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Augmented quantum field theory: A proposal to extend conventional formulations
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An alternative approach to scalar field quantization is proposed and analyzed, particularly for (p )„models,
n & 2. Without altering the classical equation of motion at all, the action is "augmented" by an additional
term that in effect induces a new measure in a functional integration approach to quantization. Guided by
specialized soluble models, a lattice-space formulation is proposed for covariant theories for which in the
continuum limit the truncated four-point correlation function is non-negative in contrast to the conventional
formulation. Besides suggesting nontrivial behavior for n & 4, the augmented models lead to new noncanonical
solutions for n = 2, 3. All solutions of the augmented models are disconnected from those of the conventional
approach in the sense that the augmented models pass to a pseudofree model differing from the free model as
the nonlinear coupling constant vanishes.

I. INTRODUCTION

The quantum field theory of self-interacting
scalar fields has long served as a theoretical lab-
oratory for developing and testing new methods
of formulation and solution. In recent years the
superrenormalizable P(y), and (rp'), models have
been rigorously established outside of perturba-
tion-theoretic limitations. The construction of
these models has proceeded along lines suggested
by conventional renormalized perturbation theory,
and thus it is perhaps no great surprise that the
results largely conform with the heuristic expecta-
tions of perturbation theory. Qn the other hand,
predictions for theories such as (p')„, n 4~, based
on perturbation theory, seem to be at variance
with presently proposed nonperturbative arguments
based on renormalization-group calculations. ' It
is the conclusion of these latter arguments that
the ultimate theory is free whether one deals with
renormalizable (n = 4) or so-called nonrenormali-
zable models (n~ 5). Even the presently construc-
ted superrenormalizable models (p')„, n= 2, 3,
seem to possess an inherent limitation in that
there is, for these models, a maximum (finite)
value allowed for the renormalized coupling con-
stant X„,.'

The present situation clearly poses a dilemma.
Should one really believe that models such as (y'),
and (y4), are constrained by upper limits on X„„
and in addition that models such as (p4)„, n~ 4,
are nothing more than free theories? Qr are
these results an inevitable consequence of certain
limitations inherent in the conventional approach
to these problems?

In this paper we outline an alternative aPPmach
to scalar field quantization that leads to different
solutions for superrenormalizable and renormal-
izable models and potentially provides a nontrivial
solution for nonrenormalizable models. All in-

dications point to the overall consistency of our
approach, but existence questions have not yet
been completely settled.

When one breaks with tradition, one needs both
alternative ideas and plausible motivation. We
find it expedient to present the alternative ideas
along with heuristic motivation initially (Sec. II),
and to argue for their most basic potential valid-
ity and to give a concrete (lattice-space) formula-
tion subsequently (Sec. III).

II. HEURISTIC FORMULATION AND DISCUSSION OF THE
AUGMENTED MODELS

Classical preliminaries

The classical theory under discussion, restric-
ted for convenience to a qua, rtic interaction, is
described by the action

I= 2~„p p -&mp —Xp dx

(dx—= d"x), and the classical equation of motion

( +m')y= -4xy'

is derived from stationarity of the action.
Hecall that in theories with contraints (which

these models are not) auxiliary variables in the
form of Lagrange multipliers can be introduced
into the action in a linear fashion, and are used to
impose the constraints by insisting that the action
be stationary with respect to their variation. In
the functional integral approach to quantum field
theory such I agrange variables linear in the action
lead to 5 functionals that impose the constraints
on the remaining variables of integration. Qur
models do not have constraints in the usual sense,
but we wish to modify the action in a not unrelated
fashion.

Bather than Eq. (I) we propose to adopt the aug-
memf;ed classical action
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I = 2 ~ltd 8 p —2' p —Xp -px p dX~

where ]t(x) is an auxiliary field variable. Station-
arity of the action with respect to arbitrary varia-
tions of p and X leads to the two equations of mo-
tion

( +m')~= -4&q'-X'q,

XO'= 0.

The field X enters the action in a nonlinear fashion
and that is reflected by the appearance of X in both
equations of motion. Evidently, Xy'= 0 implies
that ]t'q) = 0, so that the field y still satisfies Eq.
(2). Wherever q) (x) ph 0 it follows that X(x) =- 0;
but if q)(x) = 0 on some open set, then we may take
y(x) 4-'0 on that set. Of course, one completely
consistent solution is to take y(x) =—0 for all space-
time. While the change we have introduced has
no effect on the classical theory, this change has
a profound influence on the quantum theory.

Quantum formulation

We formulate the quantum theory of these models
in the language of functional integrals. 4 For con-
venience, we analyze the Euclidean-space formu-
lation for the generating functional of time-ordered
Green's functions. (The Minkowski-space form
could be used equally well. ) For the conventional
formulation of the model we consider the expres-
sion

S(h) =Z f exp(i f hs dx —f [g(ps) + m'4 ]

+ hs']dx) 44,
while for the augmented theory we consider

4'(h)=P) f sxp(sf hsdx —f[ [( ) P(s*em) e]'X4

+ h4 ]dx) 44PX .

(7)

In these expressions h= h(x) denotes the "external
field" test function, 4= C(x), X=X(x) are Euclid-
ean-space field variables, and (&4)'=Z(84 jsx„)'.
Normalization is adjusted so that S(0) =- I -=S'(0).
Equations (6) and (7) are heuristic and formal, as
are essentially all such functional integrals;
nevertheless, the difference therein contains the
essence of our proposed modification of conven-
tional scalar field theory.

First a few general remarks. Formally, (7) is
relativistically covariant in Euclidean space just
as is its conventional counterpart (6). The field
X may be taken to have mass dimension 1, and one

may describe the proposed modification as a super-
position of the conventional theory for all statis-
tically independent, local mass possibilities equal
to or greater than m'. In the conventional theory
the parameter rn' represents the bare mass, but
it would be premature to judge its significance in
the augmented theory. From a formal point of
view it is certainly possible that m' = 0 as far as
the integration in either (6) or (7) goes.

Another crucial point to note about (7) is the fact
that as A, -0' the generating functional does not
reduce to that of the free theory but rather to a
"pseudofree" theory characterized by

S{h) P'if =expIif hedx ~f [(Ps)'+ (m'+X')4']dxI

x X)@ SX, (8)

which differs fundamentally from the free field
generating functional

S( )h-=pf)sxpIif hsdx-' f [(ps)'em'4'jdxI&4

=exp — p +pl k p dp (8)

There is every reason to expect, at least on for-
mal grounds, that (7) admits an asymptotic expan-
sion in X which is evidently an expansion about the
pseudofree theory and not about the free one.
Elsewhere we have argued that nonrenormalizable
interactions may well be continuous perturbations
and possibly have asymptotic perturbation series
about suitable pseudofree theories. ' Here in Eqs.
(7) and (8) we give specific (albeit formal) pro-
posals for what those interacting and pseudofree
theories are for scalar fields.

Generality of the proposal

Although we have confined attention for simpli-
city only to (q)')„models, the form of the pseudo-
free theory can be argued to be the same for other
models, e.g. , (y6)„, (q)')„, or even P(p)„(see be-
low). Moreover, we explicitly propose Eq. (7) as
a basis for formally defining a theory for models
that are normally regarded as (super) renormal-
izable, such as (yd)„, n=2, 3, 4, etc. Conceivably
such a prescription, when carefully formulated,
may overcome some of the limitations of conven-
tional treatments of these models.

Eliminating the auxihary field

Equations (7) and (8) are formulated with the X
field integrations still to be performed. Alterna-
tive expressions arise if we carry out the X in-
tegrations. So far we have deliberately left un-
specified the formal meaning of K)4 and g)X t save
for an implicit prescription used in evaluating
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(9)]. For the free theory one traditionally adopts
the formal prescription

uC -=g de(x), (10)

SX== g dx(x). (12)

With this understanding we can formally carry out
the X-field integration in (7) and (8) to yield

(13)

and for the pseudofree model

s'(h)—:x J axpI( J hodx ——,
' f [(v4)'+m'4']dxI

x 5)'@ .
In these expressions

(14)

&'4 =—Xo exp -p X C dx 4$X

~e x -'ne

= g )e(x) )-'de(x).

Clearly Q'4 is no longer translation invariant
in the sense of (11), and so (14) does not lead to
the free theory result. Instead S'4 is invariant under
local multiplication, namely under the transforma-
tion C(x)-S(x)4(x), S(x)&0.

hemmed.

It should be observed that the formal
definition of O'C at each x, namely

~

4(x)
~

'dC (x),
is not locally integrable at 4(x)=0. How this
problem is dealt with will be discussed in the next
section.

Heuristic motivation

Of course, a certain reluctance to accept (13)
may be expected. One is familiar with (6), which
is an expression of the form of (13) but with a dif-
ferent significance for the elemental field differen-
tial. The traditional, translation-invariant form
SC is required for models having canonical com-
mutation relations. However, for nonrenormal-
izable theories, or more specifically for theories
with infinite field strength renormalization, the
existence of canonical commutation relations may
be highly suspect. As previously argued, whether

or alternatively that QC possesses formal local
8"anslationa/ invariance,

x c -=~(o+ A),

for arbitrary A(x), which then rather directly leads
to'(9). Likewise, we shall assume that

or not one includes the X field the same classical
theory arises. The identity of the classical theo-
ry can also be seen in the traditional quantum-to-
classical limit where A is treated as small by ap-
pealing to "stationary-phase"-type arguments in
(7). In an e(luation such as (13) the classical theo-
ry emerges because the "effective action" agrees
with the correct form apart from a term O(K). In
the case of the nonrenormalizable interactions
((P )„, p&2n j(n —2), the complete failure of con-
ventional renormalized perturbation theory sug-
gests that the translation-invariant form (11) may
be inappropriate. Outside of perturbation theory,
it can be argued that a nonrenormalizable interac-
tion generally acts as a partial "hard core" in re-
lation to histories otherwise allowed by the free
action (see below). ' Characterization of that hard-
core behavior is essential to formulating the theo-
ry even for arbitrarily small coupling constant.
The proposed formal change or modification of-
fered in this paper takes the form of replacing
SC by ~ C, the multiplication-invariant form.
(This formally simple change leads to related
changes in the definition of the integrand, but that
aspect is spelled out in the next section. ) There
is a certain elegant simplicity in noting that the
form of the requisite change follows only from in-
serting a formal masslike interaction with the
auxiliary field X(x).

Form mvanance

It is noteworthy that the strength of the interac-
tion with X is immaterial. In particular, let ihe
term f Xe' dxin the action be taken as gf X'C'dx,
g&0. Then if follows that the functional 8'(h) is
independent of g and identical to that proposed for
g= 1. This result is found by a simple scale change
of X with an overall numerical factor canceling in
the normalization factor K And interestingly the
resultant theory is even unchanged if fX'4'dx is
replaced by fX' '4dxf X'C'dx, etc. , since such
interactions lead to the same expression for O'C.

Why the augmented theory might work

We have noted that the expression (8) may well
serve as the pseudofree expression for a large
class of interactions. In retrospect, the formal
reason for this is not too difficult to see. Ac-
cording to our viewpoint, a nonrenormalizaMe
interaction acts as it does because of the partial
hard-core effect of the interaction relative to the
free term. ' Consider the covariant cases where
(dx =- d"x)

R~= p &4 '+m 4' dx,
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C 'dx (17)

denote the free and interacting Euclidean actions,
respectively. Sobolev-type arguments assert that
W, ~KWo~ ' for some finite K provided p ~ 2n/
(n —2),' but this type of relation fails to hold when-
ever p&2n/(n —2).' As an example, if n=4 and

p &4, then for the particular field

C (x) = x
i

"exp (—x'),
one finds that Wo&~ and W, = whenever 1&y

4/p.
How the proposed modification deals with such

fields will become more apparent in the next sec-
tion, but a certain heuristic argument can be pre-
sented here. Namely, with the augmented form of
the pseudofree action

W' = —,
' 4 '+ m'C + X 4' dx (19)

W, = —,
' V'4 '+m'C'+ X 4 ~ dx, (20)

a field such as (18) that is "allowed" by W, and
"forbidden" by W, will also be "forbidden" by W

since X' can stand for any other substitute includ-
ing

~
C

~

in (19) or simply 1 in (20).
Qf course, the foregoing is a very picturesque

characterization, and what really happens is de-
scribed in a very different fashion. Inclusion of
the field X and its subsequent integration to gen-
erate O'C (or starting initially with 2'C ) leads to
a random field of fundamentally different, non-
Gaussian (and therefore noncanonical) character
that has the property that (renormalized) local
products can be properly defined. On the other
hand, no such local products can be defined from
a basically Gaussian random field in the paramet-
ric range p&2n/(n —2) which characterizes non-
renormalizable interactions.

or with the equally effective augmented pseudofree
action

terms of the two-point function). As a result a
graphical interpretation (in the manner of Feyn-
man) proves to be a convenient aid. Divergences
that may arise are avoided by one or more cut-
offs, and the parameters of the model are related
to the cutoffs in a way (hopefully) that meaning-
ful results survive as the cutoffs are removed.

For the augmented theory the pseudofree models
are non-Gaussian, and so all the conventional
rules are suspect. Local products need not be
given as Wick products, expansion of the interac-
tion in powers of X does not lead to terms com-
posed simply of products of two-point functions,
a Feynman graphical treatment is irrelevant,
pseudofree propagators are not free propagators,
conventional renormalization prescriptions may
not be applicable, etc. Certainly, new rules need
to be developed if one is to proceed via a perturba-
tion development of (13) in a power series in A..
It should be emphasized that in spite of all the
rigorous developments in the Bogoliubov-Para-
siuk-Hepp -Zimmermann (BPHZ) framework, ' this
particular formalism is tied to Gaussian free
fields and has nothing to say for non-Gaussian
pseudofree fields.

In lieu of an alternative set of rules to generate
a perturbation theory we proceed in a more con-
structive fashion.

Lattice-space formulation: conventional theory

Cutoffs in the form of lattices have long been
used' and have recently experienced a revival.
Space-time lattices for theories formulated in
Euclidean space -time are particularly convenient. '
In many ways such models resemble problems in
classical statistical mechanics, and certain cor-
relation inequalities first established in statis-
tical mechanics have recently been used with great
success in field theory. 'o

Let us first make a few remarks regarding lat-
tice-space treatment of conventional theories. In
such an approach, Eq. (6) is approximated as

III. FURTHER DEVELOPMENT OF AUGMENTED MODELS

It is one thing to propose a formal functional in-
tegral such as (6), (7), or (13), and it is quite
another thing to develop a useful computational
technique let alone provide a rigorous mathemati-
cal meaning. Fox the conventional formalism,
the free theory is Gaussian, local field products
must as a consequence be defined as Wick prod-
ucts, and an expansion of the interaction in a
power series of the coupling constant leads na-
turally to a series of terms composed of integrals
over products of two-point functions (since all
Gaussian correlation functions are expressible in

exp i hq@q&--2 q 2
Cqg -4q

--m Z 4 & —X,Z 4,'&jg dC „,

(21)

where c denotes a lattice dimension, &=—z" is the
volume of a single cell, and A,„and C ~ are the
average fields at the kth lattice site (k denotes an
n-fold index). The sums extend over all lattice
sites on a (hyper) cubic lattice, and k~ is cryptic
for ihe n nearest "larger" sites to the site k. The
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quadratic term (m, ') also includes any Wick-ordered
contributionfrom the quartic term (A,}., and Ndenotes
a normalization such that S((0j, e) =1. Clearly, the
individual terms in this expression are Riemann sum
approximations to the integrals in question, with 4
representing the volume of integration. Conver-
gence of such an expression as e-0', or &-0',
has been established for n=2, 3, where in the lat-
ter case the parameter nz, ' contains a contribu-
tion that is O(ln&) representing the mass renor-
malization. " For z~ 4 this same formula may be
used as a starting point allowing for arbitrary re-
normalizations of m, ', X» and also of the coef-
ficient of the "gradient" terms. It is for such an
approach that one finds either free behavior' by
renormalization-group techniques or an Ising -type
behavior. "

If the terms representing the derivatives are
expanded out within the exponent, one observes
that the only connection between lattice sites is
through a (ferromagnetic) term of the form
pe '!4)h*c)hh. The quartic form of the remainder
of the exponent leads —independently of the sign
of rn, '—to various correlation inequalities among
which one has the basic (first Griffiths-Kelly-
Sherman and I.ebowitz) inequality"

0 —(e„,e„c„,c„)
—(c „,c,,)(c, e,,&+ (e„,c,,)(e,,e„)

+(c„,e„)(c„c„), (22)

where ( ) is as defined by (21). This particular
relation can be put to use in two ways. Assuming
convergence of the two-point function as & -0',
the uniform bound on the four-point function guar-
antees (by compactness) a convergent subsequence
for the four-point function. " Of course, there is
no assertion that such convergence leads to any-
thing but a free theory. But in any event, including
the nontrivial examples (p'), and (y')„ the re-
normalized coupling constant X„, (given by the
four-point vertex at zero momentum) is linearly
related to the four-point function evaluated at zero
momentum and thus inevitable constrained by the
left and right sides of (22).'

Gradient-free model

Before leaving the conventional approach, we
turn our attention briefly to certain highly arti-
ficial models defined as in (6) or (21) but u)itI)out
the gradient terms. In the lattice-space form
one considers the expression

S((1 j s) —(efZhh ohh)

=—Ã~ xp[

-~,Ze„'t]@de, . (23)

Here m, ' and A.,)0 denote arbitrary functions of
4 chosen for consistency, and Ã is adjustedso that
S((0j, c) =- 1. The simplicity of this expression per-
mits a rather general study. Note first that the
C~ are independent, identically distributed vari-
ables and that only the real part contributes. By
suitable scaling (C = u/4) it follows that

F(II„j,~)-=g F(I„,~),
where

))(eo}= f co,s(ex)x xl""Sx,

E(u, &) =——m, '& 'u'+ A.,& 'u'+ C, ,

and C, is chosen so that

(24)

(26)

If, as &-0', we assume that

I'e-"'" "dn -A, 0&A & ~

then with the presumed form for E it is inevitable
for P&2 that

(28)

n e '"' du -0.
Consequently, in the limit &-0',

S((e.},e)-E,(e)-=exp -A f S'(x)cx

(29)

(30)

Lattice-space formulation: augmented theory

For the lattice-space form of the augmented the-
ory formally given in (13), we provisionally adopt
the expression

This result is of course just a consequence of a
central-limit-type theorem. It indicates that the
continuum limit of the lattice form (23) for the in-
teracting gradient-free artificial model is invari-
ably the free gradient-free model for some mass
parameter.

We note in addition that the lattice-space form of
this artificial model satisfies the inequality (22),
regardless of the fact that the off-diagonal two-
point function vanishes. This artificial model
forms an important link in developing the pro-
posed form for the augmented model.

Ss((p j ~) = (ejZhhehh)t

expti~ &,I „&——.'+ e-'(4,« —e„)'&——.m.'~ 4,'& —~,+@,'&]ltd@,/i 4, )' " (31)
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l .B
g-1B24 - g-1

fo/). 22k (32)

Note that the formal measure [cf. (15)]~4(x) ~
'dC (x)

has been taken as~Ch( ~' '+dCh. More proper-
ly the exponent here should read -(1—2bh), where
b is an arbitrary positive constant with dimensions
(length} "; here and elsewhere we choose units suck
that b=—1. The proposed choice of exponent en-
sures the integrability of Ck near zero. Specifi-
cally, for any B, 0&B&~, we have

where the last relation holds for 4 sufficiently
small.

The parameters mp Xp and ¹ are to be de-
termined by consistency and normalization argu-
ments, and k* has the same meaning as in (21).

Gradient-free model

As the next step in our development, we treat the
artificial gradient-free model as an augmented
theory. Thus let us consider the expression

gt((g j ~}—(SIZhhOhh)e

=-¹ exp i hkckd -2mp2 Ckd Xp Ck4d dCk Ck
' "

~

Independence of each variable, reality, and suit-
able scaling (4 =u j&) lead to the relations

8'((I,];&) =-g S'(I „~),

(37)

Next introduce new (renormalized) parameters
according to

where m'=m '4-'
p 9 p (38)

5'(S, O)-=f cos(eu)e ' 'odu/]~u]~" (35)

F'(u, &) —= hmo'& 'u'+ X,4 'u'+ C,'. (36)

Note that we have made explicit a factor 4 which
for small 4 approximately normalizes [see (32)]
the measure du/~u ~' 'h in any interval including
u= 0. Indeed the interval itself may even increase
or decrease as a power of &, and the approximate
normalization for small 4 still holds. The param-
eter C,' is chosen so that R'(0, 4) -=1, and given the
preceding remarks it follows that

with m' and ]]. independent of 4 (recall that we have
chosen b =—1). Then it follows that

S'(S, o) = ( —f [( —cos(eu)]e. '&" "seu/]»]'-"

=1-4 1-cos Au e" " " "du u

(39)

where the last expression is correct to leading
order in &. Consequently, in the limit that 4-0',

S'(]S„],e) -S'(S) -=sos(- f &(»f (( -cos(S(»)u]]e"" '"""&(u/]u
~)

. (40)

u 'e ~'"4'&du u ' '4-A„
0&&, & . (41)

In turn this property comes about since, roughly
speaking,

= 5( )+&G( ), (42)

a structure that cannot be obtained within the con-

Note that with this answer we have bypassed the
central-limit theorem and have avoided the free-
model limit. The reason for this behavior stems
from the fact that, unlike the previous case in (28)
and (29), it follows for all p ~ 2 (indeed all p &0)
that

fines of the conventional lattice formulation.
In summary, the gradient-free model has satis-

factory limiting behavior in the augmented lattice-
space form, while it possesses no nontrivial limit
when taken in the conventional lattice-space form.
In the augmented formulation suitable multiPlica-
tive renormalizations of the parameters mp a&nd pp

exist, and there is no Wick ordering. This situa-
tion arises because of the very different nature
of the field variables in the augmented approach
as compared to those of the conventional approach.
In this regard critical use is made of the & factor
that enters into dC /~ 4

~

' 'h and so into the nor-
malization in (35); if instead one had chosen dC /
~C ~'99, say, then a central-limit-type theorem

would have been unavoidable even here as well.
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In other words, the lattice volume 4 enters and
is used in very different ways in the conventional
and augmented formulations, and that very dif-
ference is what leads to the different renormaliza-
tion of the model parameters. To see this clearly
one has only to note that in the conventional lattice-
space approach the 4 appearing in each term of
the action eventually becomes the volume element
of the integration as evidently is the case in (30).
Qn the other hand, it is the 4 in the overall nor-

malization, required by the 4 in the exponent in
the augmented measure, that eventually becomes
the volume element of the integration in (40).

The previous discussion has implicitly assumed
that A. &0 but it applies equally well for A. =O. Such
a discussion pertains to the gradient-free form of
the pseudofree model (14) analyzed as an aug-
mented model. The result of such an analysis is
given as &-0' by

8'((h ) a) -7'(Ir) —=
exp (-J dx f () —oos(h(x)M))e" """du/(u(), (43)

and evidently (43) also follows from (40) as A. -0'.
This expression for the pseudofree gradient-free
model is very different from that for the free
gradient-free model [cf. (30)].

No bound on X„„

It is especially noteworthy that for the augmented
models tke basic inequality (22) does not apply. In
fact for even infinitely divisible characteristic
functionals [which (40) and (43) are] all truncated
correlation functions atenon n'egative-. " This
means that for any pregiven value of A. and rn',
there is a &(X, m') &0 suchthatforallh& 6(A., m'),

0 (C,,C „,&'(C,,C,,&'

+ «,,C,,&'(+,,+,,&'+ &C,,C,,&'&C „4,,&'

(44)

where ()' is defined by (33). Recent results of
Ellis and Newman" in fact show that (44) holds for
all & &-,' (i.e. , & &-,'b ") for the pseudofree model
(A. =O). These results hold only for the gradient-
free model, but in the lattice-space formulation
introduction of the gradients increases (from
zero) the ferromagnetic coupling among cell fields.
Given that the truncated four-point correlation
function is non-negative [true for & &&(X,m')] the
increase of any ferromagnetic coupling will pre-
serve that inequality. " Consequently, (44) applies
not only to the lattice models without gradients in
(33) but also to the lattice models with gradients
in (31), at least for sufficiently small &. There-
fore, the limitation on A.„„previously encountered
no longer applies in the augmented approach.

Remark. On the assumption that the limit 4 -0'
exists for the augmented formulation [say as in

(31) or in (51) below], then (44} implies that the
solutions of the augmented (q)'), and (q)'), models
will not lead to the conventional solutions of con-
structive quantum field theory for these models.
Instead the augmented approach will provide al-

ternative, noncanonical solutions for these mod-
els with X„,unconstrained by (22).

One is reminded here of the situation in Schro-
dinger wave mechanics for the ordinary differen-
tial equation

d'
II~ —— ~+x +—2, A~O.

Gx X

Insisting on the existence of even-parity eigen-
functions that do not vanish at x = 0 is one way to
generate a set of solutions so long as A. & —„but for
X~-,' all eigenfunctions (both odd and even parity)
must vanish at x= 0. One could arrange to extend
the solutions valid above X» —,

' to smaller X values,
which would then give a second set of solutions for

These second solutions would not reduce
to the free (harmonic-oscillator} solutions as
A. -O', but to solutions of the oscillator formulated
with Dirichlet boundary conditions at x = 0. This
behavior reflects the fact that at x=0 the differen-
tial operator H„ is limit circle for A. & & and limit
point for X= —,'."

Background remarks

The model here called gradient-free has been
discussed previously in the literature. It has been
analyzed as a conventional theory —indeed effec-
tively as a lattice-cutoff theory —and it was recog-
nized that no nontrivial result emerges as &-0'."
Alternatively, the same formal model has been
analyzed in a completely cutoff-free fashion with
results obtained on the grounds of symmetry and
general principles alone. " The results of this
analysis agree with the limiting relations pre-
sented in (40) and (43). There is no ambiguity in
that derivation save for one arbitrary parameter
b chosen as unity that enters (40) and (43) by the
substitutions bdx, bm', and b'X for the indicated
variables, the need for which can be seen on di-
mensional grounds. The arbitrary parameter b

can be regarded simply as a reflection of the ar-
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bitrariness in the choice of the unit of length. This
is, of course, the same parameter b discussed
below Eq. (31).

It is no accident that the augmented model re-
sults agree with those of the no-cutoff approach.
In fact, recognizing that the conventional lattice-
space approach failed to give acceptable behavior,
the no-cutoff solution [e.g. , (40) or (43)] was
evaluated for functions h(x) that were constant
within each cell of a (hyper) cubic lattice of cell
volume 4. Subsequently, a Fourier transform
over each cell test field hk was made to discover
the appropriate form of the implied cutoff formu-
lation for the formal path integral. In this way
the result dC~/ 4~ ~' '~ (rather than dC ~) for the
elementary cell field measure was initially as-
certained. Clearly one way to realize the new
measure is to observe that for some numerical
factor of proportionality M,

,",~ =I exp -gXk' "' 4'k'~ dXkd4k. 45
k

It is this kind of relation that ultimately leads to
the formal expressions that appear as (7) or (8)
(modulo the gradient terms).

The foregoing argument constitutes the first step
in choosing the form of the augmented model,
namely, it is the form which when cut off on a lat-
tice leads in the limit &-0 to the correct, no cut-
off result for the gradient-free model. The next
step is to argue why the same augmented model
may work for models when gradient terms are
present.

Role of the gradient terms: preliminaries

It is useful to regard the lattice-space formula-
tion in (21) and (31) from the point of view of clas-
sical statistical mechanics for continuous "spin"
variables. Gradient-free models then represent
completely independent or uncorrelated spins,
each of which is characterized by a certain dis-
tribution. Gradient terms introduce coupling or

correlation between spins, and the coupling term
enters in such a way (ferromagnetic) as to promote
"alignment, "e.g. , the product 4,4, becomes pre-
ferentially positive. At lower "temperatures"
(represented by smaller lattice spacings) the ten-
dency for alignment becomes even stronger, and
in an expression such as (21) or (31) it means
that 4, —4, =0 with greater probability.

A simpler and more familiar example can be
provided by the following one-dimensional exam-
ple. Consider the probability measure induced
on a sequency of real random variables by the ex-
pression

Xe~[--,'Z ~-'(x„, -x,)' --,'Z ~x„2]gdx, . (46)

We identify x(f~) =—x~, t~ —= k& and regard t as time.
With the gradient absent the (weak) limit e-0'
describes white noise, a generalized stochastic
process x(f) not pointwise defined. With the gra-
dient present the (weak) limit &-0' describes an
Ornstein-Uhlenbeck process (locally rather like
Brownian motion), a process which is concentra-
ted on continuous sample paths. Thus in the limit
the gradient terms have introduced 8, certain de-
gree of smoothness (relative to white noise) through
the tendency of the gradient terms to make neigh-
boring variables comparable with a high degree of
probability.

Heuristically, the form of the exponent in (46) is
suggested by a uniform time lattice Biemann sum
approximation to the expression 2 f [x'(t)+x'(f)]dt.
But apart from that there is no a priori reason
that the coefficient of the gradient term should be

Any other negative power such as c+, P &0,
forces neighboring x values together. If so, then
what really distinguishes P = 1?

To show that p= 1 let us examine the expectation
value of (xz —x,)' in the distribution (46). In par-
ticular, let us evaluate the simpler but equally
useful expression (appropriate to Brownian mo-
tion) given by

E-1
f( ,)' p ——-'P '( „,—,)' ~(,)gd J(y +y, + . +y, +y,)' ~" ~'Qdy„

8
E-1 I

f exp ——,
' g e s(x, „—x~)2 5(x,)gdx, fe "&'g-dy„

L 1

, ,(~,)
I'y'e '&'dy-
fe "~'dy '

Inthe limits O, K-~, suchthat0& t-=Km& ~, itfol-
lows that only p = 1 provides acceptable behavior
for this quantity. This result for P was ultimately
determined by the particular K dependence of the
expectation of (xx —x,)'. A different K dependence
would have required a value for p different from
that suggested by the Riemann sum approximation;

in another language that difference in p values
would reflect the need for a nontrivial field
strength renormalization.

When considering higher dimensional (n~ 2) lat-
tices, some of the foregoing remarks should be
kept in mind. Generally, there will be analogous
smoothing introduced by the presence of gradient



1960 JOHN R. KLAUDER 14

terms, but it may not be sufficient to result in
random fields that are concentrated on continuous
functions. Equally important is the proper a(=e")
dependence of the coefficient of the gradient term
which along with m, ' and A., represent adjustable
renormalization parameters chosen for overall
consistency.

Relevance of gradient-free results for models with gradients

As we have seen the gradients tend to introduce
correlation between neighboring field values. For
Gaussian variables such smoothing tends to favor
the construction of local (Wick) products, but the
smoothing may not be adequate if the field power
or space-time dimension is too great. For the
gradient-free models the non-Gaussian augmented
formulation is fully consistent with the construction
of local products. " Now we discuss the relation
of augmented models with gradients to those with-
out gradients.

It is first instructive to compare in a formal
sense the free and interaction actions 8', and W,
in (16) and (17) that typically make up the exponent
in a functional integral. In the nonrenormalizable
regime P )2n/(n —2) the interaction is not con-
trolled by the free term. Clearly the converse is
also true, for one could imagine a field with a
high degree of modulation, e.g. , a smooth field
multiplied by cos(exp~x~ '), for which the gradient
term diverges. Such modulation is in principle
suppressed by the correlation of neighboring field
values just as it is in the conventional treatment
with Gaussian variables (even for free fields). On

the other hand, a field of "bounded variation"
seems such that the gradient term is locally dom-
inated by the gradient-free term. Consider the
field

C (~) =
~
~) & exp(- x') (48)

previously considered in (18). Near @=0 and up
to a factor,

(vc)'(x) = ~x(-'»-',

e'(x)= ixi '~. (50)

Proposal for the lattice formulation of the augmented model

With the foregoing discussion as motivation our
proposal for the lattice-space form of the genera-
ting functional for the augmented (p')„model is
given by

For g=-4, fields with y& 1 have divergent W„but
they also have divergent lV, . For n= 5, fields with
y) —,

' have divergent W„but W, diverges already
whenever y & 4, etc. Thus it seems heuristically
reasonable to assert that for (y')„, n) 4, fields of
bounded variation are controlled by the gradient-
free terms, while fields of unbounded variation
are controlled by the gradient terms as they al-
ready are in the conventional treatment. The dom-
ination by the gradient-free terms for fields of
bounded variation is what suggests that the form
of the basic measure of the augmented model which
is suitable for gradient-free models should also
be suitable for models with gradients. For (cp')„,
m =2, 3, such domination of the gradient term by
the gradient-free terms does not hold, but per-
haps that does not preclude the compatibility of the
gradients with the augmented formulation. (See
the earlier remark in reference to H„.) For the
reasons sketched above we have chosen the same
basic cell measure in (31) when gradients are pres-
ent that proved successful for (33) when gradients
were absent.

3i((h ) ~) —(eIZh~4&~6) I

exp[i Qh„c,~- —,'Z5 e -'(C,„-C,}'~—~,'P@„'&—X,Q@,'~]+de„/~e,
~

'-". (51)

This formula is essentially equivalent to that pro-
posed in (31) apart from the additional renormali-
zation parameter Z =Z(h) for the gradient term.
It is not easy to predict just what behavior to ex-
pect for the free parameters in (51). One possibili-
ty is that the parametrization of the gradient-free
models is still applicable, namely that mo'=m'6

(=m'bA), X,=RA' (=Ah'a'), along with the trial pro-
posal that Z = a (= ba) as suggested by the quadrat-
ic nature of the gradient term. At the very least,
such a parametrization and a. rescaling (4 = u/6),
which worked for the gradient-free theories, pro-
vides a possible starting point. In such a repara-
metrization (51) becomes

g/((h ], e )
—(st 5 hP eyB) I

r
exp[iQh~u~ —2zge '(u~—~ —u~)' —

~2/ 'Qu~'-Xgu~']+du~/~M~)' ' . (52)
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Here the parameters m', X, and z may also re-
tain residual dependence on 6, but if the analogy
with the gradient-free analysis is valid these pa-
rameters may be treated as constants (with z =1).
Clearly in the latter case the only b, that remains
to become the volume element in the limit 6 0'
is the 6 that appears in the elementary measure
and the normalization constant No. On the other
hand, the presence of the gradients may change
substantially the renormalization behavior so that
m', A, , and z would be different than assumed. Of
course, that is not serious since we still are pro-
posing solutions for nonrenormalizable models
(n& 5) that depend on only a finite number of pa-
rameters. Even for the renormalizable cases
(n & 4) we are proposing noncanonical models.
Clearly, the demonstration of consistency as 6 0+

of expressions such as (51) or (52) would open new
roads of study for quantum field theory.

Positivity and domination of correlation functions

As one argument to analyze (51) or (52) further
we appeal to a simple but convergent "high-tern-
perature" expansion and deduce several conse-
quences. For this purpose, let ( )' denote the
average with respect to (51), and let ( &&'» denote
an average similar in structure to (51) except that
the ferromagnetic coupling term

free values (A. =0). Consequently, it follows for
() f, -=()' defined in (51) and for sufficiently small
a that

(e, e, ".e, ),", (e, e„"e,&,r„o.
1

(5'I)

One might gain the impression that such a relation
would lead to a universal constraint on the re-
normalized coupling constant for p = 4, but that is
incorrect for we have not yet exhibited the de-
pendence of these expressions on the arbitrary pa-
rameter b that remains at our disposal. If we now
make 5 explicit along the lines suggested, it fol-
lows for sufficiently small 6 that

c ~ e» & ~ o
= 5' ~~'(e ~e e

(58)

For p =4 the left side of (57) varies as 5 ', which
can be made as large as desired (or as small).
(The limit 5 -~ leads to a Gaussian field; but this
limit, again an inevitable consequence of central-
limit-type theorems, in no way corresponds to the
limit A. 0+.)

Finally, we note the domination as forms of the
two-point correlation with gradients by the corre-
sponding one without gradients. This relation is
familiar for covariant free theories [see (S)] for
which

z= zQ~ -'e,*e,-~ (53)

is omitted from the exponent. A superscript T de-
notes truncated correlation function as defined for
example by expansion of the identity

(eZ"a a 1&'*=-I—n(P"a ~ )'. (54)

Then it follows that

&ea ea "'ea &"=Q ( ') '&ea ea, ' "ea ~'&(o) ~

(55)

Note that ( &(» is an average of the kind that is defined
in (33) with an alternative meaning for the quadrat-
ic term in the exponent. For such averages we
pointed out that all truncated correlation functions
of the form ( &&'Or& are non-negative for sufficiently
small h. Consequently, it follows for sufficiently
small 6 that

&e e "e &" o
A2 Ap

(56)

for the average ( ) ' defined in (51). For p = 4 this
result provides an alternative proof of (44) suitable
for the augmented models with the gradients in-
cluded.

Inspection of (40) shows that the expressions for
the truncated correlation functions valid for suf-
ficiently small 6 are majorized by their pseudo-

h4 dx = ~ p'+m' '@ p 'dp

(m ')-'iK(p) i'dp

(60)((zI,e,~)'& „'. ((zI,e,~)') '.

In this expression the parameters m, ' and A,, are
the same on each side. Given (38) for the choice
of parameter renormalization, we have seen that
the left side of (60) converges as a-0', and ac-
cording to (40) yields

h'(x)dx u'e ' ' "" ""
du&I+I ~ (61)

For this special choice of renormalization in (38)
the result in (61) provides an upper bound for (60).
Consequently, the convergence as b, -o+ (at least
for a subsequence) of the two-point function for

The general validity of this relation for even theo-
ries is easily demonstrated.

For the interacting augmented models, with 6
sufficiently small but nonzero, we assert on the
basis of ( )' defined in (51) and ( )„', -=( ) ' defined
in (33) that
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() ' defined in (51) is ensured for the proposed pa-
rameter renormalization in (38). Interestingly,
even this bound is enough to guarantee (weak) con-
vergence (for a subsequence) of the probability
measure in (51)." But the resultant measure may
be trivial, i.e. , either free or just concentrated at
4~=—O. Nontrivial results may result if another
choice for Z is adopted. But if that proves insuf-
ficient it will be necessary in addition to try para-
metrizations other than that in (38), perhaps even
renormalization of 5 itself. Clearly these questions
merit further study.

IV. CONCLUSION

In this paper we have discussed an alternative
formulation for the quantum field theory of co-
variant self-interacting scalar fields and compared
it with the conventional approach. Motivation for
our proposals stems from basic limitations that
appear inherent in the conventional approach. As
we ha, ve stressed both the augmented and conven-
tional formulations can be viewed as quantizations
of one and the same classical theory. Qn the sur-
face, the formal structure of the augmented for-
mulation compared to the conventional f ormulation,
as represented by Eqs. (13) and (6), respectively,
is relatively simple, i.e. , merely replacing one
formal measure for another. Anyone familiar with
functional-integration techniques is aware that in
certain cases (e.g. , gravitation) just which measure
is correct has long been a subject of debate. Ad-
mittedly, there has been little debate on the choice
of a formal measure for "simple" self-interacting
scalar theories, but perhaps conventional pre-
sumptions are too restrictive. A change of mea-
sure as we propose does not correct for improper
mathematical. handling of the conventional formal-
ism; in truth, the augmented formulation repre-
sents new physics.

Even if one is willing to consider alternative mea-
sures for self-interacting scalar fields, what then
is the appropriate choice to make? In this paper
we have strongly argued for the replacement of the
translation-invariant form QC by the multiplica-
tion- or scale-inva. riant form S'C, expressions
which are heuristically defined in (10) and (15),
respectively. The successes of constructive quan-
tum field theory have confirmed that the transla-
tion-invariant form is appropriate for "small" n,
i.e. , n =-2, 3 (not to mention n = 1 which character-
izes anharmonic quantum-mechanical oscillators).
Qn the other hand, the scale-invariant form is ex-
actly what is needed for the gradient-free models.
Elsewhere we have argued that in a certain sense
gradient-free models are related to covariant mod-
els for which n = ~." This remark is at least plau-

sible when one notes on the basis of standard per-
turbation theory that for any n a gradient-free
model exhibits even stronger divergences than the
same model with the gradients present. Conse-
quently, it is suggestive that the scale-invariant
measure suitable for the gradient-free formulation
holds for "large" n. Moreover, as discussed in the
text, the augmented approach may also provide
viable alternatives in ranges where the convention-
al formulation applies.

Even beyond the technical validity of the scale-
invariant measure for gradient-free models there
is another point of a conceptual nature in its favor:
The modification of the conventional treatment in-
troduced by adopting O'C for SC is qualitative and
profound not just quantitative and mild. This point
has been stressed already in our discussion of the
lattice-space formulation with regard to the ulti-
mate disposition of the parameter 6 which repre-
sents the cell volume in the limit 6 -O'. The fun-
damental difference in this regard between the
augmented and conventional approaches leads to
alternative prescriptions to define local field prod-
ucts. No new prescriptions for local field products
would follow from mild or conservative modifica-
tions of the mea, sure.

A further important consequence of the augmented
formulation is the validity for sufficiently small ~
of "reverse" correlation inequalities such as given
in (44). Directly applicable to the gradient-free
models, this inequality also remains valid in the
presence of the gradients owing to their ferro-
magnetic coupling nature. The inequality (44) valid
for the augmented models if 6 is small enough is
to be contrasted with the more common inequality
in (22) that applies for the conventional formula, —

tion. Although (22) implies a convergent subse-
quence for the four-point function, given two-point
convergence, the renormalized coupling constant
A,„„is constrained to a finite interval. Qn the
other hand, for the augmented formulation (44)
cannot be used to guarantee a convergent four-
point function, but if it exists the renormalized
coupling constant A.„„is unconstrained. This re-
sult makes the augmented formulation potentially
interesting not only for (cp')„models, n~ 4, but
also for new formulations of (cp'), and (y'), mod-
els.

The formal analysis of Sec. II is useful for heur-
istic purposes, but it is not suited for computation
or to establish existence. A perturbation analysis
constructed along conventional lines seems out of
the question, even though we expect (13) to have
an asymptotic expansion in A, . Instead we have pro-
posed a lattice-space formulation with the relevant
generating functional given in (51). Convergence
as A-0 (with suitable boundary conditions and as
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the overall lattice volume goes to infinity) of this
expression for a suitable choice of parameters
should provide a Euclidean-space-covariant mod-
el. Passage to real time (Minkowski space), de-
termination of (free) asymptotic fields, characteri-
zation of the scattering matrix, etc. , would pro-
ceed along lines well established for conventional,
constructive, or axiomatic formulations.

Generalization to other models

It is tempting to conclude with a few remarks sug-
gesting alternative approaches to models other
than (y')„which have been our main concern. We
expect that a parallel analysis applies for (y~)
for any even p, or suitable P(y)„based on the
augmented formulation and the same pseudofree
models [e.g. , (14)]. For n =2 these models should
also differ from the conventional models of con-
structive quantum field theory. The relevant lat-
tice-space formulations are evident generaliza-
,
tions of those presented in (51) or (52).

For the two remaining examples we content
ourselves with only indicating possible first steps
in an analysis analogous to Eq. (l).

If one deals with a self-interacting O(N)-invari-
ant, N-component scalar field 4 (x), then one
should consider the conventional action augmented
by the term

X xC xdx, (62)

which involves an N-component auxiliary field
X(x). Such a proposal generates a measure O'4
which is invariant under arbitrary local O(N)

rotations and dilatations. "
If one deals with a charged spinor field g(x) hav-

ing &N components, then a local four-fermion cou-
pling (Fermi coupling), which for n) 2 is non-
renormalizable by conventional standards, may be
approached in an alternative fashion if one takes
the conventional action augmented by the term

x x xdx~

where X(x) is an N-component auxiliary field.
Euclidean-space fermion fields are sufficiently
troublesome as to suggest that this example be
formulated directly as a Minkowski-space func-
tional integral.

Just these two additional examples should suggest
the richness in new formulations of old models
that becomes possible when augmented action func-
tionals are considered. It would be striking indeed
if the weak interactions could be formulated in a
consistent way along the lines suggested here
"just" by a change of measure in function space
and without the need to postulate additional par-
ticles.
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