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A calculation of the m N scattering amplitude, based on the nonlinear cr model, through the one-loop
approximation of perturbation theory, is given. Unitary partial-wave amplitudes are obtained by constructing
the first diagonal Fade approximant for the perturbation series. The s- and p-wave phase shifts are computed
and compared with experimental phase shifts.

I. INTRODUCTION

The SU(2) x SU(2) current algebra (CA) and the
partially conserved axial-vector current (PCAC)
have been important conceptual developments' in
low-energy hadron physics, but they have led to
only a handful of numbers to be confronted with
experiment. Typically, CA and PCAC imply Ward
identities which can be conver ted into low- ener gy
theorems (off-shell). Besults obtained include wm

s-wave scattering lengths, pN s-wave scattering
lengths, the Goldberger-Treiman relation, and

hyperon nonleptonic s-wave decay constants. The
work described in this paper is part of a continu-
ing program' to go beyond these results, in par-
ticular, to compute 717t and pN scattering ampli-
tudes above threshold, up into the resonance re-
tion.

We adopt the point of view that the real world is
close to the Goldstone-Nambu mode of chiral
SU(2) x SU(2) invariance. This point of view can
be realized in a specific and detailed way in dif-
ferent variants of the so-called (Y models, ' and we
will use these as a crutch to do the calculations.
This does not necessarily imply a belief that there
is anything fundamental about the cr model Lagran-
gians; the whole calculation could be described as
a particular approximate S-matrix calculation, in
which one starts with a small number of parame-
ters as input and uses analyticity and approximate
unitarity and crossing (in some, one hopes, opti-
mal way) to compute an approximation to the S ma, -
trix valid in some range of energy. Given such a
spec if ic framework, the pr es e nt appr oach to
strong-interaction calculations (two-body channels,
low to intermediate energies) is to generate a per-
turbation series for the scattering amplitude and
use it to construct Pade approximants. Recall that
the sequence of Pade approximants is an algorithm
for the summation of divergent series which has
been applied in recent years to a number of prob-
lems of statistical mechanics and strong-inter-
action dynamics. ' There does not exist any proof
of the convergence of the sequence of Pade approx-

imants in a real field theory, but it has been
proved that the diagonal approximants converge to
the scattering amplitude in potential theory. This
is a strong indication that at least the bound-state
(resona. nce) problem (poles in the scattering am
plitude as functions of coupling constant g) is han-
dled by the Pade algorithm. Some indication of the
power of the Pade algorithm to sum series which
fail to converge for any value of g has been ob-
tained from consideration of the anharmonic oscil-
lator. It is known that this Hamiltonian possesses
eigenvalues E„(g) for which g = 0 is a branch point,
i.e. , the perturbation series for the energy levels
must diverge. Nevertheless, Loeffel et al. 4

proved that the diagonal Pade approximants formed
from the coefficients of the divergent perturbation
expansion do converge to the correct E„(g). An

important feature of the diagonal Pade approxi-
mants, applied to partial-wave amplitudes, is that
they satisfy elastic unitarity exactly. Thus, the
present approach may be viewed as a scheme for
the (elastic) unitarization of the current-algebra
and PCAC threshold results. All such schemes
necessarily violate crossing symmetry. However,
in the mz problem one has a quantitative measure
of this violation in the form of the Roskies rela-
tions, ' and the nonlinear-0-model Pade calculation
was found' to satisfy the constraints of crossing
to a high degree of accuracy, an improvement over
previous unitarization schemes which have been
tested in this regard.

Having decided to try to compute the scattering
amplitude from the information contained in the
formal perturbation series by way of the Pade al-
gorithm, we are faced with the task of defining
and computing the ("almost" ) chiral-invariant per-
turbation series. The problems involved depend
on whether we are dealing with the linear o
model (LaM) or the nonlinear o model (NLoM).
In the Lo.M the problem is the appearance in
the Lagrangian of the cr field. This is a problem
because of the questionable existence of the cr par-
ticle. At best it is a very broad resonance (e) in
the I= 0 s-wave wp scattering; then one has the
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problems associa, ted with unstable particles in a
Lagrangian and in perturbation theory. Thus, one
would like the 0 to appear, if at all, as output rath-
er than input of a, ca,lculation. Elimination of the
0 field from the LoM leads to the NLOM. The
problem with constructing the perturbation series
for the NLOM is tha. t it appears to be unrenormal-
izable. However, because of the rela. tion between
the NL(JM and the LCM, the perturbation series
for the NLO'M can be defined. The way to do this
was first suggested by Bessis and Zinn-Justin. '
Essentially the LvM is used as a Lorentz-invari-
ant, chiral-invariant, regularization of the NLO'M.

The procedure is to eliminate the 0 pax'tiele from
the LoM as follows. Compute all Feynman dia-
grams (to any given order) in the renormalized
perturbation expansion of the LvM .hen expand
the resulting invariant matrix element in powers
of m, and lnm, and drop all terms which would
va.nish if the limit rn, -~ were taken. This pro-
cedure eliminates a,ll poles and thresholds asso-
ciated with the 0 particle, and leaves terms which
are independent of m, and also terms which de-
pend on m, (polynomial in m, and lnrn„iwth coef-
ficients which depend on the kinema, tic variables
of the amplitude" ). rn, thus remains as an arbi-
trary parameter, but does not have an interpre-
tation as the mass of any particle. Bessis and
Zinn- Justin gave an elegant heuristic proof, based
on the Feynman path-integral formulation of the
generating functionals for the Green's functions
of the LoM a, nd of the NLvM, that the m, ~ limit
of the LoM px oduees the NLoM. The proof is for-
mal because the limit does not exist for the per-
turbation expansion beyond the tree appxoxima. tion;
but the m, -trunca, tion procedure described above
is well defined because of the well-studied re-
normalizability of the LOM, and hence does pro-
vide the perturbation series, to any order, to be
used for the construction of the Pade approxi-
mants, and all resonances (including the o, if it
exists) are to appear as output. The input param-
eters are the physical masses and coupling con-
stants of the pion and the nucleon, and the Lorentz-
invariant, chiral-invaria, nt NLO'M cutoff param-
eter, m, .

At the one-loop order (which is all that is re-
quired for the construction of the [1,1] Pade ap-
proximant), the equivalence of the m, -truncated
LOM and the NLoM is particularly transparent.
Think of constructing the one-loop NLvM ampli-
tude for some scattering process by itex"ation of
the unitarity equation (in a.ll channels) combined
with dispersion relations.

Im ~mr. « — ~wL.~

where M„"L',a is the tree approximation (or Born
term) of the NLoM inva. riant matrix element for
the process in question. But it is well known that
in the tree approximation

(The meson coupling X must also go to infinity,
Ram, /f, ). Because the phase-space integra. tion is
compact, the limit m, —~ and the phase space in-
tegration can be interchanged, so

Im M„",)«= lcm Im M,",)„.
nt

Analyticity implies that M") is determined by
1m M"' up to a polynomial (in s and f). The dis-
persion relation for BeM„"L'«requires subtrac-
tions (the limit m, -~ and the noncompact disper-
sion integration are not interchangeable), so we
see that the definition of M„"L'«by the m, truncation
of M„",'„, just serves to fix all of the subtraction
constants in the polynomial for M„"„'« in terms of
one arbitrary parameter, m, .

The whole procedure has been carried through
the one-loop order and the computa, tion of the phase
shifts from the [1, lj Pade approximant for the vv

process, including pions and nucleons in the
intermediate state, a,nd the work is reported in
considerable detail in Bef. 2. The results, as
described there, were sufficiently encouraging
so that we have gone on to the mN-nN ealeulation
reported in this paper. For the pX calculation we
have chosen to make use of the considerable sim-
plification which can be obtained in the one-loop
order if one works in the chiral-invariant limit.
Then one can bypass the whole procedure of first
computing all of the LoM one-loop Feynman in-
tegrals and then computing their asymptotic (in
m, ) expansions. We can compute directly with the
NLoM, because, as we have just described, the
one-loop amplitude is determined via unitarity and
analyticity by the tree diagrams, up to a subtrac-
tion polynomial; and in the ehiral-invariant limit
there is an exact low-energy theorem (LET) which
determines all but one of the required subtraction
consta. nts--a result equivalent to the m, truncation
of the LOM one-loop amplitude. We have decided
to proceed this way for a couple of reasons.
First, we believe tha, t the real world is close to
the Nambu-Goldstone mode realization of SU(2)
x SU(2) invariance, as evidenced by the success
of the Goldberger-Treiman relation, the Adler-
Weisberger-steinberg LET's etc. Thus we ex-
pect this approximation to be entirely appropriate
in view of the other, less controllable uncertain-
ties introduced by the restriction to the [1,lj Pade
approxima, nt, the neglect of kaons and other heavi-
er strange particles, and particularly, the neglect
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FIG. 1. Lo M tree diagrams for ~N- ~N. FIG. 2. NLO'M tree diagrams for ~N ~N.

of inelastic processes, which are known to be im-
portant above 1500 MeV. Another reason for seek-
ing simplification of the calculation is the exis-
tence in the literature of two previous related cal-
culations for the nN problem, ' which should give
similar results for appropriately chosen values of
the parameters, but rather are in strong disagree-
ment with each other. By doing the calculation in
the chiral limit we greatly simplify it, and hence
increase our control over it —as discussed in de-
tail below.

II. THE ONE-LOOP NUM AMPLITUDE

The manifestly chiral-invariant linear o'-model

Lagrangian, for pions, Z's and nucleons, is

&,~=o[(s7)'+(sx)']- 'u. '(0'-+x')+4ty s4

—-'&o'(7'+X')'- Z.4(X ty, &—'l)4 (2-1)

The Goldstone-Nambu mode of chiral SU(2) XSU(2)
invariance is realized by way of anonzerovacuum

expectation value of the o' field

&x& =~.. (2.2)

Rewrite the Lagrangian in terms of the translated
field

2= 2 22X p Vp BZy gpVp ~ (2.4)

The tree diagrams (Born term) for the wN scat-
tering amplitude following from the Lagrangian
(2.1') a,re shown in Fig. 1. The corresponding in-
variant matrix element is

X =X —Vp~ (2.3)

Z~,„=—,'(8 &)'+ —,'[(sg)' —M,2$']+ g(ty s —m, )t
—&.'t .R(T'+x') —-'&.'(7'+ x')'

+ tgoA F 44 go$4 (2.1')

with

1 2GX2 v
(2.5)

Eliminate the v particle by taking M -~, and also X -~ to maintain the chiral constraint M ' = 2X'm'/G'
[see Eg. (2.4)]. One obtains the Born term of the NLoM,

1 1
M.,(p, q, p', q') = G'u(p~) y,~, , , y,7, +y,~, , „y,7, + —r„u(p).

NLe M

(2.6)

The corresponding NLaM tree diagrams are shown in Fig. 2. In terms of the standard decomposition

M„(p, q, p', q') =u(p')[n„[A "(s,t, u)+ ~(q+q')B "(s,t, u)]+-,'[~„r][A' '(s, t, u)+~o(q+q')B' '(s, t, u)]]u(p),

(2 7)

with

M'+'= —'(M"'+2M"') M' '= —'(M"' M"'

we have

G2
(+) (-)

m

(,) 2 1 1
tree &&2 ~2

@( ) G2 1 1
tree & 2 2

(2.8)

(2.9)

In principle, as discussed in the Introduction,
we should next work out the renormalized pertur-
bation series based on the Lagrangian (2.1'), com-
pute all the renormalized one-loop diagrams, and
then make the double expansion in M and lnM of
all the resulting functions, throwing away all terms
which vanish in the limit M -~. The result would

be, by definition, the invariant matrix element for
mN scattering of the NLoM, computed through
second order (one-loop). This is a, lengthy pro-
cedure, first because there are a large number
of LOM one-loop diagrams, and second, because
there is considerable cancellation of singular
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terms in the limit M-~ one has to compute sev-
eral terms in the asymptotic expansions of each
of the LoM Feynman integrals. However, as we
have already pointed out, the imaginary parts of
the second-order amplitude (discontinuities in

s, t, u) a,re determined, via iteration of the unitar-
ity equations, by the simple known first-order
amplitudes. Then analyticity (in general, or of
the perturbation-theory Feynman integrals in
particular) implies that the entire second-order
amplitude is determined up to a polynomial in the
variables s, t, u, of order determined by the num-
ber of subtractions necessary in the dispersion
relations used to construct the real part of the
amplitude from its imaginary part. After com-
puting the s-, t-, and u-channel discontinuities
(see below), and observing the large s, t, u be-
havior of the functions, we determine

-a+bt+ ~ ~
1 1OOP 7

- a'+ ~ ~ ~
1~1OOP

(2.10)

—s m' —u

1 1
Bl lOOp b~ 2 + 2 + C +

nz —s vz —u

where the ellipses indicate known functions (con-
vergent integrals). Crossing symmetry implies

A' '((o, t=0)+&uB' '(~, t=o)=(1 —g )

where

+ O((o'), (2.11b)

+ o(l jl'),

where lql is the c.m. three momentum. Equa-
tions (2.11a) and (2.11b) provide two conditions
which determine the constants a, c so that only one
constant, b, in (2.10) remains undetermined —a
result equivalent to the rn truncation of ML,'„"'
which gives the same known functions and one
undetermined constant.

We now give a little more detail on the calcula-
tion of ImM" '. In the s channel (vÃ-vN) the
only intermediate state corresponding to one-loop
Feynman diagrams is the mN state. Thus the
s-channel discontinuity of M "is computed from
the unitarity equation

a' = c' = 0. Coupling- constant renormalization-
the condition that the conventional wN coupling
constant is determined by the residue of the ampli-
tude at the nucleon pole —provides one condition
to determine b~ T.he low-energy theorem (LET)
following from chiral invariance is

A"(&u, t =0)+ &oB"'(&o, t =0) =O(ru ), (2.11a)
2

disc~,"~' = i g (2v)'5'(P + q P, )M ~, '*M,",—'

zG dpi 27t'5+ pl —Pl dpi 2''5+ QI 2' 5 p+ Q -P
Sl

I j'Q I 1

(2.12)

+ ~~ +
/

+
Ng

The nine terms in (2.12) correspond to nine s-
channel unitarity diagrams obtained by "squaring"
the three NLoM tree diagrams of Fig. 2. They
are shown in Fig. 3. The u-channel (vN - vN)

discontinuity follows from (2.12) by crossing

M.&(P, a, P', e') =M~(P, e', P', -e). -(2.13)

In the t channel (vv-NN) there are both vv and
NN states corresponding to one-loop Feynman dia-
grams. Thus we need the lowest-order chiral mm

scattering matrix element, and the lowest-order
NN scattering matrix element, as well as the low-

IC

+ ~~p + + I

/

C

+

FIG. 3. s-channel unitarity diagrams. FIG. 4. NLo M tree diagrams for mw —~m.



200 W. -L. LIN AND R. S. WILLEY 14

+ ',& w +

FIG. 5. NLO M tree diagrams for NN —NN.

X s
I /

I

est-order wg-NN matrix element, obtained from
(2.6) by crossing. The lowest-order chiral vv

scattering matrix element is the Weinberg matrix
element (Fig. 4),

1 2
~abad(qll q2l qbt q4) f 2 I. 6ab5ad(ql q2)

+ 5„5M(q, —q, )'

+ 6„6„(q,—qa)2]. (2.14)

Note that the (conserved) axial-vector current
derived from the Lagrangian (2. 1') is

+ Fy,y, 2&,g. (2.15)

So to lowest order v, =f, and (2.4) gives f, '=G2/
rn'. In the limit M-~, the NN -NN Born term
computed from (2.1') consists of just the usual pseu-
doscalar coupling one -pion exchange and annihilation
diagrams (Fig. 5). Including both the v2 and NN

intermediate states there are nine t-channel uni-
tarity diagrams, three of which vanish by the G-
parity extension of Furry's theorem (nucleon loops
with an odd number of pions attached give zero).
The six contributing diagrams are shown in Fig. 6.

FIG. 6. t-channel unitarity diagrams.

Q +x =vo

or

g = (V
2 —ljl2)l~2 (2.16)

Then the chiral-invariant nonlinear o -model La-
grangian is obtained:

The result of carrying out the integrations and spin
and i-spin sums of (2.12), and the corresponding
calculations for the u channel and t channel, is a
set of functions which are recognized to be kine-
matical factors times the imaginary parts of one-
loop Feynman integrals with two, three, or four
scalar propagators. The box integrals have dis-
continuities in two channels, e.g. , the second uni-
tarity diagram in Fig. 3 and the fourth unitarity
diagram in Fig. 6 correspond to the same (box)
Feynman diagram.

As a check, the whole calculation can be done an
alternate way which we briefly describe. Return
to the original form of the chiral-invariant LOM

Lagrangian (2.1). On the formal Lagrangian level
the a field is eliminated by imposing the chiral-
invariant constraint

~NLoM (st ) +
2 P

2 (0 s @)'+02y &0 g.(v.' 0')-' ' ( (+-2 g.A, ~ q 0
0

2

=~&(ep) +g(iy' 8 —m, )g+ 2 (Q' SQ)'+ ' ltlgQ'+i gagy, 2' ' Qg+ ' ' ' .
0 1

(2.17a)

(2.17b)

The one-loop le-vN Feynman diagrams generated by (2.17) are shown in Fig. 7. The corresponding
Feynman integrals are, of course, divergent, but the imaginary parts can be computed unambiguously

I+ - + - +
J(

+ + I

l

eleven diogroms +
/

/ +, s( +

FIG. 7. One-loop NL0 M Feynman diagrams (some diagrams which contribute only to renormalization constants are
omitted) .
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by the Cutkosky rules and agree with the results of the iterated unitarity calculation. Then the one-loop
Feynman integrals may be rendered convergent by subtracting polynomials in the external momenta. The
Feynman integrals corresponding to the individual diagrams of Fig. 7 are given in Appendix A. Adding

them all gives the one-loop amplitude:

&"= —-!." . ( —.— [I5()~ (','!()[~ -(',"(~)+ -(['!(
)]~ 2 9, () ~.. ())

fft 167PPPl m' 2m S Q

3[()(,!, ) 8(, !,s)] ~ —,I!'!(!)—(!'(!)!—((„„(!)—)((!)I,

& [ ' = —G' —[I[:s)(s)-I [:s(u)1+—[ I:'N(s-) I"—s(—u)]+ 2m [~s.s(s) —~s.s(u)]
1 fPg 1 1

—[8(s, t, u) —8(u, t, s)]+ [4K (t)+4K (t)+K„„,(t)]

—2,I,„(s)—,I „„'(u) + 2[&„„„(s)-&„„„(u)]
[

-4m* .~!",'(~)-, ~Ãj(~) )[!!!(~,!, )-I(, (, ~)[I,

B =Q' + —G'(-) 2 1 1 4 ~P 1
+ + + —-I'" s +—I")u

1 c 1'1 1
m

,1.'~"(s)+ .I'.s '(u) —2[~s.s(s)+~s.s(u)1

—[ (8(s, t, u) + [8(u, t, s)] + 2 K, (t )
I
.

The various functions in (2.18) are Feynman in-
tegrals and linear combinations of Feynman in-
tegrals defined in Appendix A. The "polynomial. "
terms a, bt/m', c, t)~[(m' —s) 'w(m' —u) '] are
the terms required by the subtractions needed
for the I„,I,~, and I» integrals.

%e noir determine the conditions placed on these
constants by the chiral LET (2.11) and coupling-
constant renormalization. The chiral-limit
threshold is: First q' = p,

' = 0 and t = 0; then I jl,
the center-of-mass three-momentum, approaches
zero:

(i) q'=t[. '=0, t =0,

(ii) t) =
I ql /m -0.

1 1 1
+

PPg 4P W —S PPl —Q

(2.20)

—== p'+(t)'+t)')"
m "=0

=p+p +pp + ''' (2.21)

The chiral. -limit threshold expansions of the in-
tegrals in (2.18) are given in Appendix B. Sub-
stitution of those results into (2.18) gives

G4~&'&-G' —— [a —1+O(p')],
pyg 16m'm

[Note that this ls different from the usual current-
algebra and PCAC off-shell low-energy limit,
vrhich is: First t = 0 and q = 0, then qo 0; and
leads to a LET (Adler-Weisberger-Weinberg)
giving the amplitude at the physical threshold up
to correction terms of order p'/m'. ] For q'=0
and t = 0, the pole terms of (2.18) are

[t) + o(p')l,
16m m

B~) C' — ~ b~ +0 p},,

a - — [c—2+0(p)].(-)
16/m'

(2.22)



202 W. - L. LIN AND R. S. WIL LE Y

Comparing with (2.11a) we find

a =1+bed.

Comparison with (2.11b) gives

(2.23)

4

(1 —gz'), = — +, [u(1+ c —2) +O(uP)]+ O(G').

To proceed with this we write [see the expression
for the axial-vector current, Eq. (2.15)]

cal estimate of this constant [or, via Eq. (2.30),
of g„"']. Since the results of this paper rest on
the assumption that the [1,1] Padd approximant
provides a decent approximation to the sum of the
chiral perturbation series, at least at moderately
low energies, we apply the Pads algorithm to the
summation of the series on the left-hand side of
(2.28). Estimating this by the [1,1] Padd approxi-
mant we have

g„=1+G2g~(»+ " (2.24)

Substituting this, we find (2.11b) is satisfied if

G4

G'+ (G'/16m )bp
(2.33)

Q2
2 2

7r

[the renormalized version of (2.4)] and

1 2 (2)c —1=
G2/16v2 (G g~ ).

(2.25)

(2.26)

Although gz' must be computable in the LoM,
we are avoiding detailed LoM calculations; so,
since g& =1.25 is not so different from 1, we will
simply make the empirical estimate

G2g "'=0.25. (2.27)

(
G4

G — ~ 6g+ '' =g (2.28)

But G' =m'/f, ' = 97.5 while g' = 184, so we do not
want to make the approximation that the second-
order term accounts for the entire difference.
Instead we use the Goldberger-Treiman relation
(which is exact in the chiral-invariant limit)

We will shortly give a theoretical estimate, which
gives a similar result. The condition that the
residue of the nucleon pole terms is the renor-
malized rN coupling constant is written as

Substituting the experimental values of G' and g'
quoted above, we solve for bp =- -0.76, in remark-
ably close agreement with the semiempirical esti. -
mate (2.32).

We comment on the relation' of the chiral low-
energy limit considerations presented here to the
better -known Adler- Weisbe rger-Weinberg low-
energy theorem based on current algebra and
PCAC. The difference comes from the nucleon-
pole terms, which occur both in the derivation of
the LET and in the tree diagrams calculated from
the o-model Lagrangians. The value of these nu-
cleon-pole terms depends on whether one takes
first q = p,'-0, then g -0 (the chiral-invariant
limit), or first Pq~-0, then qo-0 (the PCAC limit).
In the PCAC limit, the nucleon-pole terms do not
contribute to the LET and the g~', present in
(2.11b), does not appear, i.e.,
A ' '(u), t = 0) + (uB' '( u, t = 0) pc„c „. 2, + O((u'),

(d= =p+O(p ).P q
m

Correspondingly, the value of the tree-diagram
pole terms in B' ' is different:

or
2

(2.29)
1 1 2q2

2 + ~2 PCAC lim 4I2+2

1
PCAC1im 2~2 '

—G2(1 + 2G2g&»+ ~ . )

Comparison of (2.28) with (2.29') gives

(2.29')

(2.30)

Comparing (2.30) with (2.26) gives the relation

1c —1- 2bI, (2.31)

analogous to (2.23). The estimate (2.27) substi-
tuted into (2.30) gives the estimate

b~ = -0.8. (2.32)

Next we provide a brief, but amusing, theoreti-

Making these modifications we find that the Born
terms of (2.18) satisfy the LET, provided Eq.
(2.25) is satisfied (G = m/f, ). The condition
a = 1+ b~ from the isotopic even amplitude is un-
modified. But to determine the value of c from
this limit one has to know the PCAC threshold-
limit values of all the integrals of (2.18), which
cannot be recovered from our calculations which
have set p. =0 at an early stage. We conjecture
that if one did compute all the integrals keeping
p, &0, and set ~q~=0 and then expanded in powers
of p/m, then the condition that the G» terms give
no contribution of order p/m would give directly
the condition c = 1 ——,'b~(2.31).



LONI. &NEAR-O-MODE&. PADE CAI. CULATlON OF ~X I HASE. . . 203

One point concerning the chiral limit p. =0 needs
mention. The pion loop integral, subtracted at
zero four-momentum, has an "infrared" diver-
gence when the pion mass goes to zero:

limI,",'(t) = + ln —,
16 p,

This implies that the subtraction constant b in
(2.18) must also have a logarithmic dependence
on the pion mass."%'e can remove this pion-
mass dependence by choosing a different subtrac-
tion point for this integral, i.e., we subtract at
I;=-m

~

2) 1I(, &(t).=, , in —,,
and we combine

+ I m &(t) + . . . (2.18')

and all terms in (2.18') are well defined in the lim-
it », -0. (See also the note at the end of Appendix
A.)

b+ ln ——2= 5 independent of p, .
p

2

Then the A"' amplitude in (2.18) is rearranged as

GA"=——G4 a+5 + ~

m 16m m m

III. THE ISOSPIN AND PARTIAL-%PAVE AMPLITUDES AND PHASE SHIFTS

The isospin amplitudes are

m~'& =m~'& +2M&-& (3.1)

Incorporating the rearrangement (2.18 ), and making some rearrangements of the linear combinations of
t-channel integrals in (2.18), we obtain from (2.18)

A" = ——G' ~ s ~iT, ~ s —()'i (s) — (p,'(u) ~ 2 (3z„„„(s)-z„,„(u))rn 16m'm rn' 2m s

+g(s, t, u)+58(u, t, s)+—I„o„(t)+—,+10+, + ~, I,, (t)
3

~0&
1 t 12s + 52m' 48m'(s +m')

nt " rn m' t -4m' t-4m' '

1(,40m's+120m' 96m (s+m')
2 (t 4 2}2 N(()(

rn 16m'rn rn' 2m 2s 2m 2Q

1
2

20m's + 12m' 48 m'(s +m')
m t —4m' (t —4m')'

(3.2)

rÃ —s m —(M

c 1 2 o 1
2 2 2 16 2 2 2 2 ((N ( }

2 2 )(&(( )

~ [I'"s&(s} +2 m'~ts"s(s) l —
~ [I'P(u) + 2m'&s'~s(u)1

+$(s, )(— $(5u, s)i, (i~,) [i''(i) ~ 2 ((,, (())I, '„„
—16„. a +

2 ~+2, I.s(s) —
2 2+2„ l.s(u)+~s. s(s)

+, [I~&„&(u) +2 g„m&(u)~]s+46&(s, t, u} —2$(u, t, s)
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The kinematics involved in the mN partial-wave
projections are well known. %e have, for the s-
and P -wave amplitudes,

f&"& = [A&,"&+(w m)-B&"&]

0.2 0.4 0.6
'P

f&"& = [A&"&+(w m)-B&' &]»/2

b—40—

+
™[- A& I&+( w+m) B'&I]&,

BgS' (3.3)

[A&"&+ (w-m)B& "&]1 1/2 Q~gf 1 1
FIG. 9. Sqq phase shift.

where

+ [ ~&"&+(W+m}B&' &],
Bg%'

our (stands. rd) normalization is

. (»)
f(i2il) = e'biz sin 5(2I) (3.6)

A&,"(s) =-; dxP, (x)A
'&(s, f, u),

1

(3 4)
1

r)P"(r)=l f err', (*)e'*"(,r),
Each of the twelve functions ReA&,"&(s), ReB,"&(s)
are given as a sum of integrals, in addition to the
polynomial and pole terms, obtained by substitution
of (3.2) into (3.4}. The integrals were evalua, ted
numerically by computer. (Many can be done ana-
lytically, and were checked that way. ) With the
values of these integrals we have Ref&&'p deter-
mined from (3.3). The imaginary parts of the

ft&+ & can be obtained from the previously computed
imaginary parts of all of the integrals and (3.4)
and (3.3). They satisfy perturbative unitarity

The [1,1] Pads approximant is
2

1] ftl'ee

ftree forte loop—- (3.7)

for each I, l, J'. It follows from (3.5) that ff"&
satisfies elastic unitarity exactly:

Imf '""' =q
~ f""~'. (3.8)

2
ftree

e

ftree Refooe loop--
The results are plotted in Figs. 8-13.

(3.9}

Thus f&t'& is of the form (3.6) and the phase shifts
may be computed from

1~/~1 1~

~ L1.1j

W(2I) — I S(2I)~m& g J(one-loop) ~ I ~ l J(free) I
(3.5)

fV. DISCUSSION

S( II)

60—

Comparing Figs. 8—13 with the six experimental'
s- and p-wave, I =-, and —, phase shifts, one finds
the following areas of qualitative agreement: The
sign of each of the six phase shifts, just above
threshold, is obtained correctly (including the

1 l 1

l

e
I

04
I
r

0.6
,

' P
I

0.2
]

06 P

FIG. 8. Calculated S&& phase shift compared with
values from the mN phase-shift analysis of Ref. 9. (The
vertical dashes are not error bars. ) FIG. 10. P13 phase shift.
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l60—
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I20— O—40—

I 00—
FIG. 13. P3& phase shift.
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0.2 0.4

0.2 0.4
I

FIG. 12. P&& phase shift.

FIG. 11. &33 phase shift.

I

0.6 P

0.6
' P

negative value for P»). The P» wave goes through
90' at the nominal mass of the n(1232); none of
the other waves reach (positive or negative) 90
below p=0.6 (W=1675 MeV, for go 0). Small ex-
perimental phase shifts are calculated to be small.
The calculation has just one arbitrary parameter,
the subtraction constant b, which is adjusted (b
= —1.4) to make the P» resonance occur at the cor-
rect value of p=q/m. That this can be done is not
trivial; for example, we have observed that if one
determines the constant b~ by a perturbative eval-
uation of Eq. (2.26) (replace the sum by the first
two terms) one obtains b~ = —1.43 rather than
—0.8, and for this value of bI, no value of the ar-
bitrary constant b will produce a 33 resonance at
p =0.24. On the other hand, it is clear that this
calculation does not fit the mN phase shifts. The
one spectacular disagreement is with Pjy phase
shift, for which the experimental phase shift
changes sign less than 200 MeV above threshold
and resonates at p-0.45. Although the 33 reso-
nance is obtained, the calculated phase shift turns
over shortly above the resonance while the exper-
imental phase shift continues to rise, and even for
the other waves, for which there is rough agree-
ment below p =0.6, it is clear that the experi-
mental phase shifts have structure [e.g. , the
inelastic S» (1535) resonance] not produced by the
present approximate calculation. The Py] wave
and the structure in the S» wave are associated
with strong inelasticity, and one cannot expect
good results for them from the single-channel
[1,1] Pad@ approximant, which necessarily is
purely elastic (satisfies elastic unitarity).
The difficulty with the P3 above the resonance can
probably not be attributed to inelasticity since
experimentally that wave remains elastic for 200
Me V above the resonanc e. To go beyond the pres-
ent approximations in this case one has to think of
higher-order Pade approximants, e.g. [2, 1] or
[2, 2], and/or additional particles, e.g. KA or KZ
virtual intermediate states. However, our strat-
egy now is to return to the mm problem, where
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there is also a calculated phase shift (So,) that
turns over where the experimental phase shift
continues to rise (above 700 MeV) and important
inelastic effects associated with the KK threshold
just below 1000 MeV. Here, the significant
inelasticity is confined to a single two-body
spin-zero channel, so that purely kinematic
complications are much less than in the
wNproblem. If we succeed in significantly im-
proving the mm S„wave calculation, e.g. , produce
the inelastic ~" resonance, we will return to the
vN problem. In particular, the inelastic S» (1535)
resonance decays almost entirely into vN and qN,
a system which should be amenable to any two-
body coupled-channel analysis developed for the
mm, KK system.

We have made the following checks (in addition
to those already mentioned) on our numerical
results. A computer program to numerically eval-
uate all of the partial-wave integrals defined by
(3.2) and (3.4), to combine them (3.4) and to com-
pute the [1,1] Pads phase shifts (3.9), was put
together by one of us. That same calculation, for
one value of p, was carried out without the com-
puter, with an HP55, by the other of us. The
results agreed, so we trust the results of the com-
puter program for the other values of p. Another
independent check was provided by the low-energy
expansion. Each of the one-loop Feynman inte-
grals, Eq. (2.18) and Appendix A, on the physical
sheet may be expanded in powers of p and lnp.
This expansion, through order p, was necessary
in order to determine the subtraction constants in
(2.18) by comparison with the chiral LET. To get
a better approximation, we have carried out this
expansion through order p' (Appendix B). The
resulting invariant functions A~, B ' are very
much simpler than the "exact" expressions (2.18)
and Appendix A, but should be a good approxima-
tion to them for p«1. We have computed the
[1,1] phase shifts using the approximate low-ener-
gy expressions (a simple pocket-calculator nu-
merical calculation —see Appendix B), and indeed
the results of the full calculation do converge to
the low-energy approximation results as p becomes
small.

The existence of this low-energy expansion, and
the exact low-energy theorem (in the chiral-invari-
ant limit), leads to the following important obser-
vation. The signs of all six phase shifts just above
the (chiral) threshold are determined by the Born
term and the fixed constant b~, i.e. , they are
independent of the arbitrary subtraction constant
b [see (B7) a.nd (B8)]. The leading terms for p
-0 are independent of b). The signs so deter-
mined are: $» and P3 positive, $,j Pj3 Pjj and
P„negative —all, including P», in agreement with

the experimentally determined phase shifts.
Furthermore, because of the positivity of the
square of the Born term, any phase shift computed
from the [1,1] Pads approximant (3.9) cannot
change sign. " Thus one can state that no chiral-
invariant, single-channel [1, 1] Pads calculation
can produce the experimental sign change and
1470 resonance in the P» wave.

Our results disagree with those of two previous
Pade calculations alluded to in the Introduction.
The first calculation, by Filkov and Palyushev'
(FP), did not use a Lagrangian. Rather they
started from a Born term consisting of the usual
(pseudoscalar) nucleon-pole terms plus a constant
in the A' amplitude. If that constant were taken
to be rn/f'„ then the Born term would be the same
as the chiral-invariant NLgM Born term. FP did
not choose the constant that way, rather they chose
it to fit a combination of the experimental s- and
P-wave scattering lengths. They then used iterated
unitarity in the s- and u-channels and single-vari-
able dispersion relations to compute the second-
order amplitude. t-channel structure was para-
metrized by a pole with mass and residue treated
as arbitrary parameters. They then constructed
the [1,1] Pade approximant for the partial-wave
amplitudes and reported a rather impressive
over-all fit to the s- and P-wave phase shifts, al-
though they did not obtain the detailed inelastic
structure in the p» and $» waves, and they had
the wrong sign for the small P» phase shift. The
primary theoretical objection to their calculation
is that since it does not incorporate the constraints
of chiral invariance, " it cannot in principle be
generalized to higher orders, because additional
undetermined subtraction constants will be re-
quired. (The constant indi'i corresponds to a
nonrenormalizable interaction ggP'. ) A more
serious criticism was made by Bergere and
Drouffe' (BD) who, in addition to a NLa M calcu-
lation (discussed below), also took the theoretical
expressions of FP and tried to reproduce their
numerica. l results. Instead, they found numerical
results which bore no resemblence to those
reported by FP.

BD did a NLoM calculation, using LvM regular-
ization described in the introduction. We have
argued that, at least in the chiral-invariant (p = 0)
limit, our simpler one-loop calculation should
be equivalent; and indeed, when we take the p, -0
limit of their expressions they agree with the
resu its given in our Appendix A, up to questions
of subtractions —in particular, the imaginary
parts are the same. However, we believe that
the subtractions of BD do not satisfy the con-
ditions imposed on our subtraction constants in
Sec. II. The most easily seen disagreement is
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with respect to the subtraction constant b, de-
fined in our E(l. (2.10) or (2.18). As pointed out

at the end of Sec. II, this subtraction constant
must have a particular dependence on ln(m'/««, ')
[E(l. (2.34)] such that the entire matrix element
has a limit for p. -0. In the calculations of BD
this term arises from only one NLcrM graph [their
(B16')], and their expression for this [their E(l.
(28)] does not have a finite l.imit as t(, -0. Further-
more, BD report that by varying their subtraction
constant (M for them), they can obtain a positive
P„phase shift and a negative P„phase shift.
As we have pointed out, this cannot happen ln a
single-channel chiral-invariant [1,1] Pads cal-
culation. The LvM regularization of the NLvM
maintains the chiral invariance, so the BD cal-

culation should depart from chiral invariance
only through the nonzero pion mass. The presence
of the pion mass does make a difference, e.g. ,
in the chiral-invariant limit the nN s-wave scat-
tering lengths are zero [the f„&, of (B7) have no
constant terms as p-o], while in the PCAC limit,
one obtains scattering lengths a ' proportional
to p. and a ' proportional to p. ', i.e., small, and
vanishing in the limit p, -0. Similarly, the thresh-
old behavior of the P-wave amplitudes is -p in
the chiral, -invariant l.imit and -p for y 4 0.'
Thus, we cannot make a conclusive statement
about the p, 4 0 case, but we would be surprised
if any of the phase shifts have a different sign

when computed with p, &0 than they have when
computed with p, =0.

APPENDIX A: ONE-LOOP FEYNMAN DIAGRAMS AND INTEGRALS

We label the Feynman diagrams of Fig. 7 as 1, 2, ..., 11 (the s-channel diagrams), 1', 2', ..., ll' (the u-
channel diagrams —not shown), and 12, ..., 15 (the t-channel diagrams). The corresponding contributions
to the invariant matrix element are:

M„(1)='-C'u(p')(3r, r)
2

Il'& (s)+yQ
2

I&'„&{s) u(p), (Al)

S +tFl
M„(2) =M.,(3) ='-C'u(p')(~, ~,) — ™

I&o«(s)+yq — I,"„«(s) u(p), (A2)

m2
M,~(4) =M,~(5) =' Gu(P-')(, r~ r ) mJ„~s{s)+yQ —

2 I~is «(s)—,P, &(s) u(p),
I

M.,(8) =M.,(7) ='O,

2 8+m2
M„(8)='-G' (p')(8.,) ) 2, It' &(s)+yQ

2 ., I'"(s) u(p),

(A4)

I

M„(8) =M„(iO) =-C'u(p )(r. r, )]- I.'„&(s)+yq Z„„„(s) u(p), (AG)

M„(11)=-G'u (p')(v, v, +2v, 7,) R„(s, t. )+,Ist'„" (t&) + yam)«s(s, t) -K„„„(t) u(p),

Q = —,'(q+q') .

The matrix elements M,~(1'), ..., M,~(ll') are obtained from the above by the substitution

g 0+OI' Q g ~g Q (A8)

M„(12)='-G'u(P')(«&„), Il',&(t) u(P), (A9)

M,~(13) =M~~(14) =-
2

G u (p')
~ (6~~) 2 Ks„~(t) +4——K+(t)

t

~ 2(v, rJ[' "(» ()) ~«,, ()) «„., ()))+r() ~ .~,.(,0 l ((),
m j

M„(18)=-C'u(p')(8. ,) I„"„'(t) u(p).

(Aio)

(A11)
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We have used m'/f, ' =G'. The equal sign with a
dot means equal up to the arbitrary polynomial
[and constant times 1/(s -m~)] implied by the sub-
stractions made to obtain convergent integrals.
The arbitrary constants and polynomial are re-
stored in the combined invariant matrix element
(2.18). The imaginary parts of (Al) through (All)
agree with the imaginary parts obtained from the
iterated unitarity Eq. (2.12), etc.

The Feynman integrals appearing in these form-
ulas are as follows:

1
[(k+0)'-m '][(k -q)'-m '] '

K„(f)= (, ,) —,'I„'-; ] (t) -m'K„„(t)

—6m Zi (t) (A17)

occur in the scalar decompositions of the vector
and tensor integrals

EP
s dl, — +P' "K+ t,

has a finite first derivative at the branch point
s =m' (i]. = 0). The combinations

K+(t) =
2 I~~ ](t) +2m K««(t), (A16)

1

((fk) = 2„4, (P+q) =s (A12)
(A18)

I,", (s) =I„(s)-I„(c),
K,~, (s)

(A13)

1
(k' -m, ')[(k +p)' -m, '] [(k —q)' -m, ']

(A14)

(i'-m')(f+P)'(f+f ')'-

=g" m2K (t) +P" P„K (f) +P" P' K (t), (A19)

The combination
m Ko(t) = K+(t) . — (A20)

(A15)
The integral K (t) does not contribute to the ma-
trix element.

-yk
)"[()'+()'- *l[()'+)')'- 'l[() +(+q)'- *] (A21)

)(„( , t) =
[( , ), [ (

( — ' )[2( — *
) t] I (s, t) ~+2 (s )*sr .—( )*~t(8„—„m

' )rr (t) (A22a)

z ( , t) =
[

, ), [
( m '

) (t —4m *)s. ( , t) —-2 (
* —m ' )K ,„( ) + ( — ' )[2 ( — * ) ~ t] Ã,„ (t)) ,

1

(A22b)

where

L(s, t) =(s -m )H(s) t) K~««(t), -
1

(k')[(k +p)' —m '] [(k +p')' —m'] [(k +P +q)'-m ']

(A23)

(A24)

C(s, f, u) =K„(s,t)+, I~/~](t), (A25a)

$(s, t)u) = Xs(s, t) -K«««(t) . (A2 5b)

Our formulas (A21)-(A25) agree with the m~- 0
limits of the expressions for the mN "box" in-
tegrals given by Brunet. "

Note that H (s, i) and K ««(t) are separately infrared
divergent in the limit m, - 0, but the combination
L(s, t) exists for m, =0. In (2.18) we have used the
combinations

APPENDIX B: CHIRAL THRESHOLD EXPANSION

The chiral (p =0) threshold expansions of the
Feynman integrals are done from the Feynman-
parameter form of the integrals. As in high-
energy asymptotic expansions, one has to perform
n —1 of the n Feynman-parameter integrations
before one can expand the integrand in powers of
p = ~qi/m. For several of the integrals it was most
convenient to expand first in the variable

8 —Vl 2

m2
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and then reexpand using

E =2p+2p +p +' ' '

The momentum-transfex vax'iable is of order p',

I;

, = -2p'(1 —cos &&);

lev'Rel «&{s)=-1+(g —P) in(+ ~ ~ ~

16&&~ ~ ReI', „&(s)= (1 —(+P)in(+.

16&&~m'Re J„,„(s)=1 —g 8 +~9('+(-—,'f + gP)in)

p in the partial-wave amplitudes (3.3). And for
p-O, the coefficients of the singular integral
Z (t) in a&» W"& B&'& a&'& of (3 2) are

g(l ) .

g(3),

g(1 ).

g{3),

Substituting these results into (3.2), and using
(82), we have

Ie&&™,Re J&,„&(s}=--,'+-', $+(--,'+-', &)lnE

16»'I&o&(u) =-1 —t+(-g —t —P) ln)+ '

g' 4 2——pF-f ——p ln2p+
2 3

G2 G4 41 2
— 3

ReA.' '= ——
2 a-1 —p — p2y 6 ——t16m'I 9 2

16» 'm'J„„„(u)= I +-,' t' +—', P + g t

+('f+ —'—P,+—'t)lug+

m'Iev' ~&"&(u) =--,'--'~--,'—

+ (--' —-'&) ink+" ',

lr2
+ P~t ——

&& 1&l2P +
4 3

g2
+ ~i+ —p ln2p +' ' '

2 3

Iev'1&0&(t) =--', t+ ~ ~ ~,

Iex'I&;, '(t) =»(-t),
m2

16»'m'K„„(t) = —+-,' ln(-t) +2V'- &

16&&'mReX„(s, t) = =,' $+—', P + {-,'( ——,
'

5,') in(

(84)

n'2 4— -- —— ~t+ —p ln2p + ' ' '

+ 0 ~

16&~m X„(u, t) =-,'~ '+P ,'t (-+-, -g -&P &, t&)-I -(n--

16&&~ I« '(t)--1-—'t+ ~ ~ ~
2@i

8

t——+1 ——p — + + +
M p 2 4p 2p Bp

16&&'m'Re36 (s t) =—' t'+ —'$»5+ '

16&&'m'X {u t) =-—'E ——'glut'+

16»'m'K (t) =-'+ ' t+ ~ ~ ~—
24

1 1 1 t t t2
+1 p+ 4lhW + 0 0 4

w p 2 2p p 4p

In (84) we have not expanded all integrals through
order p', because not all are needed that far. All
integrals vrhich appear only in the invariant func-
tions J3") are multiplied by at least one power of

Putting in. the values ~ =1+&~ and & =1 —2&~,
and substituting (85}and (86) into (3.3}and (3.4),
we have the chiral threshold expansions of the
partial-wave amplitudes:
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8wf"~g = (2p- —'p'+ ~ ~ )- [(-1 'b——-4b)p'+ ~ ]01 2 3 16m2m

G2 4

8wf "~g = (-p+ —'p'+ ) — [(-1+ 'b ——4b) p'+ ]012 m 3 16~2m 6 P

G2 4
8 srf,"g, = (-—', p +—', p'+ . .)—,[=',b~p + (-1 + ', b—~ + 4 b)p' + ],

8mf"g = — (—'p- —'p'+. . ) — [—'b p+(-2 '-b —+ 'b)p'—+ ~ ~ ~ ]1 2 3 3 16 2 3 P 3 P 3

2 4

8wf,",i, = (-—', p+ —', p'+ ' )—,[-—', b p+(-3+ ', b +—'—, b) p'+ ~ ~ ],
2 4

(-sp--'. p'+'")- . [='.4 p+(- 1+84 +-', b) 'p +" ],

where bp =-0.8 and b is the one arbitrary parameter. Finally, substitute (B7) into (3.9) to com-
pute the phase shifts in this approximation:

(G'/4~) p'(1 ——.
' p)'

1 ——,'p+(G'/16m')[(--, ' —', b~ ——2b)p] '
-(G'/4w)-, ' p'(1 ——', p)'

1 ——', p+(G /16r')[(1- b 6+p4b)p]
'

-(G'/«)-.' p'(1 kp)' —
t ~ (G'/«}'-p'(1 —-'p)'

1 ——,'p+ (G'/16m')[b„+(3 ——,'b~ —45)p] ' " 1 ——,'p+ (G'/16m')[bp+ (-3 ——,'bp+2b)p] '

-(G'/«)~sp'(1 .'p)' --t ~ -(G'/4~) '. p'(1 +p-)'
1 ——,'p+(G'/16m')[b~+( —,' —2b~ —b)—p] ' " 1+p+(G'/16m')[b~+(3 —2b~ —4b)p] —'
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