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Using lattice Hamiltonian methods, we investigate the spectrum of an asymptotically free field theory in 1+ 1

dimensions, the SU(N) Thirring model. Lattice perturbation calculations are carried out to fourth order in the
expansion parameter 1/g'. These calculations are extrapolated to the continuum (lattice spacing~0) using
Pade approximants and are compared with the &KB results of Dashen, Hasslacher, and Neveu. Good
agreement is found in many cases. The reliabihty of the Fade extrapolation method is studied by comparing
several strong-coupling spectrum calculations with approximate mean-field calculations of the same quantities.
The results are very encouraging.

I. INTRODUCTION

This paper reports on the application of lattice
Hamiltonian methods' s to study the SU(N) Thirr-
ing model, 4 a model in 1+1 dimensions with N
species of self-interacting fermions:

The model is renormalizable and asymptotically
free. Gross and Neveu' have shown that it is also
a. theory in which discrete y, symmetry is dynam-
ically broken. In the true ground state TtI$ actluires
a nonvanishing vacuum expectation value and the
fermions develop a mass dynamically.

More recently Dashen, Hasslacher, and Neveu'
(DHN), applying semicla. ssical WEB methods, have
discovered a rich spectrum in the model. In addi-
tion to kinklike solutions they find a large number
of less exotic objects, which they say a.re likely to
have their counterparts in four-dimensional theo-
ries. These latter solutions correspond to the fun-
damental fermion, to fermion-fermion, antifer-
mion-antifermion, and fermion-antifermion bound
states, and to further multiparticle states.

Calculating the mass spectrum of an asymptoti-
cally free quantum field theory is also a major goal
of the lattice Hamiltonian methods. Since calcu-
lations in 3+1 dimensions are already underway, it
is important to test these methods, within a simple
one-dimensional setting, where results obtained by
more conventional means a,re available. We have
attempted to perform such a test and the results
are presented in this paper. In brief, we have
calculated particle masses to fourth order in
strong-coupling perturbation theory, formulated
on a lattice. Upon extrapolating to the continuum

limit, we have found good agreement with the re-
sults of DHN.

In order to clarify and justify the previous state-
ment, we must discuss our method for passing
from a, lattice theory to the continuum limit, with-
in the context of an asymptotically free model.
We must also demonstrate asymptotic freedom
starting directly from a lattice Hamiltonian.

To study these points we took up the ideas of a
recent paper by Zee, ' who uses a gap equation, '
familiar from Bardeen-Cooper-Schrieffer (BCS)
mean-field theory, to find a relation between the
effective coupling constant "g'(a)" and the lattice
spacing "a". He shows that in the large-N limit,
g'(a) cc ttA for large "ab. , " and g'(a) cc - I/Inab,
for small ah, where L = gap. Analyzing the gap
equation in detail, we have found that Zee's re-
sults remain good approximations for N values
~ 4. Furthermore, identifying the gap 6 with the
dynamically produced fermion mass, M~, the
large-g limit of the gap equation gives the exact
value for (2aM+)o, our zeroth-order strong-cou-
pling result in configuration space. At the weak
coupling end, the gap equation reproduces, for
large N, the results of Gross and Neveu, ' i.e., the
correct lowest-order contribution to the Callan-
Symanzik P function.

Thus, the pairing approximation works very well
for this simple theory at both the strong- and
weak-coupling limits. Therefore, we are inclined
to believe that it gives us a fairly accurate curve
of g'(a) vs a over the whole range of g', from
zero to infinity. The plotted curve (see Appendix)
indicates then that the cutoff lattice theory tends
smoothly toward the continuum limit as g'-0.
Such a result is crucial to the success of the lat-
tice Hamiltonian approach, since it means that a
singularity-free extrapolation from the strongly
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coupled lattice theory to the asymptotically free
continuum theory is possible.

Having learned this from our investigations in
momentum space, we next must implement this
limiting procedure within strong-coupling perturba-
tion theory which employs the expansion parameter
x(a) =—2/g'(a). As we will see later, fourth-order
lattice calculations leave us with a Taylor series
for mass ratios of the form

' =A+8 2 +C (1.2)

(A, B, C are constants).

Now we have found that to go to the continuum
limit we must let g'- 0, where the Taylor series
of Eq. (1.2) does not converge. Therefore, we need
a method to extrapolate the series of Eq. (1.2) out-
side its radius of convergence. Following Ref. 3,
we have chosen to replace the Taylor series of Eq.
(1.2)by a Pads approximant'before taking the con-
tinuum limit. In particular, Eq. (1.2) is replacedby
its [1,1] Pads approximant

M, A+Dr'
+@~2 (1.3)

The continuum limit can now be trivially taken using
Eq. (1.3).

This extrapolation procedure, replacing a Taylor
series by a Pade approximant, is not new. It has
been sueeessfully employed in the study of critical
phenomena. There is a close analogy between high-
temperature expansions and critical behavior on the
one hand, and strong-coupling expansions and the
continuum limit on the other. The reader should
consult Ref. 9 for further discussion, and (we hope)
convince himself that this extrapolation method is
worth investigating.

We have chosen the diagonal [1,1] Pads approxi-
mant in Eq. (1.3) since it incorporates the boundary
condition that mass ratios such as Eq. (1.3) goto-
ward a constant as g'-0. As DHN' point out, this
is the correct boundary condition to use when one
is dealing with an asymptotically free theory with
only one coupling constant and with dynamical
symmetry breaking. '

We calculated Eq. (1.3)for the ratios of two-par-
ticle bound-state masses to the fermion mass, and
for the ratios of masses to gv —= -g'(gg)„„. Upon
taking the limit g2-0 me find good numerical
agreement with DHN. Citing one example, for the
fermion-fermion bound-state mass, Mzz, we ob-
tain in the continuum limit Mzz/go = 1.937 for
N=B compared with (M»/go)n„„=1.949. For N
=20 we have Mzz/gv =1.991 whereas (Mzz/go)ns„
= 1.992.

One can test the reliability of the limiting pro-
cedure adopted here by applying it to the fermion
mass. On the one hand, there is the gap equation
telling us how 2aM~ should behave as one moves
away from the strong-coupling domain. Can one
retrieve this curve using fourth-order strong-
eoupling results and Pade approximants? Alterna-
tively, can the asymptotically free cha, raeter of the
theory be discovered from the strong-coupling ex-
pansion? In the strong-coupling limit 2', 2aM~,
and ger depend linearly on g'(a). We have compared
the deviations from this linear behavior of the gap,2', as one approaches the weak-coupling domain,
with the deviations from the linear behavior of the

[1,1] Pade approximants for 2aM~ and gv. We ob-
serve numerical agreement among the three curves
from g' of infinity to g' of order -1/N.

We find it very encouraging that a wide range of
g' can be covered by doing only fourth-order
strong-coupling perturbation calculations. It is,
of course, the great hope that, even in (3+1)-
dimensional theories, low-order lattice calcula-
tions will give reliable results for masses of low-
lying states, when extrapolated appropriately to
the continuum.

This paper is organized into four remaining
sections. Section II sets up the SU(N) Thirring
model Hamiltonian on a lattice. The potential en-
ergy becomes the unperturbed Hamiltonian Ho in
the strong-coupling approximation. The kinetic
energy is put in as a perturbation. We will see that
discrete y, symmetry is broken in the lattice the-
ory.

In Sec. III the spectrum of Ho is obtained and
particle states are defined. The zeroth-order
spectrum already exhibits features of the DHN
spectrum. Section IV discusses the perturbation
calculations. Graphs will be introduced and a few
examples from second- and fourth-order calcula-
tions will be explained. In Sec. V we will take the
results of Secs. II-IV, results that mere obtained
at some fixed lattice spacing a, and make an ex-
trapola. tion to the continuum. The "continuum val-
ues" are then compared with the DHN results. We
have also included, as an appendix, our analysis
of the gap equation.

II. THE LATTICE HAMILTONIAN

The continuum Hamiltonian for the SU(N) Thirr-
ing model is

(2.1)
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where "c"denotes "continuum. " The y matrices
employed throughout this paper are

'Yo =0'3
~ &» = ~&2 ~ &5 =o'» ~

We shall follow Ref. 3 in putting fermion fields
on a lattice. We work on a finite lattice with I
lattice sites and lattice spacing a, and impose
periodic boundary conditions on the fields. At each
lattice site l one introduces N one- component
fermion fields Q (f) (n= 1, 2, . . . , N) (see Ref. 11)
obeying

is the following:

I) fp„(even site))

(g„(odd site) j
Perhaps the illustration given in Table I will be
helpful.

Comparing the intermediate stage and the one-
component fields, one sees that there ar, two ways
of interpreting (2.4),

(2 2)
(2.5a)

or

(2 2) (2.5b)

These fields have been rescaled by (2a)'~' and are
dimensionless. The correspondence between the

g fields and the more familiar two-component
splnor 8

(
i

In going from continuum expressions to their lat-
tice counterparts, symmetric continuum operators
were symmetrized with respect to the two possibil-
ities (2.5a) and (2.5b) in order to preserve lef't-
right symmetry even on the lattice.

As an example take the potential energy term
in (2.1)

TABLE I. Correspondence between continuum expressions and their lattice counterparts.

( c~ &(s)

(e~i2(z) f
Continuum Z

Intermediate stage

(0'(2j —2) )

(&n(22 —2))
!

f 4(2i) I

(0 (2i))

(c.'(2i+2) )
(4„(2i+2)j

l -22-2 2j 22+2

4~(2j -2) 4~(2j —&) 4~ (2j+ &) 4'~ (2j + 2)

One-component fiel.ds

I -22 —2 22 —1 2j 2j+1 2j+2



14 LATTICE HAMILTONIAN RESULTS FOR THE SPECTRUM OF. . . 1991

/21 1-2ag —,g ((())„(2j)g (2j) —Q (2j —l)Q (2j-1))

-2+,- g (p„(2j)Q„(2j)—Q ~(2j +1)$„(2j +1)}

=,—. P g g 12(e'.(2j)e.(2j)}(@,'(»)e, (»)}+(e'.(2j -1)e.(2j -1))(@',(2j -1)y,(2j -1))
g=]. a 8

+(Q „(2j + 1)(j)„(2j+1))((j)ts(2j+ 1)(j)()(2j + 1))-2(p (2j)(f& (2j)) ((2)) t)(2j -1)p g(2j -1))

-2(y'. (2j+1)y.(2j+1))(ps(2j)y, (2j)}J

N N

=
2 g g g + g KA (f)4 (1))(hatt(~)kg(&)) -(0 (~)P (&)}(gt)(1+1)$8(&+1))j .

8 l = even

So

2 I N N

FIp„=-4—Q Q Q f ((t) „(l)(t)„(1))($8(l)pt)(l)) -((I)t(l)y„(l))((j)t8(l+1)y8(l+1))).
l=1 n g

(2 5)

The quick way to obtain the lattice kinetic energy is to write down an expression which gives the correct
free Dirac equation in the continuum limit. Take

L N

=,—.g P e'.(1)(e.(f - 1)- y.(1+1)).
l =1 Dt=1

Using the Heisenberg equation of motion is, p--[Q, III and (2.2) one sees that for H=H„„

(2.7)

is, y.(&) = -—2(y.(&+ 1) —e.(&-1)).

Prom (2.8) one can write

(2 8)

(('.( '

)/
' I(( ( + 3) (y-.( —)) I

which reduces to the free Dirac equation in the continuum limit. So we shall take (2.7) to be the lattice
equivalent to the kinetic energy term in (2.1). Collecting the two terms our lattice Hamiltonian becomes

H =H~, +II~-

L N N

Hp„=-~ Q Q Q f(&p„(l)p„(l))($8(l)$8(l)}—((t) (l)p„(l))(hatt(l+l)(j)8(l+1)) j,
/=j. o, 8

(2.9)

if~ = —,.P g ~'.(~)(~.(i-l)- y.(i+1)}.
l = 1 C) l,

Other operators of interest are as follows:

L/2 N

stalar: P J dz('If„'-mag P (p (2j)p (2)') —g —(Rj —1) „(Rj-(1))„
CK CX

L N

= P P (-1)'e'.(1)e.(~).
l 1 ix

(2.10)

Here it was not necessary to symmetrize since starting from either (2.5a} or (2.5b) one obtains the same



J. SHIGEMITSU AND S. ELITZUR 14

result (2.10):

(2.11)
L N

formion nnmbor: P f deb;rg„'- g g be( Ob (t)„-=eIt.
CX l=1 n

In the strong-coupling approximation H „ofEq. (2.9) becomes the unperturbed Hamiitonian Ho. Our
first task will be to find its eigenvalues. The rest of this section is devoted to finding a representation
for the P fields, in which this can be accomplished most easily, without making the perturbation term H~
too complicated at the same time.

First we shall perform a Jordan-Wigner transformation and write the fermion fields in terms of spin
operators. The transformation is

(2.12)

where o' = 2(o*aio') .
The transformation (2.12) preserves the anticommutation relations for the &p fields, but has the advantage

that one then deals with operators o „(l) that commute at different sites and for different species.
Applying this transformation to the lattice Hamiitonian (2.9) one has

L N

H, = g g (o„'(l)o'8(i+ I) —o'(l)o8(l)j,
l =1 &,8

(2.13)

~ N+1 L N

Q Q (on(l)oa(l+1) —(-I) &a(l+I)& (1))o' „(l)o''„(l) ~ ~ o'„,(l+1).
i=1 n

(2.14)

II~t has be come ve ry much more trac tab le in this representation, but at the co st of having products of
v"s in the perturbation term. These will. cause no trouble if they act on eigenstates of v' with eigenvalue
+1. So what one should try to do is to arrange things in such a way that the vacuum has all spins pointing
up. It is possible to accomplish this by performing yet another transformation':

o'„(I)—o „(l)

g„(l)-o'„(1) )for l =even,

o' (l) —-o' (l)

o (l) unchanged for l =odd.

Substituting (2.15) into (2.13) and (2.14) and dividing by g'/4a one obtains

4a8"=—2H =8'o+xV,

(2.15a)

(2.15b)

(2.18)

with

W, = ——,
'
Q g (o „' (l) o 8' ( l) + o ' (l)o,' (l + I)), (2.17)

V = —(i ) "P P fo „' (l) o „'(l + 1) + (-I)""o„(l)o (l + I ))(-1)"o„'„(l)~ ~ ~ cr ', (l + 1), (2.18)

x=2/g'.
In this representation (2.10) and (2.11) take the form

N L N

scalar: g g„'g„' dz- ——,'P g o„'(1),
C 2 n-" y

(2.19)
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L N N L

fermion number: Q=- —,
' P g (-1)'o'„(l)= P Q, Q~=-k g (-1) &~(i).

C tX

Also

(2.20)

Q 4u4n ——g (2o'(2j) +o'(2j +1)+o'„'(2j-1)}.
at g=2gg

(2.21)

Is the ground state of Wo, Eq. (2.17), the all-
spins-up configurations The first term in 8'0 re-
quires the orientation of the spins at each given
lattice site to be the same for all species. Then
the second term fixes the spins at two adjacent sites
to be parallel. So by considering (2.17) alone one
finds a two-fold degeneracy for the ground state,
either all spins up or all spine down. We shall
pick our ground state by imagining that a smaQ-
mass term has been turned on, minimizing the
ground-state energy and then letting the mass go
to zero. A look at Eq. (2.19) tells us that one will
be left with the all-spins-up configuration. We
shall call this state our vacuum and all eigenvalues
of 5', will be measured relative to this state.

Taking the expectation value of (2.21) in the vac-
uum state defined above, one has

which only involves spins at a given lattice site,
and from the second term, which is a nearest-
neighbor coupling term. Both terms have two in-
dependent sums over all species.

Let I', stand for the number of spins that have
been flipped on site L. For each / the first term
in W„—4+„so„'(l)cl'l(l), will contribute

(3.1)

Equation (3.1) is easily obtained by noting that the
sum ~8 is just a sum over a certain number n'
of (+1)'s and n of (-1)'s, with n'+n =hF From.

Fig. 1(a) one has

——,
'
Q o„'(l )v8(l ) = --,' [P,'+ (N -P, )' —2P, (N -P, )]

= ——,'(X'+ e,' -4hP, ) .

N
( lj', g, ) 0

= -—e 0, (2.22)
Subtracting the vacuum value -N'/4, (3.1) results.
Using the same method for the nearest-neighbor
coupling term, Fig. 1(b) gives

and one sees that by choosing one out of the two
possible vacua, spontaneous symmetry breaking is
introduced into the lattice theory. Recalling that
(ljl, g,),o 0 also in the continuum theory, one can
now hope that the lattice theory has been set up in
the "correct phase, " and that a singularity-free
extrapolation to the continuum is possible.

In this section we have obtained the lattice Ham-
iltonian (2.16), which is to replace Eq. (2.1) of the
continuum tI.eory. We find that in the strong-cou-
pling approximation, the zeroth-order vacuum ex-
hibits spontaneous symmetry breaking. In the next
two sections we will analyze the system charac-
terized by the lattice Hamiltonian. In Sec. V the
connection with the continuum theory will be
reestablished.

--,' g o„'(l)o8(l+1)+—

= —4 t.( — l)Ã -P,+l)+P, P,~l —(N -Pl)P, ~l

—(N P, +)P,]+—-

P l Pl+~1)~ P l+X ~ (3.2)

I

I-l+ + + + +

p g+ I

—I-I+ + +

Adding (3.1) and (3.2) and summing over all lattice

0+ ,
'0 P)

0+'
I

IH THE SPECTRUM OF 8 f) AND PARTICLE STATES

Since the vacuum has all spins pointing up, ex-
cited states in our representation will correspond
to configurations with a certain number of spins
flipped down. At each lattice site it is possible to
flip from one up to N spins. To find the eigenval-
ues of S", for such states consider separately the
contributions coming from the first term in (2.17)

ik +
+
+
+
+
+

0 0+

I, +
+

N- pg
+

+
+

I

I

Qi
I

FIG. 1. ContrSutions to the eigenvalues of S'0 from
(a) the first term and (b) the second term in Eq. (2.17).
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sites 5
(a)

&{&',)lry, lg', )&= g Iu', » &',-' -p, &'„,)

= 2nN —B,
where

L
n = gP, = total number of spine flipped,

L
a= g (P,'+P, P„,),

(3.3)

(3.4)

E
0/

0

Spectrum of Ho for N=8

----- DHN Values

«Bound Stotes

%ith these definitions the expectation values of H,
become

or, upon introducing
(b)

one can write

Z, (rr») (»,
)

(3.5)

(3.6)

E
3-

Yg

Equation (3.6) has been plotted in Fig. 2 for N =4
and N =8. The dotted lines give the DHN values,
where their "principal quantum number n" has
been identified with our n of (3.4),

= —sin n (n=1, 2, . . .(N).
c

E(n) 2N . ){

DHN

(3.7)

The levels in our spectrum with an asterisk cor-
respond to states where all n excitations occur
either at one lattice site or on two adjacent sites.
They are the lowest-lying states for given n, and
we interpret them as bound states (for n(N). For
given n and N the sum of the degeneracies of these
bound states is

gCn+ gCn-1 gCi + ~ +~Cj. „Cn i+NCn 2gCn

(2N)!
(2N —n)!n!

'

These states constitute the lowest-lying O(2N)
multiplet the DHN find in their spectrum (the n,
=n multiplets in their notation).

From Fig. 2 one sees that there can be degen-
eracies among levels with different n values (when
n becomes equal to or greater than N this will al-
ways be the case), and in such a situation a
straightforward perturbation calculation is no
longer possible. As long as one is interested only
in one- and two-particle states, setting N» 4 will
eliminate this difficulty, and for the perturbation
calculations of the next section we will always as-

Spectrum of Ho for N=4

DHN Values

Bound Stotes

FIG. 2. The spectrum of 00 for (a) N =8 and (b) N =4.
"n" is the number of excitations.

~0! l& p&=(2N —1)ll& p)

Ql l, p)=(-1)'I l, p),

Q.ll, p&=(-1)'&., ,ll, p) .
(3.8)

Recalling that )t){,-yyy0) corresponds to the upper
component and P{, ~@ to the lower component of
a Dirac spinor, we will identify l l, p) with a
"fermion state" for l = even (Q =+1), and with an
"antifermion state" for l = odd (Q = —1).

Making translationally invariant combinations
(zero-momentum states) one has

Ip), =(—) Q rrr())10),
i = even

...,,=(i) g o, (r)I0&
l =odd

(3.9)

(p=1, 2, . . . , N).

sume that N»4 holds.
The total Hamiltonian commutes with the fermion

number Q =Q Q and with each individual Q„. We
will label particle states by their species number.

The state l l, p)
-=o0 (l)l Q) satisfies
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Qne has a 2N-dimensional degenerate subspace
corresponding to the eigenvalue (2N —1). But be-
cause of species-number conservation, no mixing
between the states will occur.

For states with n=2 there are three possible
values for B: B= 4, 3, or 2.

Case 1. The two spins are flipped at the same
site B=2' =4. Such states will be interpreted as
fermion-fermion (for l =even) or antifermion-anti-
fermion (for f =odd) bound states:

2 x/2

I p,p,)»= ~ Q o(-, (~)op-(~)ln&.
& =even

(3.10)

&ol pi p&» = (4N 4)I pip. &—~~

&I p,pg~z = —2I p,p24g

(3.11)

Here, too, species number conservation will
ensure that the N(N -1)&N(N -1) mass matrix
remains diagonal to all orders.

Case 2. The two excitations occur at two adja-
cent sites

B=1'+1'+1x1=3.
These states correspond to fermion-antifermion
bound states.

Until now it was not necessary to be careful
about phases, since different states were never
mixed by the perturbation. However, with the
fermion-antifermion bound states, one can have
cases where not only Q = 0 but each individual Q„
=0, that is, cases where the two excitations are
of the same species. Such states can be mixed by
the perturbation 7 and relative phases become
important.

To see what the appropriate phases are, it is
necessary to go back to the p-field representation.

Define

I i=even, p,pg»

—= (i )"(p
p (l —1)p t (l ) + Pp (i+ 1) P pt (i)) I 0') .

(3.12)

Upon performing the Jordan-Wigner transforma-
tion, Eq. (2.12), and the transformation (2.15),

(o )' =0 ensures that p, o p„and one has ,'N(N -—1)
fermion-fermion bound states

li', I p,p,&» = (4N —4)l p,pg»,
&I p,p,&~~ = 2I p,p,)~p .

Similarly one has ,N(N ——1)antifermion-antifermi-
on bound states

Z/2

I p,p,&gg= ~ Q op-(i)op-(i)lg&,
l =odd

one has

I
1(= ev en, p,pg»

=(i)~x' 'lo'( (l+1)a(, (l) -o& ($ —1)g& ($)/lQ) .
Summing again over all even lattice sites and nor-
malizing

I p p &a~ = (i)'&' " —
I Q. op- (l) o,- (/+ 1)

l = even

p v, (()v;(l+()I I(()
l =odd

(3.13)

There are all together N' states of the form
(3.13). N(N-1) of them have p, s p, and we can
omit the phase (i)('('('~. For the N states with

p, =p, (3.13) becomes

=(-1)'I,
Z g (-1)'&, (~)o, (~+1)lfl).

(3.14)

These N states will be mixed by the perturbation
V.

Case 8. The excitations occur at two nonadja-
cent sites. B = 2 for this case. These are states
with two free particles.

In the present paper we will consider one- and
two-particle states, but it is not hard to see how
one would proceed to define bound states with
more than two particles.

To organize the perturbation calculations we
have found it convenient to label states according
to species number (Q„). However, since the lat-
tice Hamiltonian has U(N), and in particular U(1)
xSU(N), symmetry, a more natural representa-
tion would be one in terms of SU(N) multiplets,
with the N one-fermion states of (3.9) correspond-
ing to the fundamental representation of SU(N).
This alternative classification of particle states
is especially useful in deciding what degeneracies
remain to all orders in perturbation theory. For
instance, the N' fermion-antifermion states of
(3.13) consist of an SU(N) singlet and an (N' -1)-
piet since

(3.15)

In the next section we will see that such additional
information provides a good meansof checkingour
calculations. "

IV. PERTURBATION CALCULATIONS

In this section me use Rayleigh-Schrodinger per-
turbation theory to obtain strong-coupling expan-
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sions in x =2/g' for the particle masses. The for-
mulas are again those of Ref. 3:

+gg +Qg +e o ~ (4.1)

V '= V

j. -p
V—-V -=—-V- —V0-Wo ~0-Wo co- g 0

(4.2)
a Aa

1 1

V

and W' = g + (corrections to the vacuum).
Our task is to evaluate (4.2) for the one- and

two-particle states of Sec. III and for the vacuum.
To each order one subtracts out the vacuum cor-
rections. The particle energies measured with
respect to the shifted vacuum are then identified
as the masses of these particles.

Consider first the effects of applying the pertur-
bation V to a given state,

V=-(i )""gg (a„'(I)a„'(I+ 1)+(-I )"'"v„-(I)a-(I!+1)f

FIG. 3. Diagrammatic notation for excitations: (a) one
excitation, +3! two excitations at the same site (for two
different species ~&& +2), on nearest-neighbor or on
hvo nonadjacent sites.

By combining the symbols introduced above, one
can write down diagrams, describing the history
of matrix elements. Going from right to left
through a, matrix element corresponds to moving
from bottom to top of a diagram. Horizontal lines
mill correspond to vertices, i.e., they will denote
creation or annihilation of a pair.

Consider as an example the second-order cor-
rections to the one-fermion state,

&&(-I)"o„'„(I)~ ~ ~ o„',(/+1) .

j./2

lp&&= ~ g ~, (&)lfl&
l =even

(4.4)

(4.3)

The term o„"(I)cr„' (l+ 1) creates (annihilates)
two exeitations of the same species at two adjacent
sites. Since we deal only with states of definite
particle number, both creation and annihilation
terms will contribute an equal number of times
to the matrix elements in (4.2). One can then
verify that the factors of (i)""and (-1)""al-
ways conspire to give +1 for both even and odd ¹

The factors of (-1)" come in pairs for diagonal
matrix elements, and for off-diagonal elements
they combine with the relative phase (—l)~of Eg.
(3.14) giving again just a factor of +1. We will
still have to consider the phases coming from the
o"s on a case-by-case basis.

It is convenient to introduce a graphical notation
for describing excitations. Let Fig. 3 represent a
state with one excitation. This notation does not
distinguish between different species. Whenever
necessary, such information must be specified
separately Figure 3(b) .describes three different
states with two excitations. For simplicity, the
number "1"will usually be omitted.

The diagrams of Fig. 4 show the four different
situations that arise to second order. For each
diagram one must calculate the following:

(1) The energy denominator (e, —W, )
' for the

intermediate state, using Eqs. (3.3) and (3.4).
Notice that the numbers on the diagrams (after
mentally reinserting the 1's) of the horizontal
slice corresponding to the intermediate state are
just the P, 's of these equations.

(2) The lattice-site-counting factors
(3) Internal-symmetry-space-counting factors.

2

Time a Ap

(b) (d)

FIG. 4. Second-order diagrams for one-particle states.
p, n are species labels.
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The diagrams (a)-(d) of Fig. 4 give respectively

1 2(N —1)
[(2N-1)-(6N-V)] 4N-6

(4.5b)

—2

(4N —4)

(L -4)N
(4N —3)

'

(4.5c)

(4.5d) ai = a~=~

The second-order corrections to the vacuum
come from diagrams with a single closed box,
such as the box of Fig. 4(d). These give (0) (b)

-LK
(4N-3) ' (4.6)

Subtracting (4.6) from (4.5) one is left with the
finite, i.e., L-independent, second-order correc-
tions to the one-particle mass:

(,) 4N 2(N+1) 2(N-1)-"=~ 3-~ 4-~ 6

In the above example the 0"s in the perturbation
(4.3) always gave a factor of +1. This is obvious
for the diagrams (b)-(d) since excitations never
overlap. For diagram (a) one has either (+1)' or
(- 1)' depending on a ~~ p.

The calculations of fourth-order corrections to
the one-particle mass are somewhat more in-
volved. The three main types of diagrams are
shown in Fig. 5. Different time orderings must
be considered for all these diagrams. The boxes
can also overlap in many ways, giving rise to dif-
ferent energy denominators and counting factors.
The contributions coming from Fig. 5 are

a=a =a ~e =p
I 2 5 4

(c)

FIG. 5. Fourth-order diagrams for one-particle
states.

-1
(4N —6)'

(L —5)2N(N —1) N(N —1) (N —1)' 2(N —1)(N- 2) 2(N —1)(N —2) 2N(N —1) t

4N —3 4K —5 4N —7 4N -8 4N —9 8N —11

1
(4N -4)'

1
(4N —3)'

2N(N+1)(L —6)+2(L+1)' (3N+1)(N+1) 3(N2 1) 4(N2 1)
4N-3 4N-4 4N- '7 8N-11~

(L —6)(L, —V)N2 (L -6)2N(N+1)+N +1 (L- 5)2N(N —1)eN(Ã-1)
4N -3 4N -4 4N-5

(I —5)3N(N —1)+N(N —1) 2N(N —1) 4N2(L —6)
4N -6 8N -11 8N- V

2(N' -1) 2N(N -1) 4(N' —1)
(4N -4)(4N - 6)(4N —7) (4N - 3)(4N - 5)(4N —6) (4N —4)(4N - 6)(8N —1 1)

4(N -1) 4(N' -1)
(4N -3)(4N -6)(8N -11) (4N -4)(4N -3)(8N -11) (4.8)
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Fourth-order corrections to the vacuum come from diagrams with two boxes (Fig. 6). These contribute

—LÃ (L- 5)N (N —1) 4N 2(N —1)
(4N —3)' (4N -3) (4N -6) (8N - f) (4N - 5)

(4.9)

One must also calculate the second term in b of Eq. (4.2). For the one-particle states one has

1-P 1 -P (L —4)N 2(N + 1) 2(N —1) (L —4)N 2(N+1) 2(N —1)i
V V V, V = — +

~, -W, (e, -W, )' 4N -3 4N-4 4N -6 (4N-3)' (4N-4)' (4N —6)', '+ 2+ 2+

(4.10)

The equivalent expression for the vacuum is

LN'
(4N-3)' ' (4.11)

The desired result, the fourth-order coefficient
for the one-particle mass, is

(u~" = [(4.8)+ (4.10)]—[(4.9)+ (4.11)], (4.12)
A. D - . D (4.13)

where the right-hand side lists the appropriate
equations. One can verify that Eq. (4.12) is indeed
independent of L. The actual values of &~" and

are tabulated in Table II for different ¹

Calculations for the fermion-fermion and the
antifermion-antifermion bound states are very
similar. To fourth order one encounters a new

type of diagram, illustrated in Fig. V. The "X"
emphasizes that there is an unexcited site bebveen
the two excitations, i.e., one has an intermediate
state with two free particles. All other manipula-
tions are identical to those for the one-particle
states. The results are also summarized in Table
II.

With the fermion-antifermion bound states a few
new subtleties appear. The general structure of
the g matrix is, in our representation,

To lowest order C =A. =4N —3, D=O.

TABLE II. Strong-coupling expansion coefficients.
The values of ~ (upper number) and p& (lower number)
defined in Eq. {4.21) are tabulated for the following
states: E is the one-particIe state, EE are the fermion-
fermion or antifermion-antifermion states, EA1 is the
(& —1)-piet of fermion-antifermion states. and EA2 is
the singlet fermion-antifermion state. The first column
gives the expansion coefficients for ga/go'p.

EA1 EA2

FIG. 6. Fourth-order vacuum corrections.

4 -0.378 70 -0.463 00 -0.090 58 -0.372 69 0.423 78
-0.025 99 -0.043 02 -0.737 51 -0.635 96 -0.801 22

6 -0.326 53 -0.368 83 -0.039 70 -0.246 82 -0.261 22
0.000 76 0.000 88 -0.73040 —0.61319 —0.621 78

8 —0.304 40 —0.332 25 -0.024 88 -0.205 21 -0.212 70
0.007 49 0.009 09 -0.80944 -0.707 12 -0.709 02

12 -0.284 44 —0.300 85 -0.014 05 —0.172 47 -0.176 04
0.01171 0.013 26 -1.022 83 -0.935 60 -0.935 88

16 -0.275 19 -0.286 78 -0.009 74 -0.158 66 -0.160 95
0.013 14 0.014 40 -1.257 25 —1.176 97 -1.177 03

20 —0.269 86 -0.278 81 -0.007 44 -0.15107 -0.152 73
0.013 83 0.014 87 -1.498 64 -1.422 28 -1.422 28
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II

If

ffc I

—Lottice Site

FIG. 9. Detailed analysis of Fig. 8(a): (a) initial con-
figuration, (b) intermediate configuration, (c) final con-
figuration.

FIG. 7. Example of a diagram with a "hole." These
appear for the first time in fourth-order calculations for
two-particle states.

A+(N —1)D. (4.15)

In evaluating A. , D, and C some caution is needed
because of the relative minus sign between even
and odd sites in Eqs. (3.13) and (3.14). One would
expect diagrams where the final and initial states
are shifted from each other by an odd number of
lattice sites to have a minus sign relative to the
corresponding diagram with no shift. This is in-
deed true for the p, = p, states but not for the
cases p, W p, . In the latter case another factor of
(—1) is supplied by the o"s in the perturbation.

To give a concrete example, consider the two
second-order diagrams of Fig. 8. Diagram (a)

To any arbitrary order we know from the re-
marks at the end of Sec. III that upon diagonalizing
(N' —1) of the eigenvalues must be equal. This im-
plies that

(4.14)

to all orders. We have calculated', D, and C
separately and used (4.14),as a check on our cal-
culations. The eigenvalue for the singlet state is 2 L N

gQ' = ———2 0'~ (4.16)

To obtain the vacuum expectation value in (4.16),
consider the following operator:

L N

U = Uo+xV—= Wo —
2 Q Qo„'(1)+xV.

l n

Then

(4.17)

(4.18)

(4.19)

contributes to the matrix elements C of (4.13) and
diagram (b) to the off-diagonal elements D Fig.-
gure 9 analyzes Fig. 8 in more detail, showing
from left to right the initial, the intermediate, and
the final states, for N =4. One sees that in going
to the final state the operator of(1+1)o,'(l+1)of(1+1)
gives a factor of (-1). A similar analysis of Fig.
8(b), depicted in Fig. 10, shows no such additional
factors of (-1) arising. " Even to fourth order the
relative minus sign between even and odd final
states will always be canceled for the p, w p, states.

We have also calculated go —= -g'(g, g,)„„to fourth
order. In our representation gv becomes"

iP2 Pt P P

Pi P2
(a)

P P

(b)

If

lf

FIG. 8. Second-order diagrams with shifted final
states: (a) contribution to C of (4.13), (b) contribu-
tion to D. FIG. 10. Same as Fig. 9 for an analysis of Fig. 8(b).
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( U)„„can be evaluated order by order in x'.

( P) —P(0) + P(2)x 2 + P(4)x 4 +

U(2)
(4N+2X —3) '

(4) LN 5N 4N
(4N+2A. -3) (4N+2A. —3) (8N+4A —7)

2(N —1) (N-1)
(4N+ 2X —5) (4N+ 2)(.—8)

(4.20)

gv =(gv, ) 1 — —V") x'2 8

LN BA.

2
(

„,
)

surprisingly good results are found already at
fourth order.

Consider the [I,I] Pade approximants for par-
ticle masses measured in units of go".

M (M/go), +Px'
go' I +Qx

(5.1)

The coefficients "p" and "q" have been tabulated
in Table III. For the two-particle states both P
and q are positive so the continuum limit, x -~,
can be taken in a singularity-free fashion,

These continuum limits are shown in Table III,
together with the zeroth-order strong-coupling re-
sult (M/gv)„and the DHN values,

with
—sin n

(5.3)

gv, = g'N/2a .
All the results for strong-coupling exparmion

coefficients are summarized in Table II. In

analogy with E(I. (4.20) we have factored out the
zeroth-order values in presenting the coefficients
and the following notation has been adopted:

W (or gv) = (d(') (1+(2x2+px4) (4.21)

and E is the one-particle state, FF are the fer-
mion-fermion or antifermion-antifermion bound
states, and F21 is the (N'-1)-piet of fermion-an-
tifermion bound states, and EA2 is the singlet
fermion-antifermion bound state. In order to
avoid very small numbers, we have tabulated the
values for aN2 and PN4 In effec.t we are using
2/g'N as the expansion parameter at this point.

V. THE CONTINUUM LIMIT

In the preceding three sections we set uy the
SU(N) Thirring model on a lattice and identified
the one-particle states and the two-particle bound
states. Then we performed fourth-order strong-
coupling calculations for the masses of these
states. These results were obtained at some
fixed lattice spacing a and for a coupling constant
g2(a) defined to be large. A comparison with
continuum theories makes sense only if we are
first able to extend our results to the continuum.
In the Introduction we explained how this can be
ac comylished. Following the yr es cription outlined
and motivated there, we will write Pade approxi-
mants for the perturbation series of Sec. IV and
then go to the continuum limit by letting g'-0
(x- ~). We will see that in some cases, higher-
order calculations are needed to obtain meaning-
ful continuum limits. However, in many cases

(n= 2 in the present case).

One sees that the continuum values are in better

go 0 p/q go

4 E —0.036 37 —0.036 30 0.875
EE 0.223 03 0.130 68 1.500
EA1 10.268 16 6.31849 1.625
EA2 —1.789 48 —1.098 40 1.625

0.974
1.801

6 E —0.009 32 —0.008 99 0.917 0.989
EF 0 11618 0 06174 1 667 1 882 1 910
EA1 0.362 41 0.204 88 1.750 1.769
EA2 0.450 69 0.255 72 1.750 1.762

8 E
EE
EA1
EA2

12 E
FE
EA1
EA2

16
FF
FA1
EA2

0.004 02 -0.003 86 0.938
0.079 23 0.040 91 1.750
0.198 23 0.107 82 1.813
0.215 27 0.11733 1.813

0.001 37 -0.001 32 0.958
0.048 53 0.024 59 1.833
0 ~ 107 91 0.056 78 1.875
0.11152 0.058 73 1.875

0.000 67 -0.000 65 0.969
0.034 98 0.017 62 1.875
0.074 87 0.038 82 1.906
0.076 37 0.039 62 1.906

0.996
1.937 1.949
1.839
1.835

0.997
1.974 1.977
1.900
1.899

0.998
1.985 1.987
1.929
1.928

20 F —0.000 40 —0.000 38 0.975
EF 0.027 34 0.013 73 1.900
FAl 0.05745 0.029 55 1.925
EA2 0.058 27 0.029 98 1.925

0.999
1.991 1.992
l.944
1.944

TABLE III. [1,1] Pade approximants and continuum
limit of iM/~. The quantities p and q are defined in Eq.
(5.1), the [1,1) Pade approximant for M/go. F, EE,
EA1, and EA2 are as defined for Table II. The third to
fifth columns show respectively the strong-coupl ing
lattice results, the continuum limit, and the DHN values.
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agreement with DHN than the strong-coupling re-
sults. Figure 11 shows a plot of (5.2) and (5.3) as
a function of ¹ In Fig. 12 we have plotted the.
[1.1] Padtt approximant, Eq. (5.1), for %=6, 12,
and 20.

However, when we apply Eq. (5.1) to the single
fermion state a curious problem arises. Notice
from Table III that then q&0 and P&0 while

)pl&iql. Therefore M/gv becomes negative for a
finite, but large value of x and our [1,1] Pade
approximants will have ceased to be meaningful.
Experience with extrapolation methods suggests
that this may not be a serious problem. Note that
we are writing Pade approximants for the ratios
of two very similar Taylor series (see Table II).
Very small differences in the Taylor series are
therefore controlling the qualitative character of
the [1,1] Pade approximants. Under these cir-
cumstances low-order Pads approximants may not
be reliable but higher-order approximants should
resolve this difficulty.

We have also calculated [1, 1] Pads approxi-
mants for the ratios of bound-state masses to the
fermion mass

2.0—

l,9

N= I2

b le

4.
X

l.7

Fermion - Fermion

I.6 .—

2.0—

I.9—

b
I.8—

X

l, 7-
N=6

N=20

N=I2

I.6 I

IO

2lg2

(b) Fermion -Anti fermion

I

20

FIG. 12. [1,1] Pade approximante for I/go' [Eq.
(5.1}J: (a} fermion-fermion bound states, (1}ferrnion-
antifermion bound states.

M~y (or M~„) (M~~ „lM~), +P ~
1+q'x2 (5.4)

Table 1V summarizes the values for P' and q', and
Fig. 13 shows plots of Eq. (5.4). The fermion-an-
tifermion states, as shown in Fig, 11, are again
in good agreement with the DHN values but, as
shown in Fig. 13, the FF states seem to become
barely unbound in the continuum limit. The main
difference in our calculations between the FF and
the FA states lies in the second-order correction
m', or nN' of Table II. This difference arises
from the way in which we chose to set up the
theory on a lattice, i.e., one has both excitations

TABLE IV. [1,lj Pade approximants and continuum
limit of mass ratios. Same comments apply here as for
Table III except that they refer to Eq. (5.4). the [1,ll
Pade approximant for M/1lfg.

4 EE 0.19009 0.087 61 1.714 2.170 1.848
EA1 0.718 77 0.381 38 1.857 1.885
EA2 2.194 57 1.17924 1.857 1.861

O

19-

E
I.S-

I I

& Fermion - Fermion
~ Fermion-Antifermion
0 DHN

0
4

6 EE 0.11021
EA1 0.253 80
EA2 0.293 00

8 EE 0.076 95
EAl 0.164 12
EA2 0.175 04

12 EE 0.047 81
EA1 0.098 08
EA2 0.100 93

0.051 47
0.129 56
0.15049

0.036 42
0.082 90
0.088 67

0.023 00
0.049 24
0.050 72

1.818
1.909
1.909

1.867
1.933
1.933

1.913
1.957
1.957

2.141
1.959
1.947

2.113
1,980
1.974

2.079
1.992
1.990

1.932

1.962

1.983

I

12
I

16
I

20

FIG. 11. Continuum limit of particle masses, measured
in units of ga, and comparison with DHN.

16 EF 0.034 63 0.016 81
EA1 0.070 26 0.035 20
EA2 0.071 54 0.035 86

20 EE 0.027 14 0.013 25
EA1 0.054 79 0.027 43
EA2 0.055 51 0.027 80

1.935
1.968
1.968

1.949
1.974
1.974

2.060 1.990
1.996
1.995

2.048 1.994
1.997
1.997
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2, 1—
N=20

2.0—
1.9
1.8

1.7—

(o) Fermion- Fermion

(a)
E
~ 2.I—
E

2.0—

2 0 yN=20

1.9-
1.8—

1.7— (b)Fermion- Antifermion 1 0
I.B-

CC

L Fermi on —Ferrnion

Fermion - Antiferrnion

o DHg

2 0 ~N =20

~N=12

1.8- (c)Fermion- Antifermion 2
I I I I I

8 l2 l6 20

2 4 8

2/g

10 12 14 16
I I I

FIG. 13. l. 1, 1l Pade approximants for ratios of two-
particle to one-particle states [Eq. (5.4)].

at the same site for the EE states but at adjacent
sites for the EA states. We believe that by going
to higher orders the continuum limit will become
independent of such specifics of the lattice theory.
The EE and EA states may then become degen-
erate and the EE states rema, in bound. In higher
orders the two different procedures, Eqs. (5.1)
and (5.4), for taking the continuum limit should
become identical.

An indication that the apparent unboundedness of
the EE states to fourth order may be deceptive is
found by comparing these states to spatially anti-
symmetric fermion-antifermion states, i.e., to
states obtained by changing the relative sign be-
tween the two terms in Eq. (3.12). We expect most
of these latter states to become unbound in the
continuum limit since, except for the SU(N) singlet,
a nonrelativistie 6-function potential picture is
applicable and only spatially symmetric states will
be bound. ' Upon calculating Mi,„, „„,& /Mz for
spatially antisymmetric states, we find that the
(iV' —1)-piet states do indeed become unbound in the
continuum limit, to a much more unambiguous de-
gree than the EI states [see Fig. 14 and note the
different vertical scales on (a) and (b)]. The SU(1V)

singlet state remains below threshold and this leads
us to conjecture that it corresponds to the O(2N)
singlet "cr bound state" of DHN. As these authors
point out, annihilation graphs become dominant for
the singlet state, and these give rise to an attrac-
tive interaction.

Finally, we want to make a consistency check on
the following:

(1) our assumption that the gap equation is de-
scribing the behavior of 2aM~, and also of ger, not

E

E

C
~~
C0

C3

Spatra I ly Antisymmetric

Fermion -Antif erosion States
(b)

(N ~ -I)-piet
L Singlet ~

e

l2
I

20

FIG. 14. Mass ratios at the continuum limit and com-
parison with DHN: {a) two-particle states defined in
Sec. III, (b) fermion-antifermion states with spatially
antisymmetric wave functions [obtained by changing the
sign in Eq. (8.12)]. Note the different vertical scales in
(a) and (b).

only at the two extremes g'(a)» 1 and g'(a) «1,
but also over the whole range of g'(a) (recall that
this assumption was a crucial factor in motivating
our limiting procedure}, and

(2) our claim that Pade approximants provide a
reliable means of extending the region of validity of
strong-coupling expansions, and in particular of
taking the continuum limit.

To do this we can compare 2' as calculated
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using the gap equation with 2aM~ and go as calcu-
lated using strong-coupling perturbation theory.
If our method of taking the continuum limit is good,
these quantities should agree over a wide range of
x'. We are interested to find the value of g(a),
where a discrepancy is first appreciable. If it
turns out that this value of g(a) is small, then our
extrapolation procedure from g'=~ to the continu-
um limit is probably sound and our success in cal-
culating parts of the mass spectrum of this theory
becomes under standable.

To do this most critically we have looked at the
deviations from linear dependency on g of the
three quantities 2aM~, go, and 2ad . In the Ap-
pendix we derive the gap equation

g'(a) 2vaa 1+m
(5.5)

(2am), = g'.(2N 1), (5.6)

with m = I/a'b, ', K(x) = complete elliptic integral of
the first kind.

In the strong-coupling (large ab. ) limit (5.5) leads
to

a better understanding of the nature of our approxi-
mation scheme.

In the present paper we obtained [I,1] Pade ap-
proximants for M/M~ and M/go and for the one-
particle mass (in units of I/2a). Where it was
possible to take the continuum limit, the values ob-
taind for (M/M~) „~„„and (M/ga)„„~„„seem to
indicate that fourth-order results can already be
quite reliable. But one will have to go to higher
orders to be able to claim more definitely that the

P
sequence of diagonal Pade approximants is con-
verging toward the correct continuum value. We al-
so hope that higher-order calculations will remedy
some of the difficulties we are having at the present
level with Mz/go', and that they will show indications
of the full O(2N) symmetry of the continuum theory
and bring the I I and FA. states closer together.

Finally, it will be interesting to see whether the
Pade approximants for 2aM~ and ge themselves
will retrace the gap equation curve further into
the weak-coupling domain. Since Eq. (A21) states
that the gap, aA, has an essential singularity" at
x = ~, experience with Pade approximants suggests

2aD 2aA
(2am, ), (2N —1)g'/2' (5.7)

where the numerator is a function of 2/g'.
For 2aM~ and go, on the other hand, one has,

using the notation of Eq. (4.21),

Equation (5.5) can be inverted (graphically) so that
it is possible to plot

I.Q

0.8

Q.6

Q.4

0.2

0-
1.0

Strong-Coupling Results

2ah/(2ab )o
ger /(ga)o——2aMF / (2aMF)o

2aM~ 5"
(2 M ) &0&

1 + coax + px (5.8) 0.8 pling Results

= I n+gx +P ~xg'o' o
(5 9)

0.6

0.4

In Fig. 15 we have plotted (5.7) and the Ii, 1] Pade
approximants for Eqs. (5.8) and (5.9). The Pads
approximants definitely show better agreement with
(5.7) than the zeroth-order strong-coupling result.
They are able to retrace the gap equation curve to
g'/2-1/N. So, for SU(6), say, the diagonal Pads
approximant method is an accurate extrapolation
method from g' =~ to g'/2 =8.
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VI. DISCUSSION

Following the application of lattice Hamiltonian
methods to the Schwinger model, ' the present paper
has taken us through another exercise in employing R

spatial lattice as a computational tool to obtain the
spectrum of a continuum field theory. The main
purpose in performing these calculations in simple
one-dimensional theories is to gain experience and

0.2-

IQ 20

2/g

40

FIG. 15. Comparison of 2a4/(2aA)0, 2aM+/(2aM&)0,
and go/(go)() as one approaches the continuum limit
(g 0). 2aD/(2aE)0 is obtained from the gap equation.
The curves for 2a Mz/(2aM+)() and Zo/(&0)0 correspond
to the [1,1] pade approximants of strong-coupling ex-
pansions.



2004 J. SHIGEMITSU AND S. ELITZUR 14

that the sequence of [N, N] approximants will not
converge uniformly to the continuum limit. We ex-
pect instead that each [N, N] approximant will be
reliable from g' = ~ to some particular va, lue of
g'. As higher-order calculations are done, so that
[N+M, N+M] approximants are made, the range in
g' over which the extrapolation method works
should (we hope) become larger and larger. We
plan to investigate this speculation by calculating
higher orders using computer methods. We also
suspect that sequences of diagonal Pade approxi-
mants zoi/l converge uniformly for dimensionless
ma. ss ratios and matrix elements. Overall es-
sential singularities cancel in such ratios which
could, therefore, be relatively simple functions of
complex x. Higher-order calculations in simpler,
superrenormalizable models' did in fact suggest
uniform and quick convergence for dimensionless
quanti. ties.

There are still many open questions even in this
one-dimensional model, but work is in progress to
investigate some of them by going to eighth order
in strong-coupling perturbation. We are also look-
ing at sta. tes with more than two excitations, and we
hope to be able to establish a, one-to-one corre-
spondence between the DHN spectrum and bound
states obtained by lattice Hamiltonian methods.
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APPENDIX: THE GAP EQUATION

In this appendix we derive a generalization of
the gap equation (5.5) appropriate for any SU(Ã).
The large-N result is identical to that obtained
by Zee. '

We shall use the following momentum-space
representation for the fermion fields Q:

2 ~/

$„(l = even) = — g (sgnp)a „(p)e'~",

(A1)
Z/2

(p (l =odd)= — Qb (p)e

where

2'
p — n

aL,

n=+1 k2 .

Equation (Al) corresponds in the continuum limit
to a representation appropriate for describing very
massive free fermions

("„(z)=j—(' '
)a„(p)e'"~())('(P)e„

(A2)

Substituting (Al) into the expression (2.19}for the
lattice Hamiltonian, one has

N

H„,„= —g g (sgnp) sinpa (at(p)bt(- p)+b„(—p) a„(p)j,
+=i

2 ]
H = ———g g ( (sgnp) (sgn(p —q)) (sgnk) (sgn(k+ q)) (a t( p) a „(p —q) ) (a St(k) a 8 (k+ q))2a L p, n& as

+(b„(p)bt(p —q))(b~(k)be(k+q))

(A3)—2(sgnk)(sgn(k —q)) cosqa(a „(k)a „(k—q))(b&(p)b&t(p —q})].

We shall now perform a Bogoliubov transformation" and minimize the ground-state energy with respect
to the Bogoliubov angle 0~. Let

Up = cos6q, Vp —-sin8p.

The transformation is

a„(p) = U~ c„(p) —V~ dt( —p),

b~( —p) =U~(f„(-p)+ V)) c„(p).
In (A5) 8~ is independent of the species label a.

We next normal-order the Hamiltonian with respect to the new ground state l 0) defined by

c (p)l && =~.(p)l » = o

(A4)

(A5)

(A6)

The relevant contractions (denoted by corresponding sets of superscripts on the operators being contract-
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ed) are

a'„(p)a„,(p )=b'„(-p)b„, (-p') = Vp'&„„, &p

&' (P)b' (- P') = b '(- P) & (P') = —Up Vp ~ ~ ~pp

b a =a~ b =0.
The resulting expression for H is

H=:H:+H +H,

where
N

H, = ——g g ((sgnk)(sgnP)[cos(k —P)a] U& Vp [:b „(-k) a „(k):+st(k)bt(- k)]

—(2N-1)(Vp' —2)[:a„(k)a„(k):+:bt(k)b„(k):]j
N

+ —g g(sgnp) sinpa[: b~(- p)a„(p):+:at(p)bt(-p):]a

and

(N(2N- 1)V»'(V»' —1)+N(sgnk)(sgnP)[cos(k —P)a] U» V„U» Vp )g 1
a L, , p

g (sgnP)(sinPa)Up Vp .2N
a p

(A7)

(A8)

(A 9)

One can now minimize ( QiHi 0) =H, with respect to U and V (U'+ V' = 1), or alternatively require that
H, be diagonal in the operators c (p) and d„(p)." Taking the latter approach, define

2

/»p =-(2N —1) g (—,
' —V»') =—A(independent of P),aL

ks = — sinPa ~ — (sgnk)U, V, [nns(k —P)a]I
(sgnp) . g2

Then

(A10)

:a„Pb„-P:+:b„-p a„p: +~p: b p b„P:+:a P a P:

= g g( $» [cos28»(c„(p)d„(-p) —c„(p)d„(-p))+sin28» (d~(- p) d„(-p)+ c„(p)c„(p))]
p a

+/kp [cos28»(dt( P) d„(-P—)+c~~(P)c„(P))-sin28»(ct(P) dt(-P) —c„(P)d„(-P))]j. (A11)

The requirement that the off-diagonal terms in
(All) cancel leads to

sistency equations:

tan28» ——gp /&. (A12)
g 1

(] 2 + g2)1/2 (A14)

So one has

P (( 2 g2)1/2

P
(~

2 ~2)1/2

», 2 (g 2+~2)1/2 .

k (sgnaP)ssinPa 1+ —~ — . . n, sinkaI.( 2 ~212

(A15)

In deriving (A15) we have made the further re-
striction that 8» =8 p. Equation (A14) can be
written as

Inserting (A13) back into our definitions for b,
and gp one finds the following set of coupled con-

1 (2N —1) ~ 1
g2 f ~ (S2t. 2 ~21ik2)1/2 ' (A16)
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Equation (A16) can be interpreted as a (mean-
field) renormalization-group equation for the
running coupling constant g'(a). Note that Eq.
(All) implies that & is the mass of the fermion
excitations which diagonalize II in the mean-field
approximation. Therefore, Eq. (A16) indicates
how g must be varied as a function of a in order
that ~ be a fixed, physical quantity.

Equations (A16) and (A16) were solved iteratively
by numerical methods beginning with

I

io

8 $» = Slnpn

and using

(A17)

1 2N —1 1 1

(g (n+1))» sd L ~ ( 1 + [ I/(sd)&] (&((n))&}&/&

(A18)

( (n+ Z))»ag("'" =stupa 1+
a&

(sinka) a(»"
()+()y(a~)'](al'"')') v'I '

2 3 4 5 6
ad

I I

S 9

FIG. 16. Plot of the gap equation (A22).

Note that (A20) is exactly the energy of the one-
particle state calculated in zeroth-order strong-
coupling approximation [see Eq. (3.8) of text and
recall that H, =(g' /4a)W, ].

2. a«&1 (small spatial cutoff)
In evaluating the summation over modes, the
large-L limit was taken and

with or

1 (2N —1)
g 2Ã

d8

[s in'8+ (ah, )'] '~'

(2N- 1)
(—Ina b, )

27r
g =ha = —n.

L
ad)x: exp[ —2 /v(2N —l)g']. (A21)

As long as N~4 no significant changes in the
values for g' were produced by these iterations,
for any fixed but arbitrary a~. So henceforth we
will use the approximation (A17) and'9

For large N we have d ~ exp( —v/Ng'), which
agrees with the one-loop renormalization-group
calculation of Gross and Neveu. '

In general (A19) can be written in terms of a
complete elliptical integral of the first kind K(x),'o

1 (2N-1) ~ 1
g' L»~o [a»d»+(sinka)»]') ' ' (A19) 1 (2Ã-1) 1 ~ 1

g' a& I. »~0 [1+(I/a'b. ')(sinka)'] '~'

Consider first the asymptotic behavior of (A19):
1.ad»1 (large spatial cutoff)

1 (2N- 1) 1 ~ (2N- 1)
g~ L a4 ~~0 4ah

or

(1+m sin'8) '~'d8
2@a&

(2N —1) ),(, m
2ma4 1+m (A22)

(2 N —1).4a (A20)
where m =1/(a&)'. Equation (A22) is shown in

Fig. 16 for N=8 and %=20.
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