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The problem of the improvement term of the energy-momentum tensor 0» in Q4 theory is
reconsidered. H, enormalization-group methods (due to 't Hooft) with dimensional regulariza-
tion are used. A unique finite improvement coefficient, depending only on the regulator
parameter, is shown to renormalize 0». This 0» has. a soft trace at a fixed point. It coin-
cides with the 8» suggested by conformal ideas and by Callan, Coleman, and Jackiw (CCJ),
if summation of the perturbation theory divergences is allowed. But order by order, the
CCJ 0» is finite only up to the three-loop level, and not beyond, even if it is correctly di-
mensionally regularized.

I. INTRODUCTION

e,„=T,„H,(s,s, g-,„)y-,' . - (1.3)

We wish to find a renormalized energy-momentum
tensor; that is, we wish to make finite the Green's
functions of the renormalized field P =—Z '~'Po with
an insertion of this tensor. Coupling and mass re-
normalizations in the Lagrangian are carried over
into T,„of course —see (1.2).

Green's functions of T „diverge, and a nonzero
improvement term is necessary' to make them

This paper aims at a definitive treatment of the
renormalization of the energy-momentum tensor
in P4 theory in four dimensions. In view of the
literature (e.g. Refs. 1-6) on the subject, a fur-
ther paper might appear superfluous. However,
as we will see, this is not so.

In this paper we only investigate &j&' theory. It
is the simplest theory to have problems' with the
"improvement term"; these are the problems of
interest. Further, as Freedman and Weinberg4
explain, the treatment of these problems is es-
sentially the same in more complicated theories.

The bare Lagrangian is, as usual,

& =-'(Sto)' —-'mo'4o' -gA o'~4l

Standard manipulations' derive a canonical energy-
momentum tensor T,„as the current for transla-
tions in space-time:

T,.= S,AoSAo

-g..[-'(Seo)' 'mo'eo' g—oeo'«' ] .-
One may add to this any quantity whose divergence
is zero and which does not contribute to the Ward
identities. The only such improvement term we
need to consider is proportional to (s,s„—g „)p'.
Then we have an improved energy-momentum ten-
sor

finite. Moreover, the Ward identities and power
counting show' ' that a suitable choice of H, is suf-
ficient' to give a renormalized energy-momentum
tensor. Thus renormalization has preserved the
concept of an energy-momentum tensor, for it is
always allowed to add to T„„aterm whose di-
vergence is identically zero.

The reasons for wanting to renormalize T „are
as follows: There is of course the idea that the
energy-momentum tensor is physical and hence
finite. More important is that through this ten-
sor gravity couples to matter. ' So to require that
gravitational interactions be finite requires the
tensor to be renormalized. Now Green's functions
coupling several gravitons to matter are finite if
those for one graviton are finite. " So we only need
to deal with the case of one insertion of 9„„. Then
renormalizability of 8,„gives renormalizability of
the combined theory of gravity and ma. tter, with
gravity treated to lowest order and the self-inter-
actions of matter to all orders. Renormalization
of graviton loops is a separate and very much
harder problem. "

In general relativity, the energy-momentum ten-
sor is' 2(-g) '~'63/6g"", where 3 is the action and

g the determinant of g„„. For g' theory

d4xv'- g 2 —2II,Z, ' . (1 4)

The apparently nonminimal term —,H+po' is zero-
in flat space, but its functional derivative by g „
is not. In fact' it gives the improvement term
in (1.3). Note that the term 2HoRPo' is not-neces-
sarily nonminimal. One might say" that the mini-
mal way to go from flat to curved space is not for
the kinetic energy term to be —,(ago)' but for it to
be the conformally invariant —,'(S@o)' ——,',Rgo'. How-
ever, for the present, we leave H, undetermined.
We treat it as a coupling constant for one of the
interactions of gravity and matter.
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Requiring renormalizability of the graviton-mat-
ter coupling has forced the introduction of an extra
counterterm not necessarily present in one's orig-
inal conception of the theory. In such a situation
one normally argues that there is an arbitrariness
in the renormalization prescription. To be able to
compensate this, a renormalized parameter cor-
responding to the counterterm is needed. (The
standard example is the quantum electrodynamics
of a scalar field, where renormalizability neces-
sitates a four-point coupling for the scalar. )
These arguments apply to the case in hand. %'e

write

HOZ= G+ A;~Z4, (1.5)

where Z is the wave-function renormalization con-
stant, G is some counterterm that leads to a finite
energy-momentum tensor, Z4 is the renormaliza-
tion factor for insertions of Q', and hs is an arbi-
trary finite parameter, termed the finite improve-
ment coefficient. The presence of the factor Z in
Eq. (1.5} comes from expressing the theory in
terms of the renormalized field g instead of the
bare field P,.

Since P' is multiplicatively renormalizable, the
only necessary dependence on hs is as in (1.5) even
though hs is dimensionless. (This of course could
change in the presence of graviton loops, but we
ignore these. )

It is generally hoped that, given a theory of mat-
ter in Minkowski space, it can be combined with
general relativity with no new parameters. Intro-
duction of A„ is therefore considered undesirable.
(But one might cite it as an example of how con-
strained the structure of relativistic quantum the-
ories is. ) So we look for some natural criterion
for fixing H, or h~. There seem to exist four such
criteria. One of them was formulated" indepen-
dently of considerations of renormalizability. We
prove that they all give the same 8 „and force it
to be finite. " A fifth criterion applies only at a
fixed point; it will be satisfied by the 8„„given by
the other criteria.

The criteria are as follows:
(I) The hinetic energy in (1.4) must be conformal

inuariant. " In n-dimensional space-time this gives
H, =-.'(n 2)/(n 1).

(&) 8'„must be a soft operator, "assuming, in
correctly if n = 4, the vali di ty of canonical field
theory. Equivalently scale invariance must be
softly broken. This also gives H, = «(n —2)/(n —1).

(3) The finite improvement program. ' ' Criteria
(1) and (2) do not result in a finite 8 „, in pertur-
bation theory. " So choose, if possible, H, as a
function, finite at n=4, of n and the renormalized
coupling, g~, and mass, no~, so that 8 „ is finite.
Since Z,/Z is divergent in perturbation theory, the

. II. RG-COVARIANT 0„„
Consider the energy-momentum tensor

8»=Zs„ps„p -g»[qZ(8$) —&ms p -gap /4! ]
—Hs(9„9„-g„„)P (2.1)

freedom to arbitrarily change the renormalized
improvement coefficient, h~, is irrelevant here.

(4) The renormalieation-group (BG) covariant
8,„. Choose h~ such that the renormalization-
group equations for 8, have no 9/Bhs term. Thus
changes of the renormalization mass p. do not need
a change in h„ to compensate. This criterion is
new in the context of 8,„. But note the following:
(a) a zero-mass theory can be defined" as one
that satisfies a homogeneous Callan-Symanzik
equation; (b) Zegerlehner" has used a similar
proposal to renormalize (P')« theory

(8) At a fixed point of the renormalieation grouP,
require' 8~ to be soft. Only' at a fixed point can
such a requirement be imposed.

As will be proved in the next sections the first
four criteria are equivalent at n= 4 and give a
finite 8 „, contrary to previous"' expectations.
Further, the 8 „so defined will be shown to have
a soft trace at a fixed point. The first two cri-
teria only work if perturbation theory is summed. "
We show that if H, = constant+ O(n —4), then the
variations of H, at n 4 4 are irrelevant, and the
constant must be -', in agreement with criteria
(1}and (2). Despite the problems, "the proof can
be regarded as good heuristic support for saying
that the 8 „we define is the correct minimal one.

Unfortunately, the results do not agree if"
no4. This is not a disaster since criteria (3) and
(4) are formulated to deal with the divergences at
n=4; there is no reason to apply them if n4.

This paper is organized as follows: Section II
sets up the renormalization group for 8„„, and
defines the RG-covariant 8,„, using 't Hooft's"
methods. In Sec. III equivalence to criteria (1}and
(2) is proved. In Sec. IV the finite improvement
program is shown to succeed, to be unique, and to
agree with the RG-covariant definition. The re-
sulting Ho is independent of g~ and rnz, and equals
—'+O(n —4). But in Sec. V we will see that this6
value is not «(n —2)/(n —1), which up to the three-
loop level appears to work.

In Sec. Vl, 8 „, as defined in Secs. II-V, is
shown to have a soft trace at a fixed point of the
renormalization group. Thus it agrees with
Schroer's' definition. Finally, Sec. VII contains
some concluding remarks.

Heavy use is made throughout of dimensional re-
normalization, that is, dimensional regularization"
with counterterms defined' to be sums of pure
poles at n=4.
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now written in terms of the renormalized field
g=Z '~'p, . The counterterms in Z, m~', andg~
are defined" as sums of pure poles at n=4. In the
case of g~ there is also a factor p,

' " to soak up the
n dependence of its mass dimension, where p. is
the unit of mass. " Also we choose to write

Hs = G( gR, n) + [k(g~, m~'/i(, ') + h„]Z„(g~, n) .

(2.2}

Here, G is a sum of pure poles with no constant
term, AR is the renormalized improvement coef-
ficient, Z„=m~'/m~', and k is a Pnite function to
be chosen. Finiteness of Z p' [and hence of 8 „
as defined by Eqs. (2.1} and (2.2) for any k] fol-
lows from the arguments of Ref. 19. So also does
the fact that g~, Z, Z, and G do not depend on
PLR 0

We will consider the Green's functions

(2.3a)

in Sec. III.
The derivation of the RGE for G„„„is exactly

analogous to that of the RGE for G„. We get

8 8 8 8
+ ym~R 2 + ~+y8 P 8gR 8mR 8$R

(2.9)x G~„„(g„&m„',h~, p, n),
where

5( g„,hs, ms'/tJ. ', n)

8 8=Z„-' P (2+y„)m„', -y
8gR 8' R

x [G+(h„+k)Z ]. (2.10)

Both G„and 6 are to be regarded as functionals of
k, and the 8/sg~, &/&m~', and s/sp, in Eqs. (2.9)
and (2.10) act on the dependence on these variables
of k. The hR and k dependence of 6 can be ex-
hibited:

G .. (qq)=(& (qq), q(q;)), (2.3b)

8 8
5 = f(g„)+y„h„+ P —(2+y )m~', +y„k,

8gR R 8mR'

(2.11)

where the tildes imply a Fourier transform into
momentum space.

The derivation of renormalization-group equa-
tions (RGE's) follows the usual steps. " For G„
we have the standard RGE

8 8 80= p. + -y mR', +2'8P. 8gR 8mR

x G„(g~, m~', &, n) .
Here, dependence on momenta has been sup-
pressed, and

P =(n 4)g, /-( ga 2Z'Z 'gB), —

y=PZ'Z ',
y„=PZ„'Z„-' -y,

(2.4)

(2.5)

(2.6)

(2.V)

where the prime indicates differentiation with
respect to gR.

Now P, y, and y are finite and gs, Z, and Z
are sums of poles. So Eqs. (2.5) to (2.7) imply'4
that y and y are independent of n, while

P=(n 4) g„+P(g~).- (2.6)

These equations also imply" relations among the
various pole terms. Moreover, these equations
can be treated as differential equations determin-
ing the renormalization "constants" g~, Z, and Z
in terms of the RG functions P, y, and y . If the
perturbation series for these quantities are as-
sumed summable, then" Eqs. (2.5) to (2.V) provide
considerable information about the renormalization
constants when n-4. This technique will be crucial

where

g=PZ„'G' yZ„-'G. (2.12)

Note that, as G is a sum of poles with no constant
term, g is independent of n.

Now the RGE (2.9) for G„„is just like the RGE
(2.4) for G~, except for the term 58/9hz. If we
choose A. to satisfy

8 8
P —(2+y„)ms', +y„k = —g,

8gR mR
(2.13)

P = 3g~'/(16m') + O(g„'),

y„= —gz/(16m') + 0(gz') .

Moreover, a one-loop calculation gives

(2.14a)

(2.14b)

then 5=y„hz+0(n —4). So setting hz--0 will then
make (2.9) just like (2.4) at n = 4. One can say that,
with hR= 0, 8,„transforms covariantly under the
same renormalization group as G„. The extra non-
minimal improvement got by setting hR 10 trans-
forms into itself exactly as an insertion of (II)' does.

Qn the other hand, if k were not chosen accord-
ing to Eq. (2.13), then a change in i(, would be
equivalent to the changes implied by the RGE (2.4)
with, in addition, a change in hR.

To obtain a unique solution of Eq. (2.13) boundary
conditions need to be specified; the equation only
determines what happens along individual charac-
teristics. The obvious conditions, which we
choose, are that k be a power series ing„and that
k not diverge as mR- 0. Now the lowest-order
terms in P and y„are"
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2

96 2( 4)+ (gB ) s (2.15)

so that by Eq. (2.12)

g =g~/(96m')+ O(g„') . (2.16)

Then (2.13) has a unique solution satisfying the
boundary conditions. It is independent of m~-
otherwise the first m„-dependent term in k di-
verges like lnm~ when m„-0.

In a more general theory, with more than one
coupling constant, we will need an extra boundary

condition for each extra coupling. " But in such a
theory, it would be sensible to have a separate unit
of mass for each coupling. For each there would
be an RQE. This point probably merits investiga-
tion. Note that the usual application of the RQ is
to scaling properties of Green's functions. There
one only needs the effect of a single, common
scaling of each unit of mass. Here, however, we
are interested in the arbitrariness of the renor-
malization procedure.

Now, given that Bk/Bm„=0, the solution of Eq.
(2.13) is

k( s) =sxp — " dg const — dg sxp dg' },c p(g) - d P(g) -"d p(g')
(2.17)

where c and d are arbitrary. Vifrite

P(g, ) =g~'P(gs),

r„(gg) =gRr ( gR),

&(g~) =g~&( gz)

so that t)(0), r (0), and f(0) are all nonzero. Then

(2.16)

~ =
o f( ggd) f(gz)-

'& dg ((g)
4/3 p(g)

f( g yg (2.19)

where the boundary conditions have been used and

'&dg r (g) r (o)
o g -P(g) P(o)-

(2.20)

Note that in lowest order k = —,', agreeing with the
original guess' for the improvement coefficient.

III. EQUALITY WITH CCJ

In this section we will prove that the RG-co-
variant 8 „defined in Sec. II agrees at n= 4 with
that obtained by taking Ho = —'+ o((n —4)'~'}, inde-
pendently of the o((n —4)' '}terms. Thus it agrees
with the CCJ definition. Moreover, replacing
"-,' "by any other finite value gives a divergent 8„„.
These results are not'4 true order by order in
perturbation theory —for more light on this see
Secs. IV and V.

Our proof uses 't Hooft's method" to sum the
divergences. This of course assumes that the per-
turbation theory account of the divergences is suf-
ficiently close to the truth. So, at the present
time, our results must be regarded as heuristic,
although very suggestive.

Note that assuming summability of the diver-
gences and of the RQ coefficients is not neces-
sarily wrong, for in those (superrenormalizable)
theories whose existence is proved the divergences

are precisely those indicated by perturbation the-
ory." Of course in such theories there are only
finitely many divergences, which greatly simpli-
fies matters. However, at least it is known that
summability of the perturbation series (for the di-
vergences) is possible.

In any case the results here can be taken to mean
that 8,„as defined by RQ covariance or by the
finite improvement program (Sec. IV) is the em-
bodiment of the CCJ idea. [In Sec. IP one particu-
lar choice of H,(n) = -'+ O(n —4) will be found to
renormalize 8 „ in perturbation theory. ]

The difference between the RG-covariant 8„„
and the CCJ 8 „with improvement coefficient Ho is

4 —=H ZZ "—t"Z —k. (3 2)

Now Eqs. (2.6), (2.7), and (2.12) imply that

P(zz ')'+r zz '=0,

p(OZ. ')'+r.CZ„'= g.

(3.3)

(3.4)

Hence

zz -, ' .(g)
o n —4+gp(g)

(3.5)

t;( )
o n 4+gP(g)— (3.6)

B,„"'e„„-=(H,z -G aZ„)(B.B„-g,„)y'

=(H,ZZ„' —Gz ' —k)(B B„-g „)N[P'].
(3.1)

Here the normal product N[@'] is defined by the
conventions of Ref. 24. Since N[P'] is finite, we
only need consider
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where the boundary conditions that ZZ '= 1 and
GZ '=0 when g~=0 and n44 have been used.

Next we examine the behavior of ZZ ' and GZ
as n-4 with g„ fixed. This behavior is singular

since the integrals in Eqs. (3.5) and (3.6) diverge
if n=4.

Separating out the leading behavior at g-0 of the
integrand in Eq. (3.5) gives

qa/3
gnP(0) +n -4 x.(o) ~.(g

n —4+gj!(0) m —4 +g))()l) I'-
where Eqs. (2.14) have been used. Hence

[n 4+gp( g') ] [n 4+gp(0)], n 4+g'p( g') n 4 ~g'p(0)

=ZZ
1 n —4

-~ -n —4+g~p(0)

I /3 8'~ ( &(g)- (n —4)"' dg~
o ([n —4+gp(g) ] [n —4+gp(0) ]'"

&& exp d
-m —4+g ()(g )n —'4+'g'()(0) I

j(0)
[n —4+gp(0) j' 'i (3.8)

So using Eqs. (2.19), (2.20), and (3.7) we get

—,'ZZ '-GZ '-k-0 as n-4. (3.9)

Hence 6 in Eq. (3.2) is zero at n= 4 if H, = -'. Also,
if a term that vanishes faster than (n —4)'~' is add-
ed to II„ then 6 still vanishes. This is because
by Eq. (3.7) ZZ ' is of order (n —4) '~'. Thus, in
particular, we can take H, = ~(n —2)l(n —1), as sug
gested by the arguments of Sec. I.

This completes the proof that &8 „, with the
original improvement coefficient, is finite and
equal to the RG-covariant 8 „. The question of
whether this is true order by order is taken up
in the next two sections.

IV. PERTURBATIVE FINITE IMPROVEMENT

In Sec. III we "proved" that the CCJ' tensor is
finite after summing perturbation theory. It does
not follow that this tensor is finite order by order.
In fact, as we will see, it is not.

The task of this section is to prove existence and
uniqueness of a finite H, = H, ( gR, m„, p, , n) which re-
normalizes 8 „ in perturbation theory. We will see
that this Ho depends in fact on n only, and the one-
loop calculation in Ref. 1 implies that II, = —,

'
+O(n —4). Then in Sec. V we will show that
H, = ~(n —2)l(n —1) +O((n —4)'}, where the correc
tion terms do not vanish. So CCJ's ansatz, even
when dimensionally regularized correctly, does
not perturbatively renormalize 8,„. However,
the 8 „we do construct will be proved to coincide
at n=4 with the RG-covariant one.

The result that a finite improvement works per-
turbatively is in apparent contradiction with Ref. 4.

However, there it was assumed that H, = ' ~y'(g„).
But the results about to be proved show that no
such ansatz can work, given4 that higher-order
corrections to H, = —,

' are needed.
We consider the energy-momentum tensor

8~„(Ho) = To„—ZHo(&~&„-g Q)Q', (4.1)

+y Z 'Z=0,

8&a

'
y. u=-~,

(4.3)

(4.5)

where 8, is to be determined, but Z, m~', and g~
are as in Sec. II. Comparison with Eqs. (2.1) and
(2.2) shows that

8,„(H,) = finite-(ZHo G)Z„-'(S.e. g.„v)A [@'].

(4.2)

So 8, is finite if and only if Z„'(ZH, —G) is finite.
We will now prove the following:

(a) H, can be chosen as a power series in gn and
n —4, such that, perturbatively, Z„'(ZH, —G) is
finite at n=4. The coefficients in the power series
may depend on m~ and p, . Such an II, is unique and
in fact depends only on n.

(b) Z„'(ZH, -G) —k is of order n —4 near n=4,
where k is defined by Eq. (2.13).

Statement (a) is of the success of the finite improve-
ment program; statement (b) is that it is equivalent
at n= 4 to using the RG-covariant 6„„. Thus all the
possibilities for a "natural" 8~„agree.

First recall the RGE's (3.3) and (3.4) for ZZ„'
and Gz "' and the defining equation (2.13) of k:
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where Bk/Bmn'-— 0 has been used.
We need the following series expansions:

z„'z= ge"e„(n)
-0

1+P gB NN

if=1 =1
(4.6)

series in (n —4) and g„, hence finite at n = 4. If
XZ 'Z is finite at n=4, then X=0.

Proof. Consider the leading terms in the expan-
sion of Xz„'Z in powers gs'(n —4)». The leading
terms are those for which a+5 is least.

Suppose that X0; then let the leading terms of
X be

(n —4)"gn' "a„, (4.14)
Z. 'G = g„"fl„(n)

=1

k= Q k„gn",
NW

p=(n-4)g, + p(g„)

=(n —4)g~+
=2

~m ~ ~mN~R
N=j.

~N~R

NN (4.7)

(4.8)

(4.8)

(4.10}

(4.11)

where at least one a is nonzero. The leading
terms of Z„'Z are obtained from Eg. (4.3) using
the first nontrivial terms of p and y„[see Egs.
(2.14)], and we have

Z -iZ
1«'(n 4}

+ nonleading terms

3g qN r(4)
16m'(n —4) I'(N+ 1)I'(' N)

(4.15)

Since XZ Z is finite, in particular its leading
pole terms are zero. These are contained in the
product of (4.14) and (4.15) and hence

It is convenient to present the proofs in a series
of lemmas and theorems. First comes a technical
result whose point will be apparent when it is used
in lemma 2.

I.emma 1. Suppose a is not an integer. Define
for each non-negative integer M an (L+ 1)-dimen-
sional vector x" with components

r(o. +1)
r(M+ N+ 1)1 (n —N —M+ 1) '

(4.12)

Then the x" span the space of (L+ 1)-dimensional
vectors.

Proof Define vec. tors y"'" by

yg'" = N(N —1) (N —m+ 1)

r(M+ 2m+1)r(~ - m —M+ l.)
I'(N+ M+ m+ 1)1(n —N —M+ 1)

I'(N+ l)I'(M+ 2m+ 1)r(n —m —M+ 1)
I'(N —m+ 1)1"(N+M+m+ 1)1 (n —N —M+ 1)

'

(4.13)

Then we have the following:
(i) The first m components of ye' are zero,

while the rest are nonzero. Hence the y's span
the space.

(ii) y"' = x"I'(M + 1)I (n -M + I)/r(n + 1).
(iii) ye' "=(M+2m+1)(M+2m+2)/(n+m+1)

x(ye' —ye"' ). Since o +m+1 is never zero,
this implies that the x's span the space.

Lemma Z. Suppose that X(n, gs, mn) is a power

omr(r~} 0 (4 16)
16m' r(m+N y l)I'(-' N —m)-

for every positive integer ¹ So, by lemma 1, all
the a„'s vanish, contrary to hypothesis. Hence
X= 0. Note that the proof would fail if the exponent
—, in (4.15) were replaced by an integer.

Theorem 1. If Ho(n, gs, m~, p) is finite and if

Z„-'(ZH, —G) (4.17)

q„e„„„„e„„„.
=0

(4.18)

Then H,Z 'Z —GZ ' is finite.
Proof. Note that H„„w0, by Eg. (4.15}. So Eg.

(4.18) does define q„.
Now picking out the order gn" terms in Eq. (4.3)

is finite, then H, is unique and is independent of

gR, mR, and p, .
Proof. If there is also an H„say satisfying the

conditions of the theorem, then (HO-H, )ZZ„' is
finite, and lemma 2 gives H0=H„so that H, is
unique.

Now Z, Z, and t" are independent of mR, so dif-
ferentiating (4.17) with respect to mn shows that
Z„'ZBHJBms is finite and hence that BHJBms = 0.
Similarly, BHO/Blj, = 0.

Applying (P B/Bg„+y ) to (4.17) and using Eqs.
(4.3) and (4.4) shows that Z„'ZPBHOIBg„ is finite,
and hence that BH,/Bg„= 0.

Theorem Z. Let H, =Be,q„(n —4)", and define
the q„'s such that the terms of order (n —4) ' in

Z„(ZH, —G} vanish, i.e. , define recursively
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gives (if N&0}

N j.e„=, „, (y „+MP „„)8„.
Similarly, Eq. (4.4) gives

N-1

4) f)( ((r ))(-M+Mf Ã 1 M}~))(

Hence

(4.19)

(4.20)

precisely enough conditions on H, to be able to
eliminate the single-pole terms. Then the es-
sential part of the proof is that the homogeneous
parts of the RGE's (4.3) and (4.4) are the same.
Consequently the vanishing of the single-pole
terms propagates to all the poles.

(6) When 8„„is expressed in terms of the bare
field, its only dependence on H, is that indicated
explicitly in Eq. (1.3). Thus the uniqueness of the
II, satisfying the finite improvement program ex-
tends to all renormalization prescriptions, if di-
mensional regularization is used.

Z„'(ZH, —G) —k = O(n —4) as n - 4 . (4.22)

Proof. By Eqs. (2.8), (4.3), and (4.4)~ ~

~

8(«4) «+() +y„I(z '««, —«„'«)= —(;.

(4.23)

Now Z„'(ZH, —G) is finite at n=4. Thus Eq. (4.23)
shows that Z„'(ZHO —G) evaluated at n = 4 satisfies
the same equation as k. Since it also satisfies the
boundary condition of being a power series in g~,
it must equal k. Equation (4.22) follows.

Note the following:
(1) Since ri, is determined by the one-loop di-

vergences, H, is —,
' at n= 4, and this is the CC J'

value.
(2) The power series for H, is to be regarded as

formal, like the ordinary perturbation series. It
is effectively a loop expansion: q„only contributes
at n = 4 when ZZ ' has a pole of order N, i.e. ,
at N-loop order.

(3) Although q„contributes to the finite part of
8 „at N loops, it is determined by the divergences
in G at N+1 loops.

(4) An apparent paradox is that in the proof of
finiteness (theorem 2), the Q~'s enter only as
spectators and their divergences seem to be ir-
relevant. However, these are determined by the
fN's, which do enter nontrivially.

(5} In trying to make Z„'(ZH, —G} finite, we have

(4.21)

Let us prove by induction on N that Hpe~ —Q~ is
finite. Certainly this is true for N = 0. So suppose
H,e„—0„is finite for 0& M &N —1. Then the fac-
tor in square brackets in Eq. (4.21) is finite. So
Hpe~ A~ has at worst a single pole, whose vanish-
ing is precisely the definition (4.18) of Ho Hence.
H,e„—0„is finite, and by induction this is true
for all ¹ The theorem is thus proved.

Theorem 3.

V. FAILUREOFH() =»(n-2)/(n-I)

The observation that prompted this paper was
that to takeH, =»(n —2)/(n —1) would ensure suc-
cess of the finite improvement program at the
three-loop level. " As far as the leading diver-
gences are concerned, mere examination of Eqs.
(1.25) and (1.26) of Ref. 4 suffices. Complete can-
cellation of the divergences in 8„, requires that
Green's functions with an insertion of (n —4)gs()))»
at momentum q be finite. A fairly straightforward
calculation" proves this at the three-loop level.

Cancellation of divergences between three-loop
diagrams appears to be highly nonaccidental. So
it is necessary to understand it. What will emerge
is that the cancellation is in fact accidental. An
examination of the renormalization group for 8"„
will show that the divergence at a particular order
is really a divergence at one order less. Then the
cancellation at three loops turns out to be a con-
sequence of the topology of one- and two-loop self-
energy graphs. The appropriate three-loop calcu-
lation will prove that H, = »(n —2)/(n —1) gives a
divergent 8„, at four-loops; a correction of order
(s -4)' is needed toH,

Note thatHO= —»'(n —2)/(n —1) gives an incorrect,
though finite, 6&, at three loops. The correct g„
which contributes to the finite part to this order,
is, in the method of Sec. IV, used to cancel a di-
vergence in four-loop diagrams. What we are
about to prove will show that this divergence is
implied by certain properties of three-loop dia-
grams.

To prove all this we need to consider the renor-
malization of scalar operators of dimension 4 and
less, viz. , p', Q», (sp)', and OQ'. By power
counting these form a closed set under renormali-
zation. At momentum q =0 their renormalization
is determined in terms of g&, m~', and Z by use
of the action principle and the equation of motion.
When qe0, extra terms proportional to DP' are
needed.

Defining the counterterms to be pure pole series,
we write
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m„'N[y'] = m, 'y2,

~4-ntBN[y4] ZB gB p4 &g (s ~)2
8 y BZ

(5 1) (2yg —P)N[0 1- YN[(8 0) ]

+-', m„'(2+y+y )N[y']

+2gs s 0"+~& 0' (5.2) +([-', --,'n-(1-n}H, ]Z+-,' pX/g +-,'y(Z„Z))

&I('0) I= i'~ (r, ' -z
)

0'

8Z
+ —,z -g„(sy)'

x z„-'ay[a']

=finite+ (DZ 'Z+ —,E)QN[P'], (5.10)

em, ',
+go ' 0'+2&

Bg
(5.3)

(5.4)

where

D = (n —1}ff0
—~ (n —2), (5.11)

Equation (5.4) is of course implied by Eq. (5.1).
Vacuum expectation values are for us irrelevant
and so are subtracted out implicitly. The normal
products are defined (in n dimensions) by Ref. 24,
andA. and B depend only ong„and n, by Ref. 19.

Now we have the equations of motion'4

', q4 "g-~-[y']+m, 'N[y']+N[y y] =0,

-', gs P'+ ms'P'+ ZQCJ P = 0 .

(5.5)

(5 5)

Hence, because ON[/'] =2N[(&P)']+2N[P P], we
have

a =w--.'(z- z„). (5.7)

e ~ = (-', n -1)Zy y+ —,
' nm, 2y'+ ~n g, y'

+ [-,' —,' n -If,(1 —n)]z—
= ms'y'+(4-n) gee'/4 t

Finiteness of 6„„ is equivalent'~ to finiteness of
its trace, and from Eq. (4.1) we have

E =Z 'PA/g„- —,'Z 'Zy. (5.12)

(g2 y4/4 i
& Z(s y)2 & Z y2 & Z~ p2)2' (5.13)

Cs=(u' "N[e'j/4t 'N[(S4)'-] l N[e' ]i~[4'j)'.

(5.14)

So Eqs. (5.1) to (5.4) are equivalent to

Then finiteness of 8„, is equivalent to finiteness of
Z -'ZD+ —2E. The resultsof Sec. IVshowthatthere
is a unique finite choice of D in perturbation theory
that makes 8„, finite. The question is now whether
this choice is D=0.

Now the only one- and two-loop diagrams con-
tributing to A and Z have the topology of Fig. 1.
So it is easy to see that, to O(gn), A/gs = 2 Z'
(= 2 Zy/p). This implies that D =O((n —4)2), other-
wise Z„'ZD would have a pole of O(g„'). Later
we will do better by use of the renormalization
group: In fact the same information implies that
D =O((n —4)').

To continue the proof, we define column vectors
of the dimension-4 operators

+[-,' --,'n-a, (l-n)]ZU&', (5.8)
4 ~ =MC0, (5.15)

where the equation of motion (5.6) has been used.
From Eqs. (5.1) to (5.4) it follows with the aid of

definitions (2.5) to (2.V) that
where 18 is the matrix

1
gs Q (P gsy) I N[y4] + & y N[(S y)2]

4 4r n-4

(Y +ym) B N[y2]
(n —4) 2

So

+ ——,
'

y(Z —Z ) — QN[y'] . (5.9)
Z ', PA
n —4 2gz-

FIG. 1. Two-loop diagrams for A and Z have this topol-
ogy. No one-loop diagrams contribute.
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.8ga Z 2 8Z 802s z ' A.z-'/g
8$'a

-2 8ga 8 Z ~ 8m~Z gz -ga —2gzZ 2gzZ8'z gz
BZ

(5.16)

ZZ'
Consider Green's functions t"» with an insertion of the operator X„C„where X„ is a row vector of num-

R
hers. Define

Xo =X~M

so thatX, 4, =X~4„. Then the RG equation for G» is

8 8 2 8 N 80= I —, +, -y.m~'8 .+ y y,X GNx
gR ~R R

where

(5.17)

(5.18)

8
yx=p, —X

fixed go, mo, X

X~ p M-'

8u 8M, 8M=-X„p, +P —y„m„', M '.™z (5.19)

A tedious calculation with the aid of Eqs. (2.5) to (2.7) gives

P' —2gzy'' y' -ms'(y'+y' )

2gsP'-2P-4' y' 2gmy' -2gsms (y'+y') -2gR&-y /2

0 0
(5.20)

where the finite HG coefficient n is defined by

~ = z„-'(~p/g„)' —ywz. -'/g„+-,'y' ——,'y'zz. -'.
(5.21)

Thus by Eq. (5.12)

(5.22)

Suppose the first nonzero term in z- —,'y' is of
order g~ . Note that by their definitions n and y
depend only on gs. Then Eq. (5.22) shows that the
lowest-order divergent term in E is O(gs""), and
it is a single pole. %e now use the explicit form
(4.15) for the leading terms in Z 'Z. In order for
0~~ and hence 6)„„ to be finite, it follows from Eq.
(5.10) that D =O((n —4) ")with nonzero coefficient
of (n —4)™+1 Thus to take 0, = —,'(n —2)/(n —1) would
give correctly only q„q„.. . , q„(in the notation of
Sec. IV). The corresponding e is finite at the

Z = 1+ ~»gsm/[(16m')'(n - 4)] +O(g, ') .
From earlier remarks it follows that

A = ~gR'/[(16m')'(n —4)] + O(g„') .

(5.23)

(5.24)

Since g and A. are independent" of nzR, we set mR
=0 throughout. The three-loop diagrams contrib-
uting to Z are given in Fig. 2. They give

(m +1)-loop level and correct at m loops. " [Note
that g „contributes to the finite part but not to
the divergence at the (m +1)-loop level. ]

So far, we know that o. =-,'y' to order g„. So m
is at least 2. Next we calculate n ——,y' to O(gR2),
and find it to be nonzero, so that m =2.

To lowest order we have"

gs = ~' "Q~ —3''/[I«'(n - 4)]+O(g~')]
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FIG. 2. Diagrams for Z at order gz . A dot denotes
a counterterm.

1 1 gR 1 gRg 1 +
4 ~2 ~6 2 24 )6 p

-6(. 4) 16,' "(g '

and hence

(5.25)

g =[,(gR/16m')' ——,",,(gR/16m')']/(n —4)

—,'(g, /16v')'/(n —4)'+ O(g, ') .
Hence

(5.27)

y =-,'g„'(16m )
' ——,'g~'(16m') '+O(gR~). (5.26)

The one-particle irreducible (1PI) diagrams with
divergent q dependence for (TP(A) Q(P, )N[P'](q))
at order g„' are given in Fig. 3. Counterterms for
the inserted operator are given by Eq. (5.2). The
diagrams give" FIG. 3. Diagrams to calculate A. A cross denotes

an insertion of $ at moxnentum g, and a cross plus dot
denotes one of the counterterms indicated in Eq. (5.2).

n= —,'g, /(16v')' ——,",g,'/(16v')'+o(g, ') (5 26) 1 =E+2(n- 1)e,Z -'Z+(1--,'n)r -'Z, (6 2)

o' —-', y' = —6g~'/(16m')'+O(gR'),

and the results claimed earlier about II, are
proved.

(5.29)

VI. SOFTNESS OF 8"„AT A FIXED POINT

Callan, Coleman, and Jackiw' tried to determine
the improvement coefficient by requiring the trace
of 6„, to be a soft operator. Unfortunately there
are' anomalies in the broken conformal symmetry
they used. As Lowenstein' proved, no improve-
ment of 8„,can make its trace soft, in perturba-
tion theory. However, as Schroer' explained, 8"„

can be soft if one sums the perturbation series:
For one particular value of the improvement coef-
ficient, 8„" is soft at a fixed point of the renormali-
zation group (i.e. , when P =0).

In Secs. II-V we have produced a unique "natural"
g~. %e now show that it satisfies Schroer's condi-
tion that 8"„' is soft at a fixed point.

First, we use the relation HN[P'] =2N[(ag)']
+2 V[/ P] and the equation of motion (5.5) to re-
write the right-hand side of Eq. (5.10) in terms of
N[Q'], N[(B P)'], and N(P']. This gives

4-n
e"„=" ~'vip'I — ~ -4~)+~~I(ay)'I

4I g

+m, '(-,'y +1 —r)N[y'], (6.1)

e"„=m,2(1+-,'y.)N[y') . (6.3)

Applying PB/Bgs+y to Eq. (6.2) and using Eqs.
(4.3), (4.4), and (5.22) to substitute for pE'+y E,
etc. gives

pr'+ .yyTr(n ,'y )+O(n-4-)- (6.4)

So if y c 0 at the fixed point then Y =0 there, and so
L9~ is soft, as claimed.

VII. CONCLUSIONS

%e have seen that there exists a unique, mini-
mal, finite energy-momentum tensor in p' theory.
This is perhaps not surprising, given (a) that the
homogeneous parts of the RGE's we use are the
same, ' and (b) CCJ's attempted proof~ of finiteness
of their 8„,. The CCJ proof works for the one-loop
diagrams; hence divergences of c J6}„,are non-

and E is defined by Eq. (5.12). Define Ho by the
finite improvement program. Then 7 is certainly
finite, since L9„ is. It is irrelevant whether the
trace of 8 is taken before or after the limit n-4,
since it is finite. So it is correct' to derive Eq.
(6.1) in n dimensions and then set n =4.

Softness at n =4 of 8"„means that the coefficients
of N'[p'] and N[(BQ)'] vanish, i.e. , that p=0 and
7 =0. So to show that our 0~ agrees with Schroer's
we have to prove that 1'=Owhen P =0 and n =4. Note
that then
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leading. Thus point (a) plus 't Hooft's methods'4

imply finiteness of J 0„,. Since the CCJ defini-
tion is RG-invariant, it must coincide with the
definition by RG covariance (unless there is a bad
enough singularity at gz =0 or

pygmy
——0). Further,

point (a) is needed to ensure success of the finite
improvement program. It makes consistent the
equations for H, . Uniqueness of the solution of
this program implies RG invariance and hence
coincidence with all that has gone before.

The argument just presented is of course not
a substitute for the proofs given earlier. But it
does indicate that the original CCJ proof of finite-
ness could possibly be considered correct. Add to
this the results of Sec. VI and one could say that
CCJ's results are as true as they are allowed to
be.

Our renormalization of 8„,means" that the prob-
lem of matter interacting with an external gravita-
tional field is dealt with. Only the "vacuum" part'
of the problem is ignored; this must be investi-
gated.

Another, but much easier, question is to check
the way in which our methods carry over to a
general renormalizable theory with scalar fields.
It would also be useful to know to what extent our
results can be duplicated by conventional methods,
such as that of Bogoliubov, Parasiuk, Hepp, and
Zimmermann. (One can always use the RG co-
variance idea, but the situation for the other ideas
is not clear. )

Since the finite improvement coefficient is in-
dependent of. the coupling, one might, at first
sight, expect the same value to work for an ar-
bitrary theory. (At least one expects this assuming
the obvious conjecture that the methods of this
paper generalize to any theory. ) However, one
must recall that the bison d' etre for H, is the
existence of a nonzero interaction, though its pre-
cise value is irrelevant. So the most reasonable
conjecture on the value of H, is that it depends on
the symmetry class of the theory. Symmetry con-
siderations are the standard way of fixing relations
between otherwise arbitrary coupling parameters.
For example, to set some particular coupling to
zero is, in general, not a condition invariant under
change of renormalization prescription. But it is
invariant if the coupling is a symmetry-breaking
parameter. The idea of some object depending
only on the symmetry class is of course reminis-

cent of the idea of universality in critical phenome-
na."

The results here can be applied" to the renor-
malization of field theories in curved space. (A
curved space is no more than an external gravita-
tional field. ) Drummond" has explicitly calculated
the renormalization constants for massless (Eu-
clidean) p' theory on a hypersphere. He used the
conformal-invariant form of the free Lagrangian.
Up to three-loop order he found that the renor-
malizations are the same as in flat space. It is
a corollary of the results in Sec. V that, in per-
turbation theory, adjustment of the coefficient of
BP' from the conformal value is needed to deal
with the four-loop divergences.

In using the present results to renormalize in-
teractions in a curved space, one is treating the
curvature as a perturbation around an initial flat
space. Such an approach is naturally abhorrent to
many general relativists. However, this method
permits one to use the standard techniques of re-
norm alization theory in flat space. Even so, it
would be useful to reformulate our results directly
in curved space. Apart from considerations of
elegance, there is liable to be a breakdown of per-
turbation theory if the curvature is comparable to
particle masses. Physically, this occurs even
when the radius of curvature is much larger than
the Planck length. In such a case our approxima-
tion of ignoring quantum corrections to gravity re-
mains valid; this is a situation of at least potential
cosmological and astrophysical relevance.

Ultimately any analysis such as ours rests on
the assumption "that it will not be upset by a proper
quantization of gravity. That is, it assumes that
to ignore quantum gravity effects (specifically the
ultraviolet renormalization) is a sensible approxi-
mation. This is a reasonable hypothesis, but its
truth or falseness is not known at present.

A preliminary account of the work described in
this paper has been given in Ref. 33.
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