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Heuristic Hamiltonian for fermions interacting via meson fields*.
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The splitting of the Dirac field operator into two two-component parts corresponding to particle and

antiparticle field operators is used to make a no-pair, low-momentum-transfer approximation to the fermion

current densities that appear in the Hamiltonians that characterize the interaction of the Dirac field with

scalar, vector, and pseudoscalar fields. The resulting approximate Hamiltonians can only be regarded as
heuristic, but they describe interesting quantum field theories without ultraviolet divergences. The properties
of the scalar and vector theories are described in some detail; in particular, the energy per particle for infinite

uniform matter is given in the Fermi-sea approximation.

I. INTRODUCTION AND RESULTS

Hr»=-g Q(r)de(r)dr,

Ze(r) =:q (r)Pq(r):,

where Je(r) is the scalar current density operator;
the colons indicate that the creation and annihila-
tion parts of g and (I) are normal-ordered. The
pseudosclar current density is'

Z»(r) =:$ (r)p, g(~):,
and the four-vector current densities are

J,(~) =:g (r)g(r):,
Z-(r) =:q (r)c(y(r):.

(1.2)

(1.3)

In order to describe the approximations to be con-
sidered, the following Fourier transforms are
needed:

In general, the interaction of a meson field with
a Dirac fermion field is described by an inter-
action Hamiltonian density that is the product of
the meson field operator with a current density
operator for the fermion. For example, in the
case of a neutral scalar-meson field interacting
with a Dirac field, the standard Yukawa interaction
Hamiltonian is

The usual nonrelativistic approximation to
Z„(p, q) is obtained by taking both ~p( and [q~ much
less than M, the fermion mass, and neglecting
pair terms (sometimes this is phrased in terms of
(p~ and ~q~ being small compared to the meson
mass; as will be seen in the following, it is really
the fermion mass that enters). In this paper, a
weaker approximation scheme for Jr(p, q) is pre-
sented, namely, a low-momentum-transfer ap-
proximation useful when ~k~ =(p —q( «M and pair
terms are neglected. Naturally, the usual non-
relativistic approximation is obtained when the
additional approximation (K(= [-,'(p+q)~ «M is made.

The neglect of pair terms is a traditional ap-
proximation for which it seems impossible to pro-
vide a logical justification. Simply, it is necessary
in order to obtain a tractable strong-coupling the-
ory. For this reason, the approximations de-
scribed in the following can only be regarded as
heuristic. The Hamiltonians that will be presented
have only a tenuous relation to relativistic quantum
field theory, but they a,re.signif icant in that they lead
to interesting noncovariant quantum field theories.

For example, the leading low-momentum-trans-
fer approximation, without pair terms, to the
scalar current density J e(p, q) is

Je,.„,(P, q) =, K) [Xt(P)X.(q) +X'(-q)X (-P)],

g(R =(2~) " e*"4(p)dp,
~(p) =(P'+M')'~', (1.6)

(1.4)

~&(p, q) =:0'(p) I'P(q): .
In the following considerations of approximations
to Jr(p, q), the vectors k and K are used; through-
out they take the values

k=p —q,

whereM is the fermion mass, and X, (p) and X (p)
are the two-component annihilation operators for
fermion and antifermion, respectively, with mo-
mentum p. The corresponding interaction Hamil-
tonian

-i( P-q) ~ r+r,s, ~pm
=

(2 )s e ~e„))~(p( qr

K = s(p+q) . && (I) (r)dr dp dq, (1.7)
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together with a Dirac Hamiltonian for the fermion
field P,

& (() = 5:(t(5)( p+((~)((i):&(

~(p)[x,'(p)x. (p) +x'(p)x (p)]dp, (1 8)

and the usual Hamiltonian for the scalar field,

[x'(p)x, (q) -x'(-q)x (-p)]&,(p -q)dpdq .

There is thus no ambiguity of the type discussed
in Ref. 3 other than the usual decrease in effective
strength of a scalar interaction by the factor M/
e (K).

The approximate vector current density opera-
tors are

:[m'+ (V(()))'+ m'(())']: dr, (1.9)
J...».(» q) =x'(p)x. (q) -x'(-q)x (-p),

gives a noncovariant quantum field theory without
divergent integrals. In the usual nonrelativistic
approximation, the factor M/e(K) is replaced by
unity; that theory then contains ultraviolet diver-

gencess.

As a second sample, the pseudoscalar current
density has the following leading term in the mo-
mentum transfer (without pairs):

~,...,~ (p, q) =x, (p) 1'~(p, q)x, (q)

+x'-(-q) &~(p q)x (-p),
i (k K)K.()()(.().') .I) I

(1.10)

The operator Yz(p, q) is the pion absorption oper-
ator in the low-momentum-transfer approxima-
tion. Of course, for [K~ «M, F~ reduces to the
usual v ~ V/2M form. The interaction Hamiltonian
corresponding to Eq. (1.10), together with the
Dirac Hamiltonian (1.8) and the pseudoscalar field
Hamiltonian [also given by (1.9)], gives a non-
covariant quantum field theory without ultraviolet
divergences.

Recently there has been considerable discussion
of whether or not the pion absorption operator
should be invariant under Qalilean transforma-
tions. ' ' The operator Y~ given here is not Qali-
lean invariant. For example, consider the case
that ~k~ is very small and that p'/2M-q'/2M= m,
where m is the pion mass, that is, the fermions
are "on-shell" but the meson is not. Then k K
=Mm and

2M g k-2M K

which is not a Qalilean-invariant form. The am-
biguity in the pion absorption operator arising
from interaction of the fermion field with an ex-
ternal scalar or vector potential' ' takes a simpler
form here. The scalar potential interaction is

J .""(»q)=, ~ [x'(p)x. (q)+x'(-q)x (-p)].

For a transverse vector field interacting with a
Dirac field, this approximation applied to the
transverse current density leads to a theory with-
out divergent integrals. This treatment can be
combined with a previous treatment of the longi-
tudinal and scalar parts of the vector field' to give
a heuristic Hamiltonian for a vector field theory
without divergent integrals.

Section II gives the details of the low-momentum-
transfer approximation scheme, for which the
starting point is the introduction of two-component
particle and antiparticle field operators. The re-
sults of Sec. II are used to formulate a heuristic
Hamiltonian for the interaction of a Dirac field
with scalar, vector, and pseudoscalar fields in
Sec. III. In the next two sections, the particular
cases of interaction via scalar and transverse
vector fields, respectively, are considered in
more detail. Finally, Sec. VI gives the energy
per particle in infinite uniform fermion matter in
the Fermi-sea approximation for an interaction
mediated by scalar and vector fields.

II. LOW-MOMENTUM-TRANSFER APPROXIMATION

TO I'ERMION CURRENT DENSITIES

The essential formalism for reducing the Dirac
field from a single four-component field to two
two-component ones has been given by Foldy and
%outhuysen' and Bethe and Salpeter. ' This sec-
tion restates these results in the form needed here.
The correct treatment of normal ordering for
antiparticle operators requires that the charge
conjugation operator a„be used. '

The Dirac field Hamiltonian is

X pX. +X -q -p ~& p-qdpdq,
IID=: p o. ~ p+ I p:dp, (2.1)

while the vector potential gives

(1.12)
where g is a four-component Dirac field operator;
the corresponding momentum and angular momen-
tum are
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P=: pp p:dp,

p l+-,'Z p:dp, (2.2)

P X+PX+ P +X-Pg-P dP

(2.11)

J = X, p 1+20 X, p +X p 1+&0 X p dp,

l =g+~xp

The unitary matrix

Up)=
~ e(p) +M
i 2~(p) - o.p

e(p) +M

diagonalizes n p +PM,

U'(p)(~ p+PM)U(p) =

leaves p invariant,

U (p)pU(p) = (; 0)

(0 ~1'

and changes l+&Z,

gop
a(p)+i+

i(2.3)

(2.4)

(2.5)

so that x, (p) and x (p) are two-component field
operators for the fermion and antifermion, re-
spectively. The nonrelativistic approximation to
HD js

2

agR = M+
2M X+ P X+ P +X- P X- P dP p

(2.12)

so that in this limit X, and X are the Schrodinger
field operators for the particle and the antiparticle.

Now the current density Z„(p, q) can obviously be
written

~r(P, q) =X.(I)U (P)»(a)X,(a)

=X,'(p) I'., (p, q)X. (I ) +X ' (-a) I' (p rl)X (-p)

+X'(p) I; (p, @o,X*(-q)

+X'(-p) o,I', (p, rI)X, (a), (2.13)

I'„(p,9 =[U (p)»(a)]„,
(p, a) = -[U (p)»(a)]',

I'. (p, a)=[U (p)»(91. ~, ,

I' .(p, a) = ~, [U'(p)»(q)], .
U (P)(I+-'E)U(P) = 0

y
(2.6)

where use is made of

U'(mC(pa = "'(~ =x,(pZ.

(x -*(-p))
(2.8)

The normal ordering in Eqs. (2.1) and (2.2) is de-
fined by letting X, (p) and X (p) be annihilation
operators. Now

HD= X+ pc pX+ pdp

(2 'I)

with T indicating the transpose. Let the two-com-
ponent field operators x, (p) and x (p) be defined by

The ++ and ——terms are the particle and anti-
particle parts of J, respectively; the other two
terms are the pair terms.

If all terms in J are kept, then Eq. (2.13) is just
a transcription of the original relativistic current
density into a very awkward form. However, it is
now possible to approximate the various Y;~, in
particular, by keeping just the leading term in an
expansion in powers of the momentum transfer p
—q = k. Kith the reduced vectors

k. K
~(K)[~(K) +M]

(2.14)
vs K

~(R)[e (R) +M]

the results are shown in Table I.

:X- -P & P X* -P:dp

~P X. PX. P+X. PX P dP,

which is just Eg. (1.8). Similarly, since

it follows that

(2.9)

(2.10)

III. HEURISTIC ',IAMILTONIAN

From Table I and Ref. 7, the form of the heuris-
tic Hamiltonian for the interaction of a Dirac field
with scalar, vector, and pseudoscalar fields is

If =If@a+ ~X-)+~s,p,vLrr]'+If s, ~ppri(X+~X- rrsj

+&r,v, appr 0(+ X- rrr, ~rrrI++r, r, ~ppi4+ X- rrr]'

(3.1)
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TABLE I. Leading terms in the momentum transfer k.

y

( Y Y

Scalar
~(K) ( -O' 2

Pseudoscalar

Vector

Pseudovector

P2

pg

p&e

2&(K) j(2&(K) (p k,~f
( 2k (K) (r kr e(()

2&(K) ~(-o' k;,d —2&(K) I

( K g(K)(T, dl
&(K) l(k(K)&res( K

iso' 'K
&(K) 'I M —(p K)

~

M&p+e(K)(0 —0«d) i(TxK
K~ ( —iO XK ggo + q(g) (0 Oz«)

with HD given by Eq. (2.9), (u~(k) = (k'+mr')'(", (3.4)

SS (aj ~f tss (pja (pija(psjpdfass (pea (pja (pjdp

2

+ +v aL paL p + ax& parr p dp,
i=1

Hf $ appz g$ J8 appz r $ r dr,

+1,&, appz pQ Jp2, appz

(3 2)

V J~ appz r '7'Z r dr .

The relation of the fields to the creation and an-
nihilation operators is

eB r

f((s ' (@j'"

+I,V, appz gV Jl, appz r g2 )7 L r 2 CV(fl, appz r dr

and the q, (k) are orthogonal transverse polariza-
tion unit vectors that satisfy

jd'(k) =g, (-k). (3.5)

IV. SCALAR FIELD INTERACTION

The heuristic Hamiltonian for interacting Dirac
and scalar fields is

The Hamiltonian of Eq. (3.1) has no ultraviolet
divergences and can be treated in strong coupling
by using variational methods; Ref. 7 gives the
techniques for the case of the longitudinal vector
field only.

The next two sections of this payer are devoted
to the cases of interaction with a scalar field and
a transverse vector field, respectively. The
heuristic Hamiltonian for an interaction with a
pseudoscalar field will be discussed in a future
paper.

x[az „z(k) +a~ „~(-k)]dk,
ekK r

Vr(r) —Q [16+&+ (Q]i('2 pq(k)

x[ar, (k) +aT,, (-k)]dk,

(3 3) where HD is given in Eq. (2.9),

Hs (aj = f ts(kja (kja(kjdk,

(dj (k) = (k'+ m') 'i'

(4.1)

(4 2)

where
and HI z,p~, is given by Eqs. (3.2) and (3.3) and is
equal to
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y'~' 5(k —p+q) M
2s ' '(k) e (R)

x[X,'(p)X, (q) +X'(-q)X (-p)1

x[a(k) +at (-k)]dkdp dq,

y =g'/4w .

(4.3)

(4.4)

localized state is

I*;P f) = fx, (r)f(r —x)drW'(P)I»,

lt, (r)(A) =a(k) ~n) =0,
(4 ~)

krr( p)=e xpIf Ip(k Ier(k eI'"'*—-'Itp(k)I']dkI .

The energy and effective mass of the single
fermion can be found by using the localized-state
methods of Refs. 10 and 7. The single-particle

Then the normalization and Hamiltonian matrix
elements are

a(x) =(x„y,f [0;y, f) =D, (x)D, (x),

Z(x) =(x; y, flalo; y, f&,

D~(x) = e" "If(p)l'dp,

e

Ds(x) = exp —
i Q(k) i'(I —e'"' ")dk

(4.6)

A(x) D(xI fe(k)IP(k)I'e'"'*dk+P (x)

X/2

& p p 'e' '"dp—,/, - p q y ke' "+ * -ke'~'" dpdqdk

The strong-coupling localized-state approximation is obtained by choosing Q and f to minimize the local-
ized-state energy functional Eis,

+„(A,f) =&(o)/D(o). (4. I)

Variation of Q gives

X/2

e„,(k) = „„.&,(k) P„,(k),

i„(k)=fr(k pere) - - -f (p)f(e)dpde,
e p+q

and elimination of Q results in

P„ifI = f e(pIIf(P&Il'dp

-mt r -gs

d(x)&(y)f (r+-,'x)f(r ——,'x)f (s--,'y)f(s+ ,'y)drdsdxd-y,

dIx) =(ee) ' f e"" dp
~(p)

(4.8)

(4.9)

If the momenta that occur in f(p) are small compared toM, then/(x) can be replaced by 6(x) and p be-
comes

P„.e, (fi- f (~ kM)lf(pII dpr-k f lf(rII* '—
-, If(d)I*dree. (4.10)

Some numerical results for this energy functional are given in Ref. 11. The effective mass in this approx-
imation is computed as in Ref. 7. The result is

r.s 67i' +'(k) (4.11)
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In the nonrelativistic approximation,

p„„,(&) = f e '"'If(pl I' de, (4.12)

and thenM„*s „„is given in Ref. 11.
Another approximation suitable for weak coupling is obtained by using the TLS energy functional E~~,

Fvr.s A x d D(x)dx, (4.13)

and assuming that the range of f (r) is very short compared to that of De(r). Then f (r) can be replaced by
a 5 function and De(r) by De(0) =1 in most places. The interaction term in JA becomes

5(k+q) 6(k —q)
I

(q~ .(q/2) "@'.(g2)
'*'-" "'"=-

2 ~ ~ (~q. (k/2)
"@'*(-")""

and the corresponding energy functional is
X/2

(pe)p=( )pefe(p)e e p(x)dp'd*x+f te(B(p(X)I'&(e- If g
— - (p( (e) p+( X)1 (4.15)

In general, F, can be minimized numerically to obtain (I) and the energy. For y small, it is clear that (I)

is of order y' ', so that to get the term of order y in F&, D~ can be expanded and

(2w)
' e'P'"Ds(x)dx = (2w)

' e'P " 1 — ~Q(k)~'(I -e' '")dk dx

=e(p)(&- f Ip(k)I'd&)+fe(pe(e)lp(&)I'&(e

Then for weak coupling the functional becomes

E~c(p)= M+ Jt[(()(k) + e(-k) —M]~ t(k())[ dk—,(, - - [(t)(k) +Q(-k)] dk,

(4.16)

(4.17)

and hence ee(Q) = f e(p)de leap ~

y'~'M
2w())' 2(k)e (k/2)[()) (k) + e (-k) -M] p(Q) =(pe) 'px f d p, (4.21)

(4.18)

dk
4w' (()(k)e'(k/2)[~(k) +e (-k) —M]

'

The effective mass is

E, a' P&'(0)
2m' p(q)

(4.20)

where

M* =M
k' dk

6w' ())(k)e '(k/2)[(() (k) + e (-k) —M]'

(4.19)

For infinite fermion matter, with momentum
states filled up to the Fermi momentum Q, the en-
ergy per particle is easily obtained for the heuris-
tic Hamiltonian. The result is

p, (Q) = (2w) '2n d„p .
e(W "

Here n is the number of kinds of fermions; Jd~p
is an integration over the fermi sea. The result
(4.20) is like the one obtained by Walecka"; it dif-
fers in thatM in e(p) is not the same asM*. Also,
the binding energy per particle is

E/N E, , - (4.22)

where E, is the single-particle energy, which is ap-
proximated in Eqs. (4.10), (4.15), and (4.18). The
constant E, is independent of the Fermi momentum
(or density), so that the behavior of the binding energy
as a function of density can be obtained without a value
of E,. As wasnotedinRef. 12thefunctionin(4. 20) or
(4.22) starts with positive slope at Q = 0, then turns
down, if g'/m' is not too small, and finally turns back
upward for large values of Q and becomes asymptotic-
ally equalto a~(Q); that is, the energy per particle has
a minimum for some value of Q.



2014 M. BOLSTERLI 14

V. TRANSVERSE VECTOR FIELD INTERACTION

From Table I, the heuristic Hamiltonian for interacting Dirac and transverse vector fields is

&=&~b„x /+II (~)+&., ,.„,(~,x„x I,
2

H~(a) = f ~(2) Q a; (2)a, (x)d2,
i=1

(5 1)

i~.w~( x* x-)=- 1, f i(x) Z, (2) (x((()x, (x) x'(-x)x (-Rl. (x)+~/(-x)]&x&(&x,

where the j,(k) are transverse polarization vec-
tors."

k i))(k) =0,

where

p(Q) =
3,.Q'

gf(k) =j,(-k),
j;(k) ~ q, (k) =5, ,

Again

y=g'/4v .

(5.2)

(5.3)

n
Ps (Q) 2 (p2 M2)1/2 P P

0

~| (0) = —f (P'+M')"'P'&P
0

(6.2)

Now in the localized-state approximation,

1/2
y

4 ( ~ Ls( ) 2~~3/2(k) Pl, Ls ( ) (5.4)

VI. INFINITE MATTER WITH SCALAR

AND VECTOR FIELDS

Sections IV and V can be combined with the result
of Ref. 7 to give the following expression for the
energy per yarticle for fermions interacting via
scalar and vector fields in the Fermi-sea approxi-
mation:

p+q
p) gs (k) )I) (k) 5 (k p +q)

xf t(p)f (q)dpdq .

If f is anS wave, then p, „,(k) must be zero, since
the result of the integration can only be a vector
along k. Thus, the transverse vector field makes
no contribution to the single-particle energy or
effective mass in the LS approximation.

In the TLS approximation with the range of f (r)
taken to be short compared to that of Ds(r), the
transverse vector field again makes no contribu-
tion to the single-particle energy or effective
mass. Similarly, for infinite fermion matter,
there is no contribution to the energy yer particle
in the Fermi-sea ayproximation.

3Q 2' (Q)=10M '

(6.3)

1 ~2 ~ 2 6+2 32+2

(6.4)

and n is the number of kinds of fermions present;
the matter is assumed to be symmetric, that is,
equal densities of the n spin-& constituents. Equa-
tion (6.1) differs from the E/N given by Walecka"
in two respects: the subtraction of E, and the last
term proportional to E, of which the latter is much
more important. Without the term in Q, saturation
occurs when ps/p starts to become small or be-
cause g$2/m$2 and gv2/mv2 are both large and nearly
balance. The first alternative would require Q to
be a significant fraction of M and is therefore ex-
cluded for nuclear matter. The very delicate bal-
ance between gs'/ms' and Svs/mv' required by the
second alternative is always possible, but makes
the computation of higher-order effects impera-
tive. With the term in Q, it is possible to neglect
relativistic effects and set

g (Q) g gs &s (Q)
2m 2 p(Q)

2 3gv
p(Q)

8'v
Q

32' (6.1)

As long as g„'/m„2)gs'/ms2, this expression al-
ways exhibits saturation, provided, of course,
that the minimum of E/N-E, occurs for a nega-
tive value of 8/N E, -
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*Work performed under the auspices of the U. 8. Energy
Research and Development Administration.

The notation is that of Bjorken and Drell with the modi-
fication that the pseudoscalar operator is written p&.
All Dirac matrices are taken only in the standard
representation:

y, =p«=, Z = =p«o. .

The generalization of the results to other representa-
tions is straightforward.
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