the energy-dependent, non-Hermitian operator

H„, = H'+H"r(ko)H"
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occurring in (2.12)
In all such approaches the final results are de-

pendent upon the choice of the effective Hamilto-
nian. Write (2.V) with spin indices suppressed:

(2.14)

ClearlyD(k) is a functional of i)j)& andi/) t. Choosing
an effective Hamiltonian is equivalent to choosing a
particular i)S)&. The variation of D(k) when i)j)&r is
varied independently of i)j)) is

6D(k) 1
5i &t

= —
ko HIP(k)&D(k)'~

which by (2.11) is just

, = -lf(k)&D(k). (2.15)

This variation vanishes only when D(k) vanishes.
Thus if a j P& has been chosen that produces a pole
in (2.14), then the location of that pole is indepen-
dent of the choice of iP) because of (2.15). It is
essential to continue ko to the pole. All effective
Hamiltonian treatments focus on the real value of
k that produces a bump in (2.14). The location of
such a maximum is usually called the resonance
energy. However, (2.15) shows that this energy
clearly depends on the choice made for i)j)& and de-
pends on it even though all orders of the perturba-
tion are summed.

Note that it is the zeros of D(k) that are signifi-
cant for stable particles too. Equations (2.10) and
(2.12) are then the usual formulas of Wigner-
Brillouin perturbation theory for the eigenvectors
and eigenvalues of H." (The exact formulas do not
depend on H' being small, of course ).

III. EXTENSION OF THE HILBERT SPACE

To apply (2.13) to unstable particles an extension
of the physical Hilbert space () must be found that
corresponds to different sheets of D(k). Always
the appropriate sheet of D(k) is determined by the
resonance and not by the particular scattering
process (i.e., i)j))) under consideration. For ex-
ample, toreachthe p' in the e'e scattering am-
plitude requires going around the very same
branch points as for the w'tr amplitude (see Fig.
1). Regardless of the amplitude, the pole is al-
ways reached by going around the heaviest decay
threshold.

FIG. 1. Example showing that the continuation to the
unstable-particle pole is always around the same branch
point (viz. the heaviest decay mode) independently of the
scattering process considered.

(fl)(&)) =(f z. ««(k) «i&) (3 2)

The new states of special interest are those that
correspond to a second-sheet pole in the 8 matrix.
Let the pole occur at k on the sheet reached by
clockwise continuation around a particular n-par-
ticle branch point and let D„(k) be the continuation
of D(k) around this branch point. The existence of
a pole means that

D„(k) =0. (3.3)

The corresponding state is i)l)„(k)&. For any real-
energy eigenstate iE) of Ij, (3.2) gives

%Is(k)& =«ly(k)& „E-.
Analytically continuing to k yields

(Zip„(k)& =O. (3.4)

The unstable particle is therefore orthogonal to all
real-energy eigenstates.

At first, this result seems paradoxical because
i)j)& itself is in I} and is therefore just a superposi-
tion of real-energy eigenstates. But i)j)& is certain-
ly not orthogonal to the unstable state because

is an ordinary state in the physical Hilbert space
lj as long as the cuts along the real k' axis are
avoided. A new state vector may always be added
to I} by specifying the inner product of the new
state with every vector of I}. The means of spec-
ifying that inner product here will be analytic con-
tinua, tion and the enlarged space will be called I}0.
In particular, define the continuation of i)j)(k)& as a
new state whose inner product with an arbitrary
state i f) is the analytic continuation in ko of
(f i)j)(k)&. The inner product to be continued is then

(f l0(k)& =&f I I +~(k')Jl"
l 0(k)&

Because of (2.11) this is just

(Q (k') i)1) (k)) = 5'(k' —k), (3 5)

A. Inner products in I}t

For complex k' the state

i)j)(k)& =[1+r(k')H ] i/(k)& (3.1)

independently of k . The explanation lies in the
difference between a continuous and a discrete
superposition and is discussed further in Appendix
C.
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a(k )&~(k ) =""„"..'-',.'," (3.6)

and the definition of D(k), this may be written as

The inner product of two new states is the ana-
lytic continuation in two variables of their inner
product in )). Thus the analog of (3.2) is

(tj (k)Itj (k )& =D(k)*&y(gqIP(k')ta(ko') Iy(k')&D(k').

Since D„(k) denotes the clockwise continuation of
D(k), let D-„(k) denote the counterclockwise con-
tinuation of D(K) T. he continuation of (3.9) is then

D„(k,k) *=D„(k-*,k). (3.10)

Hence if D„vanishes at k' the D„va—nishes at ho*

Thus unstable particles come in complex-conjugate
pairs. This age. in reflects the fact that H is
Hermitian even in the larger space )0. Denote the
state resulting from counterclockwise continuation
into the upper half plane with a subscript n. Thus

(q(k)l (k')) =6'(k-k') (3.7)
I'll. (k)& = k'I(. (k)&,

IOf course, the same result may be obtained di-
rectly from (3.1) by using an identity like (3.6) for
the reduced resolvent r(k') and the alternate ex-
pression (2.12) for D(k).] The inner product of an
unstable state with itself results from continuing
both k' and k ' in (3.7) clockwise around the same
branch point. Because

D„(k)+=D„(k) =o,

k'~ —k'~ 0

it follows that

alp-„(k*)& = k'*Iq-„(k*)&.

The adjoint states are defined by

&0.(k) I
=-

I 0.(k)&'.

Thus

(q„(k)III = (q„(k)lk'*,

&C-„(k*)Ijf = &C„-(k*)lk .

It is not surprising that

(3.11a,)

(3.11b)

(y„(%)Iy„(k)& = o. (3.8) &~(k*)l~(k*& =o,

Obviously (3.7) also implies that two different un-
stable particles (i.e. , with different energies) are
orthogonal. The vanishing of (3.8) is a direct con-
sequence of H being Hermitian in (3.6). It will now
be shown that since H is Hermitian in I) it is also
Hermitian in I)4 so that the argument (1.2) for a
zero-norm state was correct.

All the poles of S discussed so far lie in the
lower half k' plane. However, it is well known"
that Hermitian analyticity requires S to have poles
in complex conjugate pairs. From the definition of
D(k) in (2.14) it is clearly Hermitian analytic for
k real:

just like (3.8). A more interesting calculation is
the inner product between the two conjugate part-
ners. This requires continuing both the k ' in (3.7)
clockwise from the upper half plane around the n-
particle branch point to k' and k' in (3.7) counter-
clockwise from the lower half plane around the
same threshold to the value O'*. Performing the
k' continuation first gives

&~(k*)Iq(k )& =6'(k - k ),
Because D(k') vanishes at ko, the continuation in
k" then gives

D(k', k)*=D(k'*, k). (3.9)

If (3.9) is continued in k' clockwise around an n
particle branch point and into the lower half plane,
then k'* goes counterclockwise around that branch
point and into the upper half plane (see Fig. 2).

(~(k*)I q„(k')& = 5'(k —k')X(k),

where

( )
dD„(k)

k=k
(3.12)

If instead, the continuation in k ' is done before
that in k the result is

&0-. (k*)IC.(k')& = 6'(k —k')
dko+

FIG. 2. The path followed in continuing Hermitian
analyticity away from the physical sheet to obtain
D„{k)+=&„-{k+).

Because of Hermitian analyticity this is the same
as (3.12). By assumption the pole in the S matrix
is of first order so that the zero of D(k) is simple.
Thus N(k) is a finite but nonvanishing constant. It
is useful to absorb this factor by defining
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I+(&)& -=l0.(I )& r~(p)].g2

1
I+(~*)&-=lt. (&*)&I~(q),].g

so that

(e(n*) le(u')& =6'(k —k').

(3.13)

(3.14)

II'(E)& = (j'v+
(4 )'i(2 4»

d'0 f(( ) t
0&(2(d)'~' E -m» —(d

(3.19)

This state is an eigenstate of H for those values of
E that cause

[The momentum k in lk(k)& will always be on the
mass shell so there is no need to call it k.]

Because the unstable-particle states have zero
norm, it is necessary to find a new definition of
norm that is positive-definite. This is necessary
so that the equality of two vectors

(3.15)

will have a precise meaning. In a Hilbert space
the meaning of (3.15) is that

(3.16)

where

Obviously (3.16) is not good enough for ((4 because
it will still allow IE,& and IE,& to differ by an
arbitrary number of unstable states. In Appendix
C a positive-definite-norm operator 0 is con-
structed. The precise meaning of (3.13) is then
that

2

D(E) E —~—
4g

d'P
I f (~) I

'
2u) E —m~ —(o

(3.2o)

to vanish.
The formula for

I V& in (3.19) is just a special
case of that for l(j(& in (3.1) in which IP& =fvtIO&, H'

is the free part of (3.18), and IP' is the interacting
term of (3.18). The expression for D(E) is a
special case of (2.12). The zeros of D(E) can only
lie on the real axis below the branch point atm~
+me or in the complex plane on another sheet.
The s-wave N+B N+8 scattering amplitude is"

e 2&st») Dzx(
Dt(E)

where I and II indicate the physical and unphysical
sheets of D. The second-sheet poles of the scat-
tering amplitude are therefore the zeros of D on
the second sheet. These poles come in complex
conjugate pairs and have zero norm:

(&(E) I &(E)& =(I'(E *)
I &(E *)& = 0.

(~zlal~z& =o. (3.17) The inner product of the two is the analytic con-
tinuation of

Goldberger and Watson" have emphasized that
the S matrix may have higher-order poles on the
second sheet. (The decay law then is the familiar
e r' multiplied by a polynomial in t.) In such a.

case N = 0 in (3.12). Appendix D discusses the ad-
ditional states that are then present in 54.

(y(E g)l y(E)& 1 go P If ( )II

4v ~ 2&v (E —m» —u&)'

as obtained from (3.19). Clearly

(3.21)

B. A Lee-model example

A simple example of an unstable particle occurs
in the Lee model. " The Hamiltonian for a static
Rand Vis

B=m ( q„+w„gitg + fO'( ~t(p(a(p(

gp t 3 f ((d)+
(4 )a/a ~vg» d p(2 )i('2 a(p)+H. c.

(3.18)

where ~ = (me'+ p')' ' and f(&u) is a real cutoff
function. The interaction produces a dressed V

state that is a simple combination of a bare V and
a bare N+8,

as shown generally in (3.12). There is no real
benefit in choosing a particular cutoff function
f ((d) and then calculating these integrals explicitly.
A more illustrative example is worked out in de-
tail in Sec. VII.

It should be noted that this version of the I ee
model is nothing fancy despite the zero-norm
states. In particular, it is not the indefinite metric
quantization of Kallen and Pauli. " They showed
that the Lee model violates unitarity in the point-
source limit Ii.e., f ((d) - 1]. To preserve unitarity
it is necessary to make go imaginary and to let the
bare V state have negative norm. Such a modifi-
cation changes the sign of m~ in (3.18) and (3.20)
but, more importantly, makes g,' negative in (3.20)
and (3.21). This allows D(E) to have a second-
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order zero on the real axis" or zeros at complex
E that lie on the physical sheet. " These theories
are quite different from the simple proposal made
here of taking a well-defined cutoff theory, quan-
tized in a conventional Hilbert space with positive-
definite metric, and investigating the consequences
of a pole on the second sheet of the scattering am-
plitude.

Another contrast can be made to the work of
Glaser and Kallen. " They also treat the cutoff
theory with conventional quantization. In order to
discuss resonances they do not continue to the
zeros of D on the second sheet, however, but in-
stead define a new D by replacing the integral in
(3.20) with its principal value. The new D has
zeros on the real axis above m~+m~ that give ap-
proximate eigenvalues and approximate eigenstates
of H. Of course, their answers depend on this
prese ription.

IV. POINCARE-GROUP PRELIMINARIES

Once the eigenstates of energy and momentum
are constructed, all the transformation properties
can be derived by imitating signer. ' The present
section introduces the eova. riance notions that
will be needed.

k~ =P"+iq~, (4.3)

where p and q are real four-vectors. Since k' is
Lorentz invariant, so are its real and imaginary
parts. Thus put

jP=M2 (4.4)

where M and I' are real constants that character-
ize the unstable particle. In terms of p and

q this means

M=p -q
MF = —2p'q.

(4.5)

It is also useful to define the complex number

the soluble example of See. VII this is exactly the
case. Such exponential growth is, in fact, char-
acteristic of second-sheet singularities. It is no
problem because inner products are always cal-
culated by analytically continuing in momentum
space. (Heuristically this corresponds to integra-
tion along a complex path in position space. ) To
analytically continue in momentum space requires
continuing the 5 function in (4.1). This is dis-
cussed in (5.35) and Ref. 24.

At present, it is necessary to introduce some
covariant notation. Because of (4.2) the momen-
tum of an unstable particle has the general form

A. Complex momentum

The unstable particle state
~
4(k)) was construct-

ed with R real momentum k and a complex energy
0' such that

(4.6)

6"
~

e(k)) = k'
~
~(k)),

{4'(k")
~

4 (k')) = 5'(k —k).
(4.1)

in terms of which the mass-shell condition (4.4)
ls

O "(UfA]
~
e(k))] = k"{U[A]

~
e(k))), (4.2)

where k'" = A~„k".
Complex momenta suggest wave functions which

grow exponentially in some spatial direction. In

Lorentz transformations are generated by six
operators M'" satisfying

[M " M" ]=i(g "M' -g M" g" M" +g" M-).
Corresponding to each Lorentz transformation
matrix A„" is a linear operator

t?[A] = exp(iX„M ').
The commutation relations of the Poincare-group
generators alone imply

f/-&[A]a ~U[A] =A~„e ".
From this and (4.1) it follows that states with

complex three-momentum k' are automatically
generated:

Note that I' may be positive or negative because of
Hermitian analyticity.

The analytic continuation of Sec. III yields poles
with k real, i.e. ,

P = (Rek', k), (4.7)
q= (lmk', 0).

Obviously q'& 0. Because of (4.5) P2& 0. Any state
whose momentum is related to (4.7) by a real
Lorentz transformation must have the same values
of pa and q'. Conversely, any such state may be
transformed by a real Lorentz transformation into
one with the standard momentum

~((q2)1/2 t t t0 0~f ~ .
(4.8)

q =((q')' ', 0, 0, 0).

This is just (4.7) with k rotated into the z axis.
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1
lV~ =2&~~„„(PM (4.9)

in the notation of Gasiorowicz. ' This is easily
done for a state with real momentum by transform-
ing to the rest frame. This section will show that
this technique is the only way to diagonalize W'

even for states with complex momentum.
The application of W to the eigenstates of ener-

gy-momentum constructed in Sec. III replaces +
by its eigenvalue:

W. ~~(k)&= W. (k) e(k)&,

with

W~(k) =g» q„P'M"".
(4.10)

Now evaluate (4.10}when k has the special form

k" = (e, O, O, P),
(4.11)

(y 2 P2 II2

introduced in (4.8). The result is

Wo(k) = —PJ„
W, (k) = o.J, —pK„

W,(k) = o.J,+ pK„

W,(k) = o.J'„
where

gk

K] =—M]0

(4.12)

(4.13)

B. The spin Casimir operator

In order to find unstable particle states that
transform irreducibly under the Poincare group it
is necessary to diagonalize the Casimir operators

and W, where

L'(k' k) qk~=k', (4.19)

where k and k' are arbitrary complex momenta
with the same mass. [Note that (4.19) does not
completely specify L'.) Now consider the trans-
formation

L'(k II) II"=k (4.20)

of the little group. [In the special case of stable
massless particles the appropriate combination
provided by (4.14) is obviously J, -K, and J,+K,
rather than (4.15). It is well known that these two
combinations plus their closure, J„generate the
little group of massless particles. '0]

To find the eigenvalues of $V', we observe that
(4.15) gives the familiar commutation relations

[S.(k},S,(k)] = fe„p,(k). (4.17)

Obviously both S, and S, in (4.15) are non-Hermi-
tian because n, P, and SR are complex. However,
because SU(2) is compact, solutions to the com-
mutation relations (4.17) are equivalent to Her-
mitian operators, "i.e., there exists a Hermitian
operator V and a transformation T such that

S(k) = TVT ' (4.18)

Hence the eigenvalues of [S(k}]'are, as usual,
real nonnegative integers or half-integers and
label irreducible representations of the Poincare
group because of (4.16). That these integers or
half-integers actually are related to rotations will
not be shown until Sec. V.

To diagonalize the spin Casimir operator when
k is arbitrary requires constructing a general
S(k). It is useful for this and later sections to
define complex Lorentz transformation matrices

c by

are the generators of rotations and boosts, re-
spectively. " The Casimir operator is then

where K denotes the momentum vector

II =(II,0, 0, 0). (4.21)

[W(k)]'= —(nJ, —pK, )' —(ctJ,+ pK, )' —lI'(J,)'.
(4.14)

Use the columns of this matrix to define three
complex vectors,

This suggests defining

S,(k) =—(nJ, —PK,),

e (k, a)=L'(k, SR) „a=1,2, 3.

These vectors are orthonormal,

e (k, a)e (k, b)= —5'~,

(4.22)

(4.23)

S,(k) = —(nJ,+ PK, ), (4.15)
and orthogonal to 0 itself. Together the four
vectors form a complete basis in that

S,(k) =J„

(4.16)

in order that the Casimir operator be

[W(k)l'= -5R'[S(k))'.

The operators S,(k) in (4.15) are the particular
combination of rotations and boosts that leave the
vector 5 invariant, i.e., they are the generators

3 2
—pe (k, a)e~(k, a)+—k k~=g ~.

gag 9R
(4.24)

[W(k)]'= W. (k)g"W, (k).

From the definition (4.10)

(4.25)

This relation is useful in calculating the Casimir
operator
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so that (4.25) reduces to

[W(k)]'= —5R'[S(k)]',

where

(4.26)

rentz transformations necessarily requires the
use of complex Lorentz transformations.

V. LORENTZ TRANSFORMATIONS OF UNSTABLE

PARTICLES

S,(k) =——e (k, a) W„(k), a = 1,2, 3,
1

(4.27)

A different expression for S(k) may be obtained
by using

u'
e (k, a)—e„z,„=—e„,e„(k,b)e, (k, c)

Sections II and III showed that corresponding to
every pole in a scattering a,mplitude there is an
eigenstate of energy-momentum in a space Ilk lar-
ger than the physical Hilbert space. This section
will show that corresponding to every pole is a
state which transforms irreducibly under the Poin-
care group.

in (4.27) to get

S,(k) = &E,—t„e~ (k, b)e,(k, c)M"".

From (4.28) the commutation relations

[S,(k), S,(k)] = ic„P,(k)

(4.28)

(4.29)

A. J3 states

(5.1)

Because of (4.26) a state
~
k) will transform ir-

reducibly under real Lorentz transformations
only if

[S(k)]'
~

k& =j(j+ 1)
~
k),

follow easily.
Again because of the compactness of SU(2) the

eigenvalues of [S(k)]' are real integers or half-
integers. " The equivalence transformation from
the non-Hermitian S(k) to three Hermitian opera-
tors can now be explicitly constructed. The defi-
nitions (4.22) and (4.27) give

with j a real integer or half-integer. Bight away,
the states constructed in Sec. III therefore cannot
be irreducible. They are given in (3.21) by the
analytic continuation of

1 g ~ . 1
Pr(k)]

S, (k) = L'(k, 5R)—,W„(k). (4.30)
(5.2)

U[A] = e~(i~,„m"") (4.32)

as always. When the transformation matrix A is
complex the six parameters X„„are complex, but
(4.31) still holds because it depends only on the
commutators of the M~" with themselves. Thus
using (4.31) in (4.30) gives

S,(k) =—U[L'(k, II)]W,(5R)U '[L'(k, 3R)]. (4.33)

Because

The definition (4.10) of W (k) guarantees its co-
variance under a real Lorentz transformation,

W (k) = U[A]W (A-&k)U-&[A] (4.31)

where

Recall that
~
Q(k) j,j,) are the states constructed in

Appendix A for an arbitrary real momentum k.
They are eigenstates of J' and J, because the dis-
crete field indices are summed against appro-
priate Clebsch-Gordan coefficients. Both IP and
II commute with J' and J, since they are just the
projections (2.6) of H determined by

~
P(k) j,j,).

Therefore, (5.2) and its analytic continuation sat-
isfy

& ~~(k)j,j.&=j(j+1)~~( )k,j.j,&

&.
I
+(k)1,~,& =~.

l
+(k)~,j.&

and do not satisfy (5.1).
The 4& are, however, irreducible representa-

tions when k= 0 because (5.1) and (5.3) are then
identical owing to

W, (II) = 5RZ„
S,(k)~-„.,= Z, . (5.4)

(4.33) may be rewritten as

S(k) = U-'[r, '(k, 5R)]iU[i '(5R, k)]. (4.34)

An irreducible representation with momentum 0
then automatically results from boosting such a
~4'& from rest to k. With the rest momentum again
denoted by

Note that U here is not unitary because the param-
eters A.„„in (4.32) are complex. This is the prom-
ised equivalence relation between some Hermitian
operator and the non-Hermitian S(k). It shows,
furthermore, that to construct unstable-particle
states that transform irreducibly under real Lo-

II"= (SR, 0, 0, 0), (5.5)

the irreducible representation is just

~
k, j,j,) = U[L '(k, II)]

~

4'(5R) j,j,)(25R)'~'. (5.6)

[The (25R)'~' is included to give a covariant normal-
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ization in Sec. VD.] The proof of irreducibility is
that

In addition, (5.6) satisfies

S.(k) k»».&=j.I k»».&. (5 7)

x D(k')(2II)~ ~2 (5 8)

to the value k'=5K. Here the X„„are six complex
parameters corresponding to a boost from mo-
mentum II" to k~. Equation (5.8) is an obvious
parallel to (3.2). From now on Lorentz transfor-
mations will be applied at will but the precise
meaning will always be in terms of inner products
like (5.8).

The behavior of (5.6) under a real Lorentz trans-
formation A now follows easily:

U[A]
I
k,j,Q = U[r, '(A.k, stt)]U[jt;] Im, j,j,&,

The difference between (5.2) and (5.6) has nothing
to do with complex momentum; the difference is
equally present for stable particles in the physical
Hilbert space. Also note that the precise meaning
of (5.6) is that its inner product with an arbitrary
state f& is given by the analytic continuation in
k' of

&fit j j»=(f e"-e"",' ter)j,j,)

B. Other states

The states constructed in Sec. III by analytic
continuation have p'& 0 and q'& 0. [See Eq. (4.7).]
Once complex boosts are allowed, states with any
momentum k satisfying 0'= gg' can be constructed
from these. (The J2 states of the previous sub-
section, for example, have no restriction on the
sign of p' or q'. ) Out of this myriad of possible
states the physically important ones are those that
can be excited in physical scattering processes.
All states used in scattering experiments have a
total energy-momentum that is timelike. There-
fore, the only unstable-particle states that can be
excited in physical scattering processes must have
a four-momentum k that becomes timelike when
continued back to the real axis. In short, they
must have p'& 0 to produce resonances in scatter-
ing amplitudes (see Sec. VIA for more details).
For a given timelike p the associated q may be
either timelike, lightlike, or spacelike. In each
case the momentum k is related by a real Lorentz
transformation to a standard momentum 5 defined
as follows. '

If P'& 0 q'& 0

00(p'q (p'q)'-p'q' '"&
i(q')'"' ' ' q'

(5.12a)
q -=((q2)'~2, 0, 0, 0);

lf p2&0 q2 0

where

R' =L'(Ak, %) 'AI, '(k K)

(5.9) p'&'+(p'q)'
0 0

p'&' —(p'q)'
~ ~

~

2e4(p ' q)
' ~(p' q) (5 12b)

q=-(A, O, O, A);
Clearly R~ is a complex Lorentz transformation
that leaves %" invariant. It is therefore just a
complex Wigner rotation whose effect on the rest
state is

if p'&0, q'&0,

0 0(p q)'-p'q' '" p'q
q2 t t t ( q2)1/2 I

t

(5.12c)

U[Itwl I5It,j,j.&= Z I
I» QD~;~Pm)

Here D is the usual rotation matrix for spin j.
The three rotation angles are complex. The com-
plete transformation law is then

U[A] Ik,j,j g= g I
haik,j,j',&Dy (R'). (5.11)

3

This result is quite similar to the usual transfor-
mation law for stable particles. It has been sug-
gested, in fact, that the only momentum 0" allow-
able for an unstable particle are those for which
(I/K)k" is purely real. " Such a restriction makes
the Wigner rotation in (5.11) purely real. The
explicitly constructed states in Sec. III, however,
show that other momenta do occur and R~ is
therefore complex.

q =-(0, 0, 0, (—q2)'~2).

Obviously (5.12a) is the prototype (4.8) that re-
sulted from analytic continuation in the variable
u'.

The J3 states constructed previously did not take
advantage of the fact that only states with p'& 0
are excited in physical scattering processes.
Their transformation law (5.11) is based only upon
the invariance of momentum (5.5) under arbitrary
rotations. The little group thus has three genera-
tors. On the other hand, the only real Lorentz
transformations that leave any of the )2 in (5.12)
invariant are rotations around the s axis. The
little group thus has only one generator and its
irreducible representations are one dimensional.
It might therefore be possible to construct states
which are irreducible representations both of the
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full Poincar6 group and of this one-parameter
little group. Because the representation of the
translations is not unitary there is no guarantee
of finding such states. In Sec. V C, however, they
are successfully constructed and their transforma-
tion law (5.21) is derived.

For completeness, states with momenta other
than p'& 0 are discussed in Appendix E. Beltra-
metti and Luzzatto" have shown that for any com-
plex momentum k a standard 7 can be chosen.
The corresponding little group is always one di-
mensional, but depends on the sign of

A = (P ' e)'-P'e'. (5.13)

C. Helicity states

The unstable particle states that produce reso-
nances in scattering amplitudes all have a mo-
mentum 0 that is related by a real Lorentz trans-
formation to one of the F of (5.12). All three pos-
sibilities in (5.12) have the form

The momenta in (5.12) all have A& 0 and the states
which are irreducible representations of both the
Poincare group and the little group are constructed
in Sec. V C. In Appendix E, states with ~& 0 on
which both groups are represented irreducibly
are also constructed. For the case 4= 0, how-
ever, such representations are not possible.

transformation A follows from

U[A] Ik, j, o'& = U[L(Ak, RL'(&, SR)]U[It]

x
I
4(SR)j, c&(2SR)'~',

where

It =L'('u, SR) '[L(Ak, %) 'AI (k, k)]L'(K, SR).

(5.18)

(5.19)

Again R leaves %~ invariant and must therefore
be a complex rotation at worst. Closer inspection
shows that the quantity in brackets in (5.19) is a
real Lorentz transformation that leaves K of (5.14)
invariant. Therefore it can only be a rotation
about the z axis:

U[I, (Ak %)-'AL(k, k)] =e "~", (5.20)

where 0~ is a real signer rotation angle that de-
pends on k and A. Now I '(V, SR) is just a boost
along S. Because

[J„A;]=0,

it follows that R itself is simply a rotation around
the z axis,

U[R] = e"~".
Therefore (5.18) becomes

U[A] I k, j, 0& = U[I, (Ak, @L'(p,SR)]e'ew~3

)l=(~, o, o, p),

SR2 (y2 P2 (5.14)
x Ie(SR)j, a&(2SR)'~'

Because I4& is an eigenstate of J', this collapses to

so that (5.16) becomes

[S(k)]'Ikj, o& =j(j+1)I kj, v&. (5.17)

The behavior of (5.15) under a real Lorentz

Define a new state by

Ik, j, ~&
-=U[L(k, @L'(k SR)] I+(SR» j.&(2SR)'" ll, ~

(5.15)

It should be noted that although (5.15) is very dif-
ferent from (5.6) the only notational distinction
will be the use of an index o (later related to hel-
icity) rather than a j,. In spite of the two-stage
boost in (5.15) it is easy to check irreducibility
by

[S(k)]'
I k,j, 0& = U[I.'(k, SR)p'U[X]

x Ie(SR)j,j,&(2SR) I. .. (5.16)

where

X —=L'(k, SR) 'L(k, @L'(F,SR).

Because X leaves the four-vector SK invariant it
must be some complex rotation. Therefore

J ' U[X] = U[X]J

U[A j I k, q, o& =
I Ak, ~, ~&e"~ . (5.21)

This is the analog of (5.11). The transformation
law for J, states in (5.11) was more complicated
just because those states are an awkward linear
combination of the helicity states. The precise
combination is

(5.22)

where F is another complex rotation given by

r =- L'(SR, K)L(k, k)I.'(k, SR}. (5.23)

The transformation law (5.21) is exactly the
same as for massless particles because in both
cases there is no real Lorentz transformation
that takes the three-momentum to zero. The only
difference is that here o may take on all integrally
spaced values from -j to +j rather than just the
two extreme values allowed in the massless case.
It should be emphasized that the restriction of j
to integers or half-integers comes from the Poin-
care group itself in Sec. IVB. The construction
of

I Q, j,j,) and then I+,j,j,) by combining field
indices (as discussed in Appendix A) merely
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Z (k) k,j, o& = o k, j,o),

where

Z(k)=U[L(k, %)]JSU '[L(k, %)].

(5.25)

(5.26)

An alternative expression for this operator that
will be derived shortly is

capitalized on that result.
Calling (5.15) helicity states is as yet unjustified.

The real justification is the demonstration in Sec.
VIA that these states occur as resonances in hel-
icity amplitudes. At the present this nomenclature
may even seem inappropriate. Clearly (5.15) is
an eigenstate of O' ' J when the momentum is K, and
hence along 0

J, ~n, I., o&=o(u, g, o&. (5.24)

For arbitrary complex k, however, it is not likely
that (5.15) will be an eigenstate of 6) ~ J as the
massless case might suggest. The correct gen-
eralization of the helicity operator is obtained
from boosting (5.24} to get

e z„„P q~M~" = bcJ, —d(bK, + aJ,).
= b(cJ, —dK, ) —adJ, .

This combination of generators is grouped in two
different ways to show how it leaves both p and q
invariant.

Now to show that (5.2V) is correct, explicitly
carry out the transformations in (5.26) to get

Z(k) =x""(k K)M

where

x~"(k, K) = ——,'L(k, k)~,L(k) Fl'~e'~'

Apply a real Lorentz transformation A,

(5.30)

R =I '(Ak, @AL(k, f). (5.31)

Obviously, B is a real transformation that leaves
% invariant. Hence it is only a rotation about the
z axis. This means

A~ A"~~"(k 8 = —2 [L(Ak, %)R],[L(Ak, Pal",@4~'

where

&eauvp q ™
2[(P q)'-f'q']'" ' (5.2V) g a gb' &ab3 &a'b3

a b

Therefore (5.31) is just
This helicity operator is manifestly a Lorentz
scalar, A&„A~„x~"(k,P = x™(Ak,@. (5.32}

U[A]Z(k) U-'[A] =Z(Ak). (5.28)

Furthermore, whenever p and q are parallel so
that k has the special form

This means that x'" is a tensor function of k in-
dependently of %. Furthermore, from the defini-
tion (5.30) it al.so satisfies

x "=—x"

k =—(P'+iq', 8 piaziligi)

then (5.2V) reduces to

Z(k ) =O' J.

(5.29) p x"=qx"=0
The only such tensor is

x~"(k) =ca ~~"p qq.

This result at present is only a plausibility argu-
ment for the name helicity but it will be very im-
portant in Sec. VIA.

Naturally Z(k) is just the generator which leaves
a general complex vector k invariant. As an ex-
ample take

P =(a, O, O, b),

q = (c,0,d, 0).

Then p is left invariant by the three generators

J3, bK, + aJ2, aJ,' —M2,

just as in (4.15). On the other. hand, q is left in-
variant by

J2, cJ3 —dKa ~ cJ~+dK3.

There is, however, only one combination of gen-
erators that leaves both p and q invariant. It is
given by

The constant c may be evaluated in a particular
frame (like k =@ and gives (5.2V) as claimed.

Note that this argument fails, as it should, for
stable particles. Then the R in (5.31) that leaves
a real vector p invariant will contain boosts,
though in a special combination like (4.15}. There-
fore (5.32) fails for massive stable particles and
their helicity operator cannot be Lorentz invariant.

D. Covariance of inner products and norms

Both the J, states and the helicity states are
related to ~@(5R)& by con.plex, nonunitary boosts.
The inner product of either with itself, therefore,
might not be covariant. However, because H is
Hermitian the inner product vanishes and hence
is trivially covariant.

The complex-conjugate partner of (5.6) is

l
k*,~,j.&

=- U[L'(k*, 5|i*)]I+(5g*)j,j.&(25K*)'"

(5.33)
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and the results are similar for helicity states.
Because the Lorentz generators M~" are Hermitian

[ d((*„„((f»]t n-„dd»

or equivalently

U[L*]t = U[L] '.
This means that the inner product of (5.33) with
its partner (5.6) is

(j„j,k*lk', j', j,'&=2k'5'(k —k')5~ f.5f ~, . (5.34)

The covariance of this product may be explicitly
verified. From the definition (4.19}

L'(k'*, k*) =L'(k' k}*

Conse(luently the transformation law of (5.33) is

U[it] lk* j j &
= p I&k*,g,f.'&D;; (zp),

23

where R~* is just the complex conjugate of the
rotation occurring in (5.11). Because

[D;, ; (R*)]*=D;,.(R '),
the inner product (5.34) is genuinely covariant.

For helicity states this check is easier. The
transformation law for the conjugate state is

[~] lk* j o& = IAk*, j, a&ede w~

where 8~ is the same real angle as in (5.21).
The covariance of the inner product just amounts
to

ei8g fy g e-ieWfy

The momenta k and k' in (5.34) are generally
complex and the 5 function must therefore be ana-
lytically continued. Manlier proposed this long
ago.8 The continuation was thoroughly developed
by Bremermann and Durand. '4 The usual repre-
sentation

5(k' —k) =--1
2vi (k'+ k) —k (k' —iq) —k

is valid for k and k' real. For complex variables

dk'f(d'(ll(k' —d) —=: d(df((d( (,
Cg + g

(5.35)

where c, is a contour parallel to c that passes
above k and c, is a contour antiparallel to c that
passes below k.

VI. WAVE FUNCTIONS AND S-MATRIX ELEMENTS

FOR UNSTABLE PARTICLES

The consequences of the transformation laws
derived in Sec. V for experiments carried out on
the real axis will now be discussed. The wave

functions for unstable particles and their use in
calculating scattering amplitudes will be quite
analogous to the usual stable-particle results.

z (1+2-~)= &zl T(p) lp„~„p„q&, (6.1)

where A is some multiparticle final state, X& are
the individual helicities, and p =p, +p, . This am-
plitude may be decomposed into partial waves of
definite total angular momentum by following the
procedure of Jacob and Wick" to construct eigen-
states of J in the center-of-mass frame. These
states must be further specified as eigenstates
either of J, or of helicity. The partial-wave
amplitude in any frame is then obtained by boosting
these two-particle states. Denote the partial-
wave amplitude with s-channel helicity 0 by

T'(1+ 2 -A) = (A
I
T(p) I p, j o 1+2&,

where

i. I
=i = lj, +j. I—,

j(0(j

(6 2)

The three labels on the two-particle state in (6.2)
denote the fact that

6"
I p, j, o", 1+2& =p"

Ip,j o", 1+2)

[«»]'I»j &. 1+2&=j(j+1)l»j o. 1+2&,

P ~lp ~, o'1+2&=olp, ~, '1+2&,

(6.3a)

(6.3b)

(6.3c)

A Lorentz transformation rotates the 2j+1 values
of o according to the usual law

U[+] IP j o 1+2& = p I »,j,o', 1+»D. .(&),
ffd

(6.4)
where

A. How the irreducible representations are produced in

scattenng

Two points will be emphasized in this section:
first, that the irreducible representations of Sec.
V actually do occur as poles in partial-wave am-
plitudes; second, the Lorentz invariance of the
helicity in (5.21) is not experimentally observable.
It will turn out, in fact, that measurements con-
ducted in two different frames will find the 2j+ 1
helicity components rotated according to the usual
law for stable particles with m WO. In short, it is
(6.18) that is observed and not (5.21). [It goes
without saying that the transformation law (5.11)
for J, states automatically reduces to that for
stable particles when the momentum becomes
real. ]

For definiteness, consider the scattering of
two stable particles that produce a resonance in
the s channel. Denote the scattering amplitude by
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g =1.(p' w)-'[a(p', p') 'A&(P, P)]1-(p ~)
~=((p')'", 0, 0»
p =(p', o, o, lpl}
p' =Ap,

p' =(p",0, 0,
I
p' I).

It is, of course, obvious that the different helicity
components must mix from the observation that
the helicity operator in (6.3c}is not Lorentz in-
variant.

By hypothesis (6.1) has a resonance pole when
analytically continued to the second sheet. The
amplitude can be related to the Fourier transform
of the Green s function

&0 I T[e{y)q(~,)${,)]Io).

Just as in Appendix A the pole can then come only
from the term

G()t)=(0 ))8), / T'(('(~)F( ~)] 0),-
with r =—,'(x, —x,). Analytic continuation of G(P)
will then yield a pole whose residue may be ex-
pressed in terms of state vectors for the unstable
particle:

G(~)-„~ g &0I~(y)l~ j' o'&
yt

x&n*,q', o'
I T[q(r)y(-~)] 0).

(6.5)

The unstable-particle states in (6.5) have been
chosen as helicity states:

(6.3b) shows that j' =j because

lim 8(&) =S(P).
q~O

[See (4.27) for example. ] However, the helicity
operator

pe q BM )) )'

2[(P ' q)' Pq'-l'" (6.8)

has the property that in general

lim T(k) x J) J.
q~O

Only when q is taken to zero along the p direction
does (6.6c) correspond to (6.3c), for then

lim Z(k) = p J.
/If'

(6.9)

Thus if q is taken to zero along the plane q II p,
then o ' =o in (6.7). Appendix F shows, further-
more, that the only nonvanishing contribution to
(6.7) comes from taking the q limit in this manner.
Thus

„„„„,&~lp, j, o&&p, j,o P, j, ', 1+2&

(6.10)

The discussion leading to (6.10) shows that the
helicity states of Sec. V C are actually produced
in scattering. In spite of this, the Lorentz in-
variance of the unstable-particle helicity is not
observable because the limit required in (6.9) is
not covariant. To see exactly what the observable
transformation law for the helicity states will be,
consider how to calculate (6.10}in two different
frames. In the first frame let

6'~
I k, j', o'& = k~

I k, j', o'&,

[~(&)]'I&,j', o'&= j'(j'+1) I+,j', o'&,

z(k) k, j', o'& = o'
I k, j', o'),

(6.6a)

(6.6b)

(6.6c)

P =(P', 0, 0,P'). (6.11a)

Then the residue of the pole in (6.5) that contrib-
utes to {6.10) must have

where q =(q', 0, 0, q'). (6.11b)

k~ =P~+ iq".
The contribution of (6.5}to the partial-wave am-
plitude is obtained by taking q -0 in the residue
of (6.5), projecting out the two-particle formation
amplitude &p, j', o' p„X„p„k&,and then com-
bining spins to get

T~(1+ 2 -A)

&A Ip,j', o'&&p,i:,o'I p, g, o;1+2).
P K I

foal

(6 7)

Now, the question of interest is: Which values
of j' and o' in (6.5) actuall'y survive the partial. —

wave projection in (6.7) 7 Comparing (6.6b) with

p' = (p'cosh', p'sinhX, 0,p'),
q' = (q'cosh', q'sinhX, 0, q3) .

(6.12a)

(6.12b)

But now q' is not parallel to p'. To calculate the
contribution of the unstable-particle pole to the
partial-wave amplitude in this frame requires
continuing q' to zero in the plane of p'. Let q"
be this continued value of q' and let p" =p' be the
unchanged value of the real momenta:

p" = (posinhX, p'sinhX, 0,p') =p', (6.13a,)

With q in this form q' and q' may be taken to zero
independently.

If the same experiment is viewed from a frame
moving along the x axis, the observed momenta
are
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q" =(q", Iq'Iu),

where

(6.13b) It is, of course, essential that

lim R' =R,
q~O

(6.19}

(p' sinhX, 0,p')
[(p' sinhX)'+ (p')']'" '

For (6.13) to correspond to the same value of
mass and width as (6.11) it is necessary that

(p" + iq")' = (p+ iq}' (6.14)

q'" = p. Ip"(p'q) Ip'It. (—p q)' p'q']'-"],

(6.15)

l~" I= —&lp l(p ~ q)- p-l(p'} -p q ] ").p'

Thus there is a complex Lorentz transformation
A' for which

p"+iq" =A'(p+iq).

Because k" is the appropriate momentum in
the moving frame to produce a pole in the partial-
wave amplitude, the observed transformation law
will be determined by this complex Lorentz trans-
formation. To find that law requires applying A,
to the lk, j,o) helicity state in (6.5). The result
is directly analogous to (5.18) and (5.19):

U[A']l»j &) = Q IA'k, j,o'» (R'),

If (6.14) has solutions of the form (6.13), then k"
and k can still be related by a Lorentz transforma-
tion that is complex. Solving (6.14}gives

also. This guarantees that the transformation law
is symmetrical between the two observers.

To demonstrate (6.17) it is necessary to specify
the transformation L,(k, k) more carefully. Con-
sider, for example, the case q'&O. Then k is given
by (5;12a). A real Lorentz transformation from k
to k may always be accomplished by first boosting
q to rest and then rotating into the s axis. Thus

L(k, k) =R(z, B(q,q)P) B(q, q)..

With the p and q of (6.11) the boost is in the z di-
rection so the rotation is just the identity

L(k, k) = B,(q, q. )

On the other hand, for p" and q" in (6.13)

L(k, k") = R(z, u)B„-(q,q")

Putting this together gives the complex rotation in
(6.16) as

R'= B,(etI, k) [R(z, u)B„-(q,q")A'B, (q, q)]B,(k, K).
(6.20)

It is convenient to rewrite (6.20) by using

R(z, u) B„-(q,q ")= B,(q, q ")R(z, u)

to get

2' = B,(5II, k)B,(q, q ")R(z, u)A'B, (q, q) B,(k, K).
(6.21)

where (6.16) The boosts are explicitly given by

R = I '(K, II)-'[L(k",P-'A'L(k, K)]L'(K,II).
Recall that in (5.19) R is a real rotation around
the s axis because A there is real. Here, how-
ever, A' is complex. As a result R' is neither
real nor a z rotation. Consequently all 2j+1 he-
licity components are rotated in (6.16). The ex-
perimentally observed transformation law is the
q" -0 limit of (6.16). Hence the helicity states
will be observed to transform covariantly, not
invariantly. The precise form of this covariance
is obtained by taking q" -0 in (6.16). It will short-
ly be shown that

B,(k, 9R) = e'"

B,(q, q) = e'"

B,(q",q) =e'" "3,

where

(p q)/(q')' '+i(q')' '
cosh p, =

coshp. = g

(q

rrO

cosh/, = 2)~y2.
rr 9'

(q

(6.22)

limR'=R, (6.17) (Note that p.
' and p,

" a.re both real. ) Thus (6.21) is

R'=e '~&''" &R(z u)A'e'~&'&' (6.23)
where R is just the usual real rotation (6.4) ap-
propriate to stable helicity states. Thus the ob-
served transformation law following from (6.16)
is exactly like (6.4):

By using (6.11), (6.15), and (6.22) one finds that

p rrO ~ rrO

cosh(p, + p,")=

(6.24)

~l~&I», &, &=/ IA~, &,"»...(~& (6.18) cosh(p. + p. ') =
p'+ iqO
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Taking q"-0 is now easy:
ISO rO

lim cosh(p, + ))),")=

(6.25)

pO
lim cosh(p+ p, ') =—.

Malt ~O

Hence
lim Tt'= B(M,P ')B(g, u)AB(P, M).

qt/ ~O

This is precisely the rotation B given. in (6.4) ap-
propriate to these P and p'. Hence 8' reduces to
R as claimed in (6.17). It is also obvious from
(6.24) that the same limit B is obtained if q -0 in-
stead of q".

u (k, —,') = S„,[L (k, 3R) ],

u„(k, ——,') -=S. ,[L'(k, 5tt)].

Here S[A] denotes the usual (3, 0)(g (0, —,') repre-
sentation of the Lorentz group. " A real Lorentz
transformation applied to (6.27) gives

(6.27)

S[A]u(k,j,) = Q u(Ak, j3)s), q [R~], (6.28)

where B~ is the same complex rotation as (5.9).
Define adjoint spinors as

u„(k,j,) -=[y'u(k, j,)]„*. (6.29)

The completeness and normalization conditions are

8. Elementary unstable particles

The indicated transformation laws apply to any
unstable particle. It may or may not be associated
with an elementary field occurring in the Lagran-
gian. In conventional field theories, for example,
the p. has an elementary field but the w, being com-
posed of quarks, does not. Thus a p, will be called
elementary and a m composite, though both are un-
stable.

Since the p. is, in fact, the only candidate for an
unstable particle with an elementary field, it will
be treated explicitly here. The generalization to
other spins is straightforward. The Feynman prop-
agator for a p, field is

s„,(k) = -3 d'xe'"'(ol7 [y„(x)q,(0)]lo&.

Performing the Fourier transforms gives
3 3 k (pS,~(0)=(0 0,(0), 3 . ilg(0) 0)

Continuing in k' around the positive-energy cuts to
the second-sheet pole gives

~ 2,&olq. (0)lk,j,&&k*,j,lq, (0)lo&

(6.26)

In (6.26) a sum over J3 states (j,=a-', ) has been
used. The sum could just as well have been over
helicity states.

The J, wave functions will be discussed first.
Just from the definition (5.6) of the J3 states the
residue must be

2m~ '/'
(Olg„(0)lk,j ) =

)
u (k,j ),

where z is some constant'and the dimensionless
functions u are defined by

Z/2

u„(k,j,)u8(k*,j,) = (y)'k +3tI)„8, (6.30a)
y3 =-1./2

Q u„(k*,j,)u (k,j,') = 5,.
Ct =&

Using (6.30a) in (6.26) gives

y"k„+Ã
0) 8( ) 32 ~3x2 k2 3tI3

(6.30b)

(6.31)

p+ zq
(p'-7+»p i)"''

P +zqcosh'. =

(6.33)

The 4x4 spinor representation of this boost is

S[Lc(k hatt)]
(x /2)u ' n

A.= cosh —+ u n sinh—
2 2' (6.34)

as might be expected.
The location of k and k* in (6.30) is important.

For example, (6.30b) is clearly a reflection of the
normalization

(j„k~lk', j3'& =2ko53(r -2')6», .

Note, however, that

(j„klk,j,&
=0

has no finite-dimensional counterpart:
4

Q u „(k,j,)u (k,j,') 00 0. (6.32)
a=I

In fact, the left-hand side of (6.32) is nothing par-
ticularly simple: Nor is it needed in calculations.

The spinors may be explicitly displayed by choos-
ing a particular complex Lorentz transformation
for (6.27). For example, let this be a pure boost
from «g to k. The direction and magnitude of the
boost are then given by
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where

This gives

1 1
u„(k, —,) =

[2 (, )],I, (y)'k„+%)„„

1
[2%(ko+5tl)]x)'2 (y k))+5K) 2

Obviously as q~- 0 these spinors go smoothly into
the usual spinors for real energy-momentum.

The helicity wave functions are much more in-
teresting. Let

25nz '"
(olq„(0)lk, o}= ), u. (k, o),

where 0 =*to distinguish from j,=+-,'. Fr'om the
definition (5.15) of the helicity states it follows
that

u„(k, +)-=S. ,[I.(k, k) r.'(k, 5rl)],

u„(k, —) =-S,[r.(k, k)L'(%, %)].
The adjoint spinors are defined just as in (6.29).
Completeness and normalization are then the same
as (6.30) with j, replaced by o. The novel feature
of these spinors is their transformation law. Write
(6.36) as

u(k, +) = S[L(k, k)]u(k, +).

except the proton are unstable when weak and elec-
tromagnetic interactions are included.

Composite particles that are stable produce a
pole in a Green's function when continued in the to-
~al energy-momentum onto the real axis below the
production threshold. Composite particles that are
unstab]. e produce poles when the continuation is on-
to the second sheet. The residue of the pole is a
product of Bethe-Salpeter wave functions like

x.()'i, ~ ~ r, &,) ==&0I ~[{C(&,) )r)(&.)]lk j, o& (6 4»)
The only difference between (6.41a) and the usual
Bethe-Salpeter wave functions is that here A is
complex and the state lk,j,o) does not lie in the
physical Hilbert space. The Lorentz transforma-
tion property of (6.41a) follows from (5.21). De-
note the adjoint wave function by

x~(&., ",&i) =(~,i, kl TP(&.) 4(~,)]l». (6 4»)
As always, the complex conjugate of (6.41a) in-
volves antitime ordering and is not simply related
to (6.41b). Note, of course, that either of (6.41)
may also have momentum 0*.

The momentum-space wave functions are real
Fourier transforms of (6.41) in spite of the fact
that k is complex. As Appendix A illustrates, if
the Green's function depends on (x„.. . , x„) and

(x,', . . . , x„'), the pole occurs in the Fourier trans-
form with respect to the average coordinate X
given by

S[A]u(k, +) = S[I (Ak, k) ]S[R]u(k,+),

where

Tl = L(Ak, k) 'AL(k, k) .

(6.3 7)

(6.38)

Because 3~ is a real transformation that leaves A

invariant it can only be a rotation around z just as
in Sec. VC. Thus

S[R]= e' (6.39)

where cr, is the usual Pauli matrix. This gives for
(6.37)

S[A]u(k, ~) =u(Ak, +)e'*8~". (6.40)

Note that (6.40) holds even when {I-0. This is be-
cause L(k, k) does not reduce to the identity even
when q -0.

k;=—k+l), Q l;=0, (6.42b)

The total momentum 0 is then conjugate to the
average position X and the relative momenta l, are
conjugate to the relative coordinates x&

..
n fl

Qk{ x, =kX+Ql, x, . (6.43)
I 1

Even though the A,. are complex all the I,. may be
taken as real because of (6.43). The momentum-
space wave functions are then

x; = X+ r, , Q x,. = 0. (6.42a)
I

Therefore only the relative coordinates x, appear
in the residue factors like (6.41). If k,. are the mo-
menta. conjugate to x, , then it is convenient to de-
fine

C. Composite unstable particles

By definition a composite unstable particle is one
which does not produce a pole in any two-point
function. It does, of course, produce poles in
Green's functions with more lines. Thus in quark
theories all hadrons are composite. All of these

g {{„.. . , {)=f {dr)g {r„„.. . , r„)e'

(6.44a)

g,{{„.. . , {„)=){z~)~,{r„.. . , ~„)e-'"r" i,

(6.44b)
where
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(, ) Xa f(2~)'6'(k'- k)X.*
7 2 2 p2 g@2

(6.45)

I
~

(d«)-=d «', d'«„5' —p «,). .
1

It is important that all the relative momenta l, are
real for (6.44) to make sense.

The Bethe-Salpeter integral equation and normali-
zation condition may be written either in coordinate
space or momentum space. They are displayed
graphically in Fig. 3. The derivation of these equa-
tions and the graphical notation is the same as in
Ref. 26. The only difference is that now the nor-
malization is between X„and y, g. This is because

Z

Z
PK/

I

turn conservation reads

P2+ ~2 p 1 ~1'

For stable particles the proof of the reduction
formula depends on the existence of asymptotic
states" like

FIG. 3. Bethe- Salpeter equation and normaIization
condition for a composite unstable particle with complex
momentum k".

[See (6.5) for example. ]
Ip& = »m d'y0(y)f —~(p)e"'IO&g~ ~g Bt (6.48)

D. S-matrix e1ements

Scattering amplitudes involving unstable particles
are residues of poles in the off-shell Green's func-
tions in direct analogy with the stable case. The
reduction formula expresses just this relation. Its
practical value is that the Green's functions may
be expanded in a perturbation series and the poles
extracted from the external legs. This has been
done for stable particles (elementary or composite)
in Ref. 26. The graphical analysis leading to the
pole extraction applies equally to unstable parti-
cles.

A simple example of the reduction formula for
unstable particles is provided by e-p, elastic scat-
tering. The scattering amplitude is

= ' d'x, d'x, d'y, d'y, [U(k„y,) U(P „x,)

d5'"'«. ,p. l~(y) I p, &"

x(Z+m2) U(f„y) (6.49)

Strictly speaking, the external wave functions
should really be square integrable solutions of the
Klein-Gordon equation that equal (6.4V) only in the
plane-wave limit. Before this limit is taken, the
spatial derivatives in (6.49) may be integrated by
parts to get

(This is, of course, only true in the weak-operator
sense. ) For unstable particles the energy is com-
plex so that this limit either diverges or vanishes.
(This reflects the physical reality. ) The absence of
an asymptotic state has an important consequence
for the connectedness of the scattering amplitudes.
Consider e-8 scattering instead of e-p, . Then
the complex k; in (6.46) become real l, . The con-
nected amplitude is

where

xa.U(p „x,)U(k„y, )], (6.46) '"'&f. p.lp. f &'"=~ d'y'"'&f. ,p. lg(y)lp &

8, =—( „+%*')( „,+m')

x&OI T[y(y, )y(x,)y(x,)q(y, )]IO&

x( „,+m')(, +5K').

Here x and p are the coordinates and momenta of
the e, y and k are the coordinates and momenta of
the p,. The external wave functions are spinors
times plane waves:

U(P, x) = u(P)e'~". (6.47)

Continuing the right-hand side of (6.46) to complex
k, such tha, t

X 2
—V +m Ul„y .

(6.5o)

Because the wave function satisfies the Klein-Gor-
don equation this is

'"'(f„p,
( p „f,&,

d$ —„'"'«.,p. ly(y)i p,)- —„U(f„y)

=( lim —lim) d'y '"'&E„p,~y(y)~p, &
4

(k,)' = m', (k,)' =5g*' 8
x i—U(l„y). (6.51)

gives the matrix element A,s the residue of the
Green's-function poles. Note that energy-momen- Because of the asymptotic condition" g(y) creates
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(S J

FIG. 4. The usual connectedness structure that results
from the LSZ asymptotic condition.

an in state at t = —~ and creates an out state at

+ ~c+ +c)
FIG. 5. The connectedness structure that results when

one particle (denoted by the wavy line) is unstable.

(6.52)

This shows that stable particles may propagate
freely or interact as Fig. 4 illustrates.

It is easy to see that unstable particles do not
give this connectedness structure. If k is complex,
the integration by parts in (6.50) is not possible and
the derivation fails. If, however, k is actually real
then (6.50) is valid, but because k' is complex the
limits in (6.51) either diverge or vanish. Thus
(6.52) does hold for unstable particles. The con-
nectedness structure for the S-matrix elements is
then that given in Fig. 5, where the wavy line de-

notes the unstable particle.
For unstable particles the proof of the reduction

formula must naturally be modified. The method
of Appendix A is again the key. The Fourier trans-
form of the three 8 functions in (6.46) produce three
resolvents. These may be analytically continued to
the poles, whose residues are then the unstable
state vectors. The right-hand side of (6.46) thus
becomes

analogously to (6.49). But now there is no fourth
8 function to produce a resolvent. Instead, cross-
ing and translational invariance give

d'y '"'&k„p„p,le-*"y(0)lo&(a'+51I') V(k„y) =i '"'(k„P„P,I(2~)'5'(k, 6)y(0-)lo)( k, '+-3|I')U(k, ). (6.53)

To go to (k,)' =-5K' re(luires analytically continuing
the 5 function. Suppose k, is kept real and A,", is
taken to be complex. Then, as discussed in Sec.
VC, Bremermann and Durand' have shown

2~f6(ko-a) = (6.54)
lm(k'- a) &0.

The continuation appropriate to (6.53) starts with
k', in the upper half plane. Thus (6.53) becomes

(6.55)

when Imk', &0. Now the resolvent can be continued
clockwise onto the second sheet. Because of (2.9)
it has a pole whose residue is a product of un-

stable state vectors The contin. uation of (6.55) to
the pole is then

'"'&k„P„y,lk, &&k,*lq(0)lo& V(k, ) = '"'&k„P„P,lk, &.

Using crossing again shows that this is

because of the double contribution from (6.54).
Already knowing the correct answer (6.52) shows
that the + ie actually corresponds to the creation of
both an in state and an out state. ] If the unstable
particles are composite rather than elementary,
essentially the same proof applies.

VII. A SOLUBLE EXAMPLE

To show how simple it is to describe unstable
pax:ticles as eigenstates, of the Hamiltonian, the
familiar problem of elastic scattering from a
three-dimensional square-)veil potential mill now
be examined. This problem is nonrelativistic,
but otherwise contains all the features of unstable-
particle states. The exact S matrix is given in
(7.7). The wave functions that correspond to the
second-sheet poles are displayed in (7.28). These
are exponentially growing but nevertheless have
zero norm (7.32) when properly calculated by
analytic continuation. This method of calculating
with unstable particle wave functions is put to an
exact test in Sec. VII E.

A. The S matrix

This demonstrates the reduction formula (6.46) as
claimed. [Note that for stable particles the con-
tinuation is to a real energy below the production
threshold and the same argument is rather weak

V'- Ve(a -~) @(r)=Ze (r) .
2m

(7 I)

The Schrodinger equation for a constant potential
of depth V&0 and rangeR is
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The l =0 solution is

C(z) sinter) r ~R
y'

Ce(~) =

[e fear -q(z) eikr
J y )RD(z)

)

where

(7 2)

where k and K are still the principal square roots
given in (V.8).

The two-sheeted S matrix )7(F) explicitly satis-
fies extended unitarity and Hermitian analyticity.
Physical unitarity is the statement

~ q, N)~'=-1 (E positive real) .
The extension of this to all values of E is

k = (2mz)'~', K =[2m (E + V)]~ 2. (V.3)
q, (E)qa(z) =1 (E complex). (7.9)

The three quantities C, D, and g are determined
by the continuity of C and its derivative atr R
and by the overall normalization.

The scattering amplitude is determined by the
phase shifts:

Hermitian analyticity follows from the principal
square-root definition in (7.8) which satisfies

Consequently

&p. I ~l p,}=(2~)'
4nP~P~

x g (21 + 1)e""p, (cose),
L=O

where plane waves are normalized as

( p I p ) = (2~)'&' (p, —p, ) ~

(7.4)

(7.5)

qg (E)*=qg(E*),

q, (z) + =)I,(z+) .
(7.10)

It is well known that resonance bumps occur
along the real axis at energies for which

cotKBR =0.

The phase shifts may be calculated from the as-
ymptotic behavior of the wave function because

&k~r

7' ~po

This means

X R =(n+-,')v

or equivalently

where (V.6) (n +-,')'m'
8 (V.11a)

( )
KcotKR+ik

nI E cotER N (7.Va)

This is the exact S matrix. It has a cut in E whose
location depends on the definition chosen for the
square root in (7.3). It is conventional to take this
cut along the positive real axis. Thus

0&arg&z ~ w,

l.e.)

f(e)= . g( 21+)I( en')- )Ip, (cose).
l=O

Comparing the asymptotic form of (V.2) with
(V.6) gives

~(z) e2ihP(e)

Thus q determines the scattering amplitude. To
find g explicitly, apply the boundary conditions to
(7.2) to get

f (E)=i
2

cotKR—.kK
2m

When E is near EB

f(z) =(E -E,)f'(E,)+O((z -E,)') .

(7.12)

1 ~

(E)
E -Ee Iz )'s -naen
E -EB + ~iyB

where

Precisely at this energy

) — e-2ike R

The width of the resonance is obtained by writing

f (E') -E -aran
lI f(z)+E 7

where

Imk ~0

ImK ~0.
(7.8)

Z @B
)8 f l(z )

K cotKR ik-
na( —

K cotÃR +ik(z =- . e (7.7b)

The analytic continuation of )h(E) onto the second
sheet is then

Explicitly calculating this gives

2[(n+ —,') m2-2m' J'~'
ma' (7.11b)

The resonances will be distinct only if the width
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is much smaller than the energy spacing. This
requires that

2 [(n+-,')'~'-2mV~']'~'—«1.
(n+1) v'

a2
ii

8. Location of the poles
77r
2

9'
2

al
I Ivr

2

Imn&0, ImP&0.

Then the 8 matrix (V.Vb) has a second-sheet pole
only if

Q cotQ =-~P,

a —P =2m vB

Now eliminate P to get

(7.15)

The discussion of these resonance bumps is quite
standard and is given in many textbooks. The
emphasis of the present work, however, is not
on these bumps but rather on second-sheet poles.
In this example, as always, there is no guarantee
that real axis bumps are a manifestation of second-
sheet poles. This section will show that, in fact,
there are second-sheet poles. These locations
vrill turn out to agree with the energies and widths
in (7.11). Let the poles occur at a complex energy
E on the second sheet. Put

~ =Z [2m(Z + V)]'~',

p =Z (2m')'~',

FIG. 6. The values of e~ and n2 that solve (7.18) and
correspond to second-sheet poles in the 8 matrix (7.7).
The dashed line is a plot of (7.3.8a); the solid line is a
plot of (7.18b).

stable-particle energies approach the usual value
Qg ='Pl& ~

Once Q~ and Q~ are found, the corresponding val-
ues of P, and P, given by (V.15) are

csc Q~ —csch Q~
cot o. + coth n

=n tano.
1 2

csc'Q, + csch'Q,
2

= Q g
co't CR g ant a, +cath n )

Figure 6 shows that the only allowed values of
positive Q, lie in the strips

nv &o, (&n+-,')v.
Because of (7.19) this means that all the poles have

P, &0 and hence all lie on the second sheet as
claimed. [Of course, n, must also be positive
but its sign is lost in going from (7.15) to (7.16).]

Let the real and imaginary parts of the energy
at the pole be given by

=+(2m Vft')'~'.
slnQ

(V. 16) + —y (7.20)

The real part of the left-hand side must vanish
and the imaginary part must equal the right-hand
side. Let 2 2

Qy
P 2~R3

Q = Qg+SQ2 q

P =P~+fp2 ~

Then (7.16) gives

(7.17)
(V.21)

tanh Q tan Q

Qg

2 ~l2

Q, =~cosQ, . ' — -2m''
81QQ g

(7.18a)

(7.18b)

The existence of solutions to these equations is
proven graphically in Fig. 6. There the solutions
of (V.18a) and of (7.18b) are both plotted. The in-
tersections of the plots give the Q, and Q, of the

corresponding unstable-yar ticle pole. Figure 6
is plotted for a weak potential. As V is increased
the widths become smaller and Q, approaches
(n+-)v. 2If V is increased so much that 2m VR'
&Q~, the unstable particles become stable. Then
o.,=0 and (7.18b) determines o, As V-~, the

mR'

2pgp,
mR

(7.22)

because of the definitions (7.14). Equations (7.18)
have the property that if Q~+iQ2 is a solution, then
so is —o, +io2. Therefore from (V.19) both P, +iP,
and —P, +iP, are solutions. Thus in (7.22) there
are automatically poles at E~+—,'i y I, and E~ ——,'y~
as claimed.

The existence of the second-sheet poles is thus
proved but it would be nice to determine their lo-
cations more accurately. Fortunately, approxi-
mate solutions to the coupled transcendental equa-
tions (V.18) may be obtained for n, large and n,
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small. In this limit Fig. 6 shows that n, is a little
less than (n +—2)w for ~ a large positive integer.
Therefore let

2b
ma'

according to (7.11b).

(7.25b)

o., =(yg+2)n —,
)(n+-, v

and determine A, . Equation (V. 18b) gives

X[b +A, (A, -2)] / A.

a a

where

a -=(s+-', )v,

b -=[(&+-,')'~'-2m VZ']'/2 .
For n2 to be small it is necessary that

b«a .

(7.23)

(7.24)

C. Schrodinger wave functions

C E
y

sinter r «R
g(E, &) =

D(E)q(E)
'Y

(7.2 7)

The wave functions for an unstable state is the
analytic continuation in E of 4 (E,x) to the point
I". on the second sheet. At this value of energy,
q =~ and a=0 but the product Dq is finite. To
calculate norms and inner products with such
states it is useful to introduce the wave function

This is in accordance with (7.13). Substituting
(7.23) and (V.24) into (V.18a) determines X via the
equation

1 1 A. 1 A, '[b'+ g(y —2)] 1
a2 3 3 a2 4 ~

Because a is large, 1 must be near 1. In fact

b2+1
z =1+

3a

where C, D, andy are the same functions of Z as
in (V.2). Note that whereas C is an energy eigen-
state for any energy E because it satisfies the
boundary conditions for any E, g certainly is not.
However, g is an energy eigenstate at energy E
on the second sheet because it coincides with 4
there:

y, (Z, ~) =C, (E,~).
On the second sheet g is given by

The solution is then

1 b'+1
n =a- —— + ~ ~ ~

a 3a'

(b2 1)l/2 b2 + 1
a 3a

The corresponding values of p are

(7.25a)

-C&(E)———sinKr, r ~R
'Y

Imk ~0, ImK~O

(V.28)

1
P =(b'-1)'/' 1—,+ ~ ~ ~

as always. The continuity of g~ and its derivative
at E imply

2b2- 1
p2 —1+ + ~ ~ ~

6a

(7.25b)

These solutions give for the real energy (7.21)

—C sinn =(Dq) e '8,

C coso =i —(Dq) e '
A

(7.29)

2(b' 1)~/2 b'
R

1
3

whereas the width of the real axis bump is

(7.26a)

1, 4- 5b'
&s-2 ~2 &-2+ 32 +

2mR 3a

This is in good agreement with the energy at which
the bump on the real axis occurs, which according
to (V. lla) is

5
2m''

The width which follows from (7.22) is

where o, and P are given by (V.14) and&, D, q are
the values at E on the second sheet. [Note that
the boundary conditions (V.29) contain the pole
constraints (7.15) on o. and P.]

The norm of g obviously cannot be obtained by
integrating the absolute square of the wave func-
tion (7.28) because it diverges exponentially in r.
This divergence in x results from continuing to
the second sheet; p decreases exponentially on
the first sheet, as (7.27) shows. The norm of Pz
is obtained by calculating the norm on the first
sheet and then analytically continuing the answer
to the second sheet (see Sec. III). The first-sheet
norm is simply
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&y(E) I g(E) &
=

Jl
d'&

I )1)(E &) I'

=amIc(E) I'

sin(K*+K) R
K*+K
i(o-n*) R

+4~ID(E) n(E) I' ',.
(~

(7.30)

Aiia]ytically continuing (7.30) to the second sheet
gives

(,(z)l, (z))=2~zicl*('
~

' — '2 '
)

382
—avR I D)7 I' (7.»)

Because of the two boundary conditions (7.29) this
whole quantity vanishes. To see this, multiply the
first boundary condition by the complex conjugate
of the second and vice versa to get

I cI'sina cosa*=i,
I
DqI'e" z,

I cI'sina*cosa =-z —
I

DqI'e" z.

Add and subtract these,

I cI'sin aa, =i, ——
I D ql'e" z,p* p

I cI'sinh2a, = +—I DiiI'e" 2.p* p
n

Substitute this into (7.31) to get

&yii(E) I rp, (E()& =avRI DqI'e' '( + —— ' „-———=avR I
DqI'e' '

aiaz pz )

Now from the definition of a and P

a —P =amVR.

Separating real and imaginary parts gives

a.az-P. Pa=0 ~z

and then continuing the result to E. Performing
the integration gives

(((z')I((z)) =2w[c(z)]'(z — ~ )

&y, (E) I &, (E)& =0. (7.32) The continuation of this to the second sheet is
Note that the vanishing of this norm depends es-
sentially on the reality of V, i.e., on the Hermi-
ticity of the Hamiltonian.

As indicated in Sec. III the effective norm of an
unstable state is the inner product mith the state
of energy E~. This mill be explicitly calculated
now and used in several later subsections. It was
shown subsequent to (V.22) that such poles do exist
Because of time-reversal invariance

@e~(r) =ye(r) + .

&y, (E*) I y (E)& =abc' 1. —

~-2i 8
+avR (Dil)'

z
(7.34)

The boundary conditions (V.29) may be manipu-
lated into another useful form by multiplying them
together and by adding the squares:

—C'sinn cosa =i (Dq)'e "—8,. p

Therefore (7.27) satisfies

g(E*,i') =P(E,&)*.

This means that evaluating

&y, (E*) I y, (E)&

first requires calculating

(0(z")l ('(z)) = fz'z('(z", ~)*(t(z,~)

d x E,x

(V.33)

2
C'= l —, Dq e

Using these in (7.34) gives

&y, (E+) I q, (E)& =avR(Dq)'

xe 1 —
2 1+ .

For subsequent purposes it is useful to define nor-
malized states
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I ~, (E)& =I y, (E)&

l~. (E")& =I y, (E*)&

where

N=2W (((D i)(e (1- ) (1+: )
2g+CR

D. Calculation of yF

(7.35)

(7.36)

(7.39)

y = 32r5 -Ep T3

The phase-space integration gives

( )''I

&k*l vl+» (E)),
~-+ real

2m ~i Hg

2mB 1 ——' 1+.

The real part of E is defined as EJ, in (V.20). The
decay rate is then

One simple application of these curious wave
functions is to calculate the decay width y~ given
by Fermi's golden rule and see how it compares
with y~ and y~. This requires evaluating the ma-
trix element

By (7.39) this is

&k *Ivl~„(E)&,

where

k' = 2nsE. .

(7.37)

Using the explicit values of c(, and P, in (7.25)
gives

To calculate the decay amplitude use the first-
sheet wave functions (V.2V) to get

Q E
(k*l vip(E)& = — d'xe ' "'"v8(R x) -sinK2

2(b 2 —1) '~2

~B,' a ' 2(b' —1)

(7.40)

2mV sin(K- k)B sin(K+k)B
k - K-k K+k

Continuing this to the second sheet and using the
definitions of n and P gives

2m VR2 sin(c( —P) sin((m +p)
c( P-~+P -'

Using (7.15) simplifies this to

2mC
( k*l VI&~, (E)& = sinn cosp ——cosa sinp .

J

The boundary condition (7.29) can be used to elim-
inate a and get

&k*l vip„«)& = Dq.

The normalized amplitude (7.37) is obtained by
dividing this by N in (7.36):

& *I I ««)&=- —- 2 ] 1/2
2mB 1 ——, 1+ —.a' iP

(7.38)

Denote the continuation of this amplitude to real
energy by T,

This value of the width is to be compared with
(7.26) for ys and y~.

E. An exact test

The idea of introducing a wave function for an
unstable particle may be checked exactly. The
general expression for the 8 matrix

&k,lSIk, & =&k,
l k,&

—2miil(z, —z,((2, (('+( -(' 2

(7.41)

must have a pole on the second sheet at E. Ac-
cording to Sec. II this pole is produced by the re-
solvent in (7.41) and has a residue determined by
the wave function of the unstable state. The scat-
tering amplitude at the pole is therefore pre-
dicted to be

&k2lslk, &
~ —2mis(E2-E, )

E~B

where E =E,=E, and the residue is

~-=«*Ivl+»«)&&+«(E*)l vlk).
Because of the time-reversal property (7.33)

&~„&E*)I vlk) =« I vl~„(E)&.
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This is the matrix element already calculated in

(7.38). Hence the residue C is predicted to be

2' eat 8

m'Z (1-P'/a')(1+1/iP) ' (7.42)

= —2vi5(E, E,) -f!(E) .gr
(7.43)

On the second sheet

)
f(E) +E

"u f(E) E

where f (E) is given by (7.12). At the pole

s-g (E -E)[f'(E) —Ij

This gives for (7.43)

with

2E p g

mk f'(8) —1

Calculating the required derivative gives

f'(X) —1= — —
(1 ——,)(1e—)

.

Putting this into (7.44) gives

(7.44)

(7.45)

Hence O' =C and the wave-function calculation is
exact.

APPENDIX A: EXISTENCE OF (!II!(k)j,j3&

The resonance pole will occur in many scatter-
ing amplitudes. To demonstrate the existence of
the state

i P& used in Sec. II consider, in particu-
lar, an elastic scattering amplitude in which the
pole occurs in total center-of-mass energy, i.e.,
in s. This scattering amplitude is obtained from
the Fourier transform of a Green's function with
an equal number, n, of incoming and outgoing
lines. Denote this Green's function by

9(x',x) =&0
i
7'[8~(x')8(x)j

i
0), (Al)

The real test of this calculation is the knowledge
of the exact S matrix for t' =0. If the calculations
that have been done with the exponentially diverging
wave functions for unstable states are valid, then
(7.42) must be an exact result. According to (7.4)
for s-wave scattering

x) =X+yq, Q r) -"0.
1

Then X and A are conjugate variables.
By hypothesis, analytic continuation of the on-

shell Green's function in the variable A,
" leads to

a pole on the second sheet. To construct the state

i
(t)) it is necessary that the same pole occur in the

off-shell function

G(ld, d)-=f d'X'd'Xe'x x ()(x',x)e"''"'* (A3)

independently of the 2n —2 relative coordinates x
and x'. This was proved quite rigorously for the
four-point function by Bros,"who examined the
inhomogeneous Bethe-Salpeter equation for the
four-point function. From Fredholm theory the
solution is the quotient of two functions: a numer-
ator that depends on the relative coordinates and
a denominator that does not. Bros proved that
both the numerator and denominator are holomor-
phic on the sheet reached by continuing through the
two-particle cut. Therefore poles in the Green's
function can only come from zeros of the denom-
inator. Because of the simplicity of the Fred-
holm denominator, the location of such a pole in
the off-shell function is automatically independent
of the relative coordinates and is the same as the
pole in the scattering amplitude. It will be as-
sumed here that the same holds true for the gen-
eral case (A3) as well.

Among the (2n)! time orderings in (Al), isolate
the (e!)' terms for which (x,'.)'& (xi)', for all i and

j, by separating

~( ', )=&oi&'( ')e(f',.—f )ft( )io&

+ &9(x',x).
When there are only two fields in 8,

f.„=,'(f, +f,)+-,'if, -f, i, -
f,.=-,'(t, +f,) ,'if, -f, i. --

Generally for n fields

mk)) P( 1 f 2) ' 1 )))'

This separation and the fact that

where

x = (x„x„.. . ,x„),
(A2)

&(x) = 7'[P.,(x,)P.,(x.)"' P.„(x.)1,

and the p(x) are renormalized Heisenberg fields.
Let k~ be the total energy-momentum four vector
of the corresponding elastic scattering amplitude
(e.g. , s =k'). Introduce average and relative co-
ordinates by
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e(X ~)=e'x'"e(X ~)e 'x-'"
(A4)

allows the Fourier transform (A3) to be perform-
ed. The result is

the analytic continuation of the first term of (A6).
Since this term has a pole then so does the analytic
continuation of

G(k', k)

+ &G(k', k),

where

(A6)

Because the spatial dependence of the Heisenberg
fields is

8(X &) e (x 5-6(0,r)e(x4

where @ is the full momentum operator, it follows
that (!)& in (A6) is an eigenstate of momentum,

(A6)

l
Q(k)&=—Jl

d'xe'"'"8(x, x)
l
0).

Because the resonance pole in the scattering am-
plitude is on the second sheet, it can only come
from terms in (A6) that have a branch point in k'.
The displayed term has branch points along the
positive real k' axis coming from thresholds in
H. Of the terms in AG, (n! )' of them have cuts
only along the negative real k' axis coming from
(k'+H) '. None of the other terms in AG have
branch points at all because they come from finite
ranges of integration of the variable X"-X'.
Thus the unstable particle pole can only come from

6
l y(I()&=lip(I()&. (A8)

As yet
l P& has n discrete field indices

(a„(„x.. . , ()(„) that are suppressed in (A6). These
indices may be coupled in pairs with ordinary
Clebsch-Gordan coefficients leading to an n-fold
Clebsch-Gordan coefficient that satisfies

where +' are the rotations appropriate to the field
representation [usually (I, 0) (E) (0, I)]. The final
form for

l Q& is then

l4(k)j, jg=g
~

(d'~)"6(&')e'"' TIP.,(~,) "P.„(x„)]l0&I, . . . . jf)(~„.. . , ~„)

Here f is a convenient smearing function of Lo-
rentz invariants r' and r, )'J. If lQ& in (A6) gives
a pole in (A7), then at least one of the (j,j,) com-
binations in (A9) must also because of the com-
pleteness of the Clebsch-Gordan coefficients.
Under rotations (A9) transforms as

The function f may be chosen to guarantee the
normalization

APPENDIX 8: RESOLVENT IDENTITIES

The identities (2.8) and (2.12) follow very easily
from the definitions

R(k') = 1

r(k') = 1

The full resolvent satisfies the three integral
equations

R(k') =r(k') +R(k')H"r(k'),

R(k') =r(k') +r(k')H"R(k'),

R (k') =x(k') +r(k')H"r(k')

+r(k')H"R (k')H"r(k').

Use the fact that )'(k') commutes with A and B to
calculate the projections

AR (k )B = [AR (k )A]H"r(k ),

BR(k')A =r(k')H"[AR(k')A],

BR(k')B =Br(k')B +r(k')H"[AR(k')A]H"r(k').
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Sum these three projections together with AR(k )A
itself to get

R(k') =Br(k')H

+[1 +r(k')H"]AR(k')A[H"r(k') +1] (Bl)

as claimed in (2.8)
Now to simplify AR(k')A use the integral equation

R(k') =r(k') +r(k')H"r(k')

+r(k')H"r (k')H"R(k').

The diagonal projection of this is

AR (k')A =, +, H"r(k')H"[AR (k')A),

where E
@ is the expectation value

(e(k,) IH'I A(k. )& =H p5'(k, —k.).
Rewrite (B2) as

[k'-Z, -H r(k')H"]AR(k')A =A.

The expectation value of this is

k2 kj k H H V k H k2

Ix„- d'k 4 k 4k* +4k* 4'k . C2

This is the identity operator in the one unstable-
particle sector:

I, I4(k)& =I@(k)&,

I,.I+(k*}&
= I+(k*)&.

The projection of I (j)& along the unstable sector is

(CSa)

(CSb)

I„ly(k)& =ly(k)& —le(k)& Z -le(k*)&
&N, .

(CSc)

An orthogonal basis is therefore provided by the
three states (CSa), (CSb), and (CSc).

The identity operator (C2) for the unstable-
particle sector may be extended in a Hermitian
manner to include many unstable particles or mix-
tures of stable particles and at least one unstable
particle. With the extension I„so defined let

I,.I4(k)& =I+(k)& H
+I+(k*) & ~H, ,

with N taken from (3.12). The part of I Q& orthogo-
nal to the unstable-particle sector is just

(k,), —P(k, ) =5'(k, —k,).
.0 if IE&(EIj.

(c4)

The definition of D(k) in (2.7) is

APPENDIX C: THE TOPOLOGY OF Ijt

Because the unstable particles have zero norm
a new, positive-definite-norm operator must be
found to give meaning to (3.15). This norm should
be positive-definite both in the unstable-particle
sector of g4 as well as in the physical Hilbert
space fj a fjf. The difficulty is that certain states
like

I Q& are in the Hilbert space Ij and yet are not
orthogonal to the unstable states. In particular,

(y(k')ly„(k)& =5'(k'-k). (C1)

Essentially the problem is that the three states
I(j)„&, IQ&, and I(t)& are linearly independent but not
orthogonal. To construct an orthogonal basis is
straightf orward. Fir st let

1 5'(k, —k)'"'
k H ~("' =

D(k)

Therefore (B3) shows that an equivalent formula
for D(k) is

&y(k, )Ik'- H' —H"r(k')H"
I y(k. )&

= 5'(k, —k.)D(k),

as claimed in (2.12).

Thus I, projects out what may be called the very
stable part of the Hilbert space fj. The identity
operator in the full space ljf is then

I =I,+I„, (C5)

It(~)) = f«I&&) ((&), (C6)

The state IE, k& is a direct product of asymptotic
stable-particle states (e,P, y, v„v ) with total en-
ergy E and total momentum k. (The relative ener-
gies and momenta are suppressed. } The state

I Q&

was specially chosen in Sec. II and Appendix A so
that a pole would occur in the matrix elements

6'(k'- k}
~(),) ('(& ) ), 4%)) ~

where I,I„=I„X,=O. The important point is that
the first term of (C5} is I, and not the usual iden-
tity in (j. Note, too, that (C5) assumes that the
eigenstates of H span Ijk

Before constructing a positive-definite-norm
operator [see (C13}], it is worthwhile to investigate
in more detail why the inner product (Cl) does not
vanish. To do this, express

I Q& as a superposition
of energy eigenstates. By assumption the asymp-
totic scattering states, either in or out, span ij.
Thus put



14 DESCRIPTION OF UNSTABLE PARTICLES IN QUANTUM. . . 2057

Because of (C6)

1 cp(E)*y(E)
D(k) O'- Z (c7)

This, of course, is not generally positive. To
calculate the I, contribution to the norm use

& 0(k)II.I y(k')& =I&@(k)ll.]II.l y$)&]

Analytically continuing the kG dependence of (C7)
clockwise into the lower half plane merely distorts
the dE contour ahead of it. A pole can occur in

(C7) at kG =kG only if the contour is trapped against
a fixed pole of the integrand at E =0' in the lower
half plane. Thus

Substituting (C3c) gives

&G(i &lr, lG&i')) = ()- G
—G„)» %-k )

so that

&y(k)lnl y(k')& =6'(k- k').

v*(&4 (&)- z (c8) This shows that for states in Ij the Q norm agrees
with the usual norm in 1}:

(GIG) = f d &'(G„'G+"G„G"). (clo)

This norm is, of course, real but not necessarily
positive. Clearly (Clo) is just the expectation value
of (C2):

&t-I G& = &oli,.l("&

This suggests defining a diagonal operator

Q,„=- d'0 Ck 4 k +4k* 4 0*

The expectation value
(c11)

where c is finite but nonvanishing. The pole in
(C8) cannot be of higher order because the pole
in (C7) would not be first order then. Further-
more, y(E) cannot have ad koc poles and cuts be-
cause they would produce spurious singularities in

(C6) and hence in the S matrix. Hence it is the
pole in the weighting function (C8) that allows cer-
tain states in the physical Hilbert space lj to have
a nonzero overlap with the unstable-particle states.

All this is in preparation for discussing the
norm. For a general state

I
G) = f & &IG(&)&'Gi(&)+ f d &IG(& »'G I)".

(C9)

the inner-product norm is

&ElglE& = &EIE& for IE&e Ij.
Thus IIEII is a genuine norm. It satisfies

(a) IIEII -o, IIEII =o iff IE& =o;

(b) II ~EII =I ~l IIEII;

(c) IIE+EII-IIEII+IIEII ~

A further bonus is that $4 is Cauchy complete in
this norm. More precisely, any sequence of
states IE„& of the form (C9) that is Cauchy com-
plete, i.e., for which

II IE„& —IE &II-O as n, m-
must necessarily have a limit IE&&g&. This is a
trivial consequence of (C12) and the fact that
square-integrable functions are Cauchy complete.
The more substantive version of completeness is
why only states of the form (C10) should be con-
sidered. This is just the question, previously
mentioned, of whether the eigenstates of H span
I)0.

The definition of the norm operator in (C13) is
not unique. For example, define linear combina-
tions

lv, (k)& =-I+(k)&~+I@(k*)&P*,

I ~.(k) &
=- I+(k) &

——I+(k*)&

where o. and P are complex numbers satisfying

&GIG,.IG& = f d'&(IG*I'+IG, I') (c»)
The Iv& have inner products

is then positive-definite. Again (C11) can be gen-
eralized to the entire unstable sector. Therefore
define the full norm in I)4 by

A=I +0„ (C13
IIEII'—= &EIAIE& for IE&E Ilk.

To see how (C13) acts, calculate the norm of I @&.
From (C11)

&G(&)IG IG(%')) =
(
—+,).~'%-R').

&~,(k')I v, (k)& =6'(k'- k),

&v, (k')I v, (k)& = —6'(k' —k),

&,(k')I .(k)& =o.

The identity operator (C2) written in terms of
these new states is

I,.= J"d'kl:Is, (k)& &v, (k)l- I v. (k)& &)).(k)ll. (c14)

The norm operator 0 in (C11) is diagonal in the
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I+& basis but not: in the I w& basis. The minus sign
in (C14) suggests defining a new positive-definite
norm operator that is diagonal in I m&:

Q'=— d'k g, k g, k + g, k g, k

Obviously
I v, & here is formally analogous to the

timelike photons of the Gupta-Bleuler quantization
of QED and 0' is analogous to their q norm.

Sets which are open in the 0 norm are also open
in the 0' norm because the two are connected by
the transformation

T =- J"d'kI:I ~, (k) & &+(k)l+ I ~.(k) & &+(k*)ll,

Because of (C2)

Because of (C14)

TT = I~„.
Thus T is unitary. The topology of $1' is therefore
not changed by such a change in the definition of
norm. In particular, if

(~zInI~z& =o,

(~zIn'I~z& =o.
Therefore

has an invariant meaning.

APPENDIX 0: MULTIPLE POLES
AND MULTIPOLE GHOSTS

The analysis of Sec. III applied to any first-
order pole in the scattering amplitude. It is well
known that unitarity and the asymptotic condition
forbid multiple poles on the physical sheet. No
such prohibition applies to unphysical sheets. "
An analysis similar to Sec. III will show that when-
ever there are multiple poles the state space gt
necessarily contains some curious new states.

The term "multipole ghosts" originated in Hei-
senberg's indefinite-metric quantization of the
point-source I,ee model. " In such a quantization
the usual prohibition does not apply and, indeed,
the scattering amplitude has a second-order pole
on the real axis (see Sec. IIIB). Associated with
the double pole are two states: an energy eigen-
state and a ghost of that state. Nakanishi has dis-
cussed the possibility of multiple-ghost states

and generally

d' 'D„(k)
d(k0)l-1 1 9 t

K

Using expression (2.12) for D(k), these three equa-
tions are

(P(k') fk' —H'- H"r„(ko)H" ]I P(k)& =0,

(y(k')I &1+H"t~.(k')) 'H"kl y(k) & =o,

(y(k')IH"I.&.(k')1'H"I y(k)& =o, & =3, 4, . . . , f. .

(Dla)

(D1b)

(Dlc)

The I th derivative of D(k) does not vanish. Let it
be

&y(k')IH" I&.(k')) '"H"I y(k) &
=- C~(i '- k), (D2)

where C is a finite but nonvanishing constant anal-
ogous to N in (3.12).

The analytic continuation of (2.13) is still

(k'- H)lt. (k)& =I I(k)&D.(k)

Thus

(k'- H)I 4.(k)& =o

as before. Now, however, the equation

(k'- H)'IO. (k)& =(k'- H)I e(k)&D.(k)

contains new information. Differentiate this with
respect to ko and then set ko=k'.

(k H)
dl4 (k)& 0dk'

Generally, if the equation

(k'-H)'le. (k)& =(k'-H)' 'I e(i )&D.(k)

generally in an indefinite-metric quantization and
has shown that if there are such states the scatter-
ing amplitude has a multiple pole on the physical
sheet. "

This discussion borrows the name "multipole
ghosts" but differs in two respects. First, the
existence of the states is deduced from the exis-
tence of the multiple poles (rather than converse-
ly). Second, the quantization is conventional in
that the multiple poles are only on unphysical
sheets.

Suppose then. that the scattering amplitude con-
tains a pole of order L on the second sheet at
k' =k'. This sheet is reached just as in (3.3) by
continuing clockwise around a particular n-particle
branch point. At the pole

D„(k)=0.
Furthermore, because the zero is of order L

dD„(k)
dk'
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is differentiated l —1 times the result is

(0o-Jf}',", , =0, I =1, 2, 3, . . . , I, .d' 'l0 (I)&

Therefore the general result is

(I'-II)lt!(I )& =lt! '(I )&, I =2, 3, "., L (»)

These equations may be summarized by

(I'- ff)' ls.'(~) & =0,

where

(DSa)

even though the l =2 case required special treat-
ment. Because of (D9) the fact that

(t '- ~)'I ~.'(~) & =0

merely reflects the fact that

(&'-II)10'(t)& =o

it is clear from (D4b) that

(~'- If')I g(~)& = .(I') If"I e(k) &.

Furthermore,

II"IC(~)&
=If"[ .(i'))'ff" I e(k)&.

(D6)

From the definitions of II" and the reduced resol-
vent in Sec. II the right-hand side of this equation
is proportional to 1$&. Thus

& I(.(&)& =14(&)&~, (D7

where ~ is given by

& y(k')III" [~.(~')]'ff"
I y(k) &

= ~'(k' —k)&.

Referring to (Dlb) shows that A. = —l. Subtracting
(DV) from (D6) gives

(&' —If)I g(&)& =[I +'r. (&')If )10(&)& .
Hence

(~'-lf)I C(l )& =14'.(~)&. (Da)

Now do the same thing for the higher-order states:

(I'-If)IC.'(~)& =(~'-lf')l0!(I)& —If"It!(I)&.

These equations are useless unless Ig„(k)& can
actually be differentiated. The explicit form (2.10)
shows that it can. Furthermore, because the 4'0

dependence of (2.10) is so simple the results are
fust

10'(~) &
= [I+~ (I') If"1

I 0{k)&, (D4a)

lt!(I )& =[ .(I')1'If"I 4(k)&,

(D4b)
Now, of course,

(u -z)lg($)& =0

as always. Next try to evaluate

($o H)l p(k}&

Because

(& —If')r„(k') =1

The states
I g„'& are sometimes called multipole

ghost states. It is easy to show that

(D

because the Hamiltonian is Hermitian as in Sec.
III. Again Berm ltian analytic tty requires that
D(&) have a zero of order I when continued
counterclockwise to 00=40* in the upper half plane.
There are thus I additional states 1$-„'(k*)& analo-
gous to (D4) Th.e inner product of conjugate part-
ners is

I'C&'(k —k') if I+/' =L, +1,
&0-.'(&')I 4.' (&') &

=
q (DII)
&0 otherwise .

The constant C is given in (D2).

APPENDIX E: OTHER ONE-DIMENSIONAL IRREDUCIBLE

REPRESENTATIONS

The states constructed in Sec. III by analytic
continuation automatically have q' & O. Unfortu-
nately they are not irreducible representations of
the Poincare group. To construct irreducible rep-
resentations requires introducing complex boosts
because of (4.34}. Once these boosts are allowed,
however, a state with any momentum & = p + iq
satisfying 4' =%' can be generated. Beltrametti
and t,uzzatto" observed that there are three class-
es of momentum vectors that are distinguished by
whether the plane containing P and q (1) intersects
the interior of the light cone, (2) is tangent to it,
or (3) is completely spaceiike. The quantity
(P 'e)' —P'q' is correspondingly positive, zero,
or negative. A suitable real Lorentz transforma-
tion will bring any 4' into one of the three standard
forms as follows:

Type 1. »0:
k =(n, 0, 0, p),

sip = n' —p'.

Type 2. & =0:

k =(n, 0, iSR, n).

For /~ 3 the second term vanishes because of
(Dlc). The first term is just

(~'-~)l~.'(~)& =[,(~ )1' ~"l~(k)&, I =3, 4, . . . , ~.

Type 3.

k =(0, 0, n, P),
cg8 ~2 p2

(Es)
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The subgroup of the real I,orentz group that leaves
k invariant is one dimensional in each case. De-
note the little-group generator by g, Then the
three classes have, respectively, 0 0

imaginary. ) The corresponding Lorentz matrix
is

g=J +K, ,

g =K

(E4)
Lc(k, SR)

0 1 0 0

icos8 0 0 —sin8

i sin0 0 0 cos~

(E10)

[Of course for any of the momentum classes the
subgroup of the complex I,orentz group that leaves
a particula. r k in.variant has not one but three gen-
erators, viz. the three S;(k) given by (4.27). In
each case, however, only one of these three gen-
erators is proportional to a, Hermitian generator
c]

Regardless of the type, an irreducible represen-
tation of the full I.orentz group may be defined as
in (5.15) by

Obviously

L'(k, SR)" „SR"=

i% cos 8

iSR sin&

(E11)

[ k, j, (r &
—= U[I (k, k)L'(k, SR)]

~
e(SR)j, j,&

(2SR)'/'
[

(z5)

where the meaning of o may differ from one class
to another. For type-1 momenta (E5) actually
yielded the states of Sec. V C on which the one-
dimensional little group was represented irreduci-
bly. It will now be shown that states of type 3 can
also have their one-dimensional little group rep-
resented irreducibly but states of type 2 do not
have such a representation. To see this, apply a
real Lorentz transformation A to (E5) to get

U[A]~ k, j, v& = U[L(Ak, k)L'(k, SR)] U[Z, ]~SR, j, o&,

in accordance with the k of (E3). To calculate
Z use (E8) and

[J„K,] =0

U[g] ~ e/«22, &xe~«z e &«2/2

Because

[K„K,] =-W', ,

this becomes

U[g ]
—ivy

(E12)

The transformation law (E6) for type-8 states is
therefore one dimensional as claimed:

(z6)
U[A]~k, j, v& = ~Ak, j, o& e-'~ . (z14)

g =—L'(k SR) '[L(Ak k) 'AI, (k k)jL'(k SR)

The quantity in. curly brackets in each case is a
real I,orentz transformation that leaves k' in-
variant. It is therefore generated by the corre-
sponding g, so that

U[I.(A k, k) 'A L(k, k)] = e'v'~, (E8}

(The velocity boost in the y direction is purely

where A~ is a real Wigner parameter. (For type 1,
~~ is the real signer rotation angle around the
z axis; for type 3, ~~ gives the real boost velocity
along the x axis; and for type 2, ~~ is a mixture
of rotation angle around y and boost along x.)

States with momenta of type 1 are the helicity
states discussed in Sec. VC. Consider now states
of type 3. Choose the complex boost in (E5}to be

U[I.'(k SR)] = e' ~~ e '«2/' (z9)

L'(k, SR) '(J2+Ki)L'(k, SR) = gJ (E15)

for some constant f. This would then ensure that

U[Z] =e"v "~

and (E6) would then represent the little group
irreducibly. Unfortunately, there is no I ' that
satisfies (E15). To see this, write (E15) as

(J', +K,)L'(k, SR) =gL'(k, SR)J, . (E16)

The generators may be represented by the 4x4
matrices

Because ~~ and o are real this representation is
not unitary. More importantly, it is not even uni-
tary when & is continued to real values.

For states with momentum of type 2 there is no
choice of the complex boost L'(k, SR) that will
represent the one-dimensional little group irre-
ducibly. Suppose there were such a choice. The
Z in (E7) could only be a rotation around the z axis
1f
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J +K, =

0 -i 00
—i 0 0 i

0 0 0 0

0 -i 00
0 0 0 0

00-i 0

0 i 0 0

0 0 0 0

Explicit multiplication shows that the only ma-
trices I,' that satisfy (E16}have all zeros in the
second rom. Such matrices have zero determinant
and thus cannot represent Lorentz transformations.
This shows that there is no state like (E5) which
represents the little group of type-2 momenta ir-
reduc ibly.

8' =—lim 8~
0 ~0

(F2)

and R is given by (6.4).
Equation (F1) may be used to investigate how

q-0. Recall from (6.4) that

R =L(W, P')R(P', P')AR(P, P)L(P, W}.

APPENDIX F: HOW q ~ 0 IN HELICITY AMPLITUDES

It is crucial that q goes to zero in the plane p ll q.
Because of this, the helicity states of Sec. VC
are actually produced in (6.10) and yet their ob-
served transformation law is (6.16). To see how

q-0, begin with the transformation law

(Ak*, j g'lT[y„(Ay}y ( A2)]lo}

=e "~"&k*,j,o'IT[0. (&)4g (-~)]lo}

xS„, „(A)S8, ~(A)

appropriate to the residue in (6.5). Let q-0 in
some unspecified manner. Then project out the
two-particle irreducible representation (6.4):

(Ap, j, o'lAp, j,o;1+2}

=e ' ' p(p, j, o'lp, j, v";1+2)S,-,(R),
~ lt

(Fl)
where

The content of (FS) is that the amplitude vanishes
unless

8'o'= eo .
The angle 8' will depend on whether or not q ll p.
In fact, it will be shown that

'

8 if qllp,8'=
0 otherwise.

(F4)

This has two consequences: If q ll p then the ampli-
tude vanishes unless a'=o'. If q and p are not
parallel, the amplitude vanishes regardless of the
value of o'.

To demonstrate (F4) take

q = (q', lql sing, 0, lq l cosy).

Since A is a z rotation,

q'=(q', lql sinqcos8, lql sinqsin8, lql cosq).

Thus g and 8 are the polar and azimuthal angles
of q' and q ll p corresponds to q =0. To calculate
9' requires first calculating 6}~ from

e'82'~2 =L(k, k')ere~&L (F5)

A specific form for the real transformation I (k, k)
is necessary. Consider the case q2&0 as in (6.20).
Then

(p eq (p q)'- p'q' "'t
0 0

l((q2)1/2 1 1 ( q2 ]I &

q =((q')" 0 o o)

from (5.12a). A real transformation L (k,k) from
~ to & may always be accomplished by boosting
q to the rest form g and then rotating into the z
axis '

L(k, k}=R(z, B(q, q)P}B(q,q).
Thus

e &~2 =R(z, B(q, q')p)B(q, q')e'e~2B(q, q)

This greatly simplifies (F1) because now

D ~ (R) =5 &a &e

and (Fl) reduces to

&p, j, (x'lp, j, o;I+2&

=e ' ' (p, j,o'lp, j o 1+2)e' e'.

Choose xR(B(q, q)p, g), (F6)
p = (p', o, o, I» I)

eie J3

Then P =P =P'=P' so that

where p'= p has been used in the argument of the
leftmost rotation. The two boosts are given by

B(q, q) = e'""'",

B(q', q) = e'"" '
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where

n = (sinii, 0, cosy),

n'= (sinq cos 8, sing sin8, cosy),

tanh p =
I i I

/q'.

B(q, q')P =

p'coshp, —Ip In,'sinhp

-p'n,' sinh p +
I p Ini'n,'(cosh p —1)

-p'n,' sinhp. +Ip In,'n,'(coshp, —1)

-p'n,' sinhp +Ip I[1+n,'n,'(coshp, —1)]

(F12}
Because n' is just n rotated by 8 around z,

B(q, q')e'e~~ =e'e~~B(q, q).

Hence (F6) is just

e"~"=«z,B(q, q')P}e""R(B(q,q)P, z). (F7)

Comparing n' with & shows that this vector is just
(F8) rotated around the z axis by 8. Thus

cos8 sin8 0

R(B(q', q)p, z) = ' —sin8 cos8 0

(0 o

To calculate 8~ these rotations must be explicitly
dispiayed. The rightmost rotation above rotates a
vector with momentum along z until it is parallel
to

X,

cosa 0 since

0 1 0 (F18)

B(q, q)P =

p'coshp. —Ip In, simp,

—p'n, sinhp. +Ip In, n, (coshp —1)

This rather simplifies (Fll), which becomes

-pan, sinh p, + I p I [1 +n,n, (cosh p. -1)]

(F8)

where the vector components are written col(t, x,
y, z). Thus the rotation is around the y axis and
is given by

This means that 8~=0 and hence 8'=0 as claimed
for q not parallel to p.

It appears, in fact, that 8~=0 regardless of the
direction of q. This is not correct. Suppose that

Then n is along the z axis. Thus the vector
in (F8) has only t and z components so that

R(B(q, q)P, z) =

cos~ 0 sin ur

0 1 0

—syne 0 cos(d

100
R(B(q, q)P, z)= 0 1 0

(0 0 1

(F15a)

where

-p'n, sinhp, + Ip In, n, (cosh p —1)
-pan, s im p +

I p I [1 +n,n, (cosh p, —1)] '

(F10)

This gives for (F7)

cos8 sin 8 0
~

~

e' & & =R(z, B(q, q')p) —sine cos8 0

r
cose 0 sin+

x 0 1 0

- sine 0 cosv

(Fl 1)

The remaining rotation to be calculated rotates
a vector with momentum along z until it is parallel
to

In other words ~ =0. The vector (F12) in this
case also has only t and z components so that

rl 0 D

R(B(q, q')P, z)= 0 1 o

(0 0 1f'
and hence (F7}becomes

(F15b)

cos8 sin8 0

—sin8 cos8 0

( 0 D 1

as claimed in (F4). Generally, of course, the rota-
tion that takes the vector (0, 0, 1}into itself is not
just the identity. It can be any fixed rotation
around the z axis. This fixed rotation must appear
in both (F15a) and (F15b). It then cancels in (F16)
so that 8~ = 8 regardless. This is the reason that
(F15b) is not just the v =0 limit of (F13).
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